RU2227133C2 - Способ получения карбонильных соединений - Google Patents

Способ получения карбонильных соединений Download PDF

Info

Publication number
RU2227133C2
RU2227133C2 RU2002106989/04A RU2002106989A RU2227133C2 RU 2227133 C2 RU2227133 C2 RU 2227133C2 RU 2002106989/04 A RU2002106989/04 A RU 2002106989/04A RU 2002106989 A RU2002106989 A RU 2002106989A RU 2227133 C2 RU2227133 C2 RU 2227133C2
Authority
RU
Russia
Prior art keywords
reaction
nitrous oxide
atm
mixture
carried out
Prior art date
Application number
RU2002106989/04A
Other languages
English (en)
Other versions
RU2002106989A (ru
Inventor
Е.В. Староконь
Г.И. Панов
К.А. Дубков
В.Н. Пармон
Original Assignee
Институт катализа им. Г.К. Борескова СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им. Г.К. Борескова СО РАН filed Critical Институт катализа им. Г.К. Борескова СО РАН
Priority to RU2002106989/04A priority Critical patent/RU2227133C2/ru
Priority to PCT/RU2002/000491 priority patent/WO2003078370A1/ru
Priority to AU2002349594A priority patent/AU2002349594A1/en
Publication of RU2002106989A publication Critical patent/RU2002106989A/ru
Application granted granted Critical
Publication of RU2227133C2 publication Critical patent/RU2227133C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties

Abstract

Изобретение относится к способу получения карбонильных соединений с числом атомов С240 . Способ заключается в реакции жидкофазного окисления алифатических алкенов С240 формулы (I)
Figure 00000001
где R1, R2, R3, R4 – радикалы, которые могут быть представлены атомами водорода, алкильными, алкенильными или арильными радикалами, в том числе содержащими функциональные группы, кроме радикалов, которые включают в свой состав неароматические карбоциклы, имеющие в своем составе двойные связи С=С, в карбонильные соединения закисью азота в присутствии инертного газа-разбавителя, при температуре 100-3500С и давлении закиси азота 1,5-100 атм. Процесс обеспечивает высокую селективность по целевым продуктам, взрывобезопасность работы и является перспективным для промышленного применения. 4 з.п. ф-лы, 3 табл.

Description

Изобретение относится к способу получения карбонильных соединений с числом атомов С240, более конкретно способу их получения путем жидкофазного окисления алифатических алкенов С240 закисью азота (N2O).
Карбонильные соединения (альдегиды и кетоны) являются ценными полупродуктами основного и тонкого органического синтеза. Они также широко используются в качестве растворителей. Карбонильные соединения получают главным образом путем оксосинтеза, окислением углеводородов или дегидрированием спиртов. Однако эти методы недостаточно эффективны, поэтому ведется поиск более совершенных способов их синтеза [R.Fisher et al., U.S. Pat. №6303828, 2001; C.Kohlpainter, R.Fisher, B.Kornils, Appl. Catal. A:, 2001, vol.221, N.1-2, p.219-225; T.Yokoyama, N.Yamagata, ibid, p.227-239].
В патенте GB Pat. 649680 (1951) заявлен способ окисления олефинов в карбонильные соединения закисью азота. Согласно этому способу, в частности, возможно получение карбонильных соединений путем окисления алифатических алкенов.
Основным недостатком этого способа является возможность образования при проведении процесса воспламеняемых смесей “алкен - закись азота”. Чтобы исключить взрывоопасность, авторы патента предлагают дополнительно вводить в реакционную смесь насыщенные углеводороды. Однако, как показали более поздние исследования, смеси насыщенных углеводородов с N2O почти столь же взрывоопасны, как и смеси олефинов. Так, предельные концентрации пропилена в N2O составляют 1,8-26,8%, а предельные концентрации пропана 2,1-24,8% [G. Panetier, A. Sicard, V Symposium on Combustion, 620 (1955); Б.Б. Брандт, Л.А. Матов, А.И. Розловский, В.С. Хайлов, Хим. пром., 1960, №5, с.67-73]. Поэтому насыщенные углеводороды, несмотря на их меньшую реакционную способность, не могут служить средством для исключения взрывоопасности.
Настоящий патент раскрывает способ получения альдегидов и кетонов путем окисления алифатических алкенов закисью азота, N2О, в присутствии инертного газа, который не имеет указанных недостатков. Согласно этому способу реакцию ведут в присутствии инертного газа в условиях, когда алкен присутствует в виде жидкой фазы, в которой реакция окисления протекает с высокой селективностью. Излишнее повышение температуры и/или давления N2O является нежелательным, так как может приводить к понижению селективности за счет вклада газофазного окисления.
Состав окисляемых алкенов может быть выражен формулой (I)
Figure 00000002
где Ri - радикалы, которые могут быть представлены атомами водорода, алкильными, алкенильными, арильными или другими органическими радикалами, в том числе содержащими функциональные группы, кроме радикалов, которые включают в свой состав неароматические карбо- или гетероциклы, имеющие атомы углерода с двойной связью.
Взрывобезопасные условия работы по предлагаемому способу обеспечиваются добавлением в реакционную смесь инертного газа, не вступающего в реакцию с N2О, например азот, аргон, гелий, углекислый газ и т.д. либо их смесь. Роль инертного газа могут играть отходящие газы реакции или рециркулирующие газы. На разных стадиях процесса, в зависимости от соотношения "алкен : закись азота", доля инертного газа, необходимая для обеспечения взрывобезопасной работы, может быть различной и создаваться путем его раздельной подачи. С точки зрения простоты и максимальной безопасности процесса целесообразно иметь такое разбавление закиси азота инертньм газом, чтобы реакционная смесь была невзрывоопасной при любом содержании алкена. Это условие выполняется, если содержание N2O в смеси с инертньм газом составляет не более 25%. Применение такой смеси исключает возникновение взрывоопасных ситуаций на всех стадиях процесса.
Для уменьшения взрывоопасности в реакционную смесь могут добавляться ингибиторы горения, такие как трифторбромметан, дифторхлорбромметан, дибромтетрафторэтан и др.
В соответствии с данным изобретением окисление алифатических алкенов в альдегиды и кетоны закисью азота в присутствии инертного газа может быть осуществлено в широком интервале условий как в статическом, так и проточном реакторе, который может быть изготовлен из стали, титана, стекла или другого подходящего материала. При этом могут быть использованы все известные технологические приемы, повышающие эффективность газожидкостных реакций.
В случае статического варианта в автоклав вводят алкен (с растворителем или без растворителя) в таком количестве, чтобы при нагревании до температуры реакции он присутствовал в виде жидкой фазы. Кислород в реакторе замещают на смесь закиси азота с инертным газом и доводят давление до заданной величины. Количество закиси азота подбирают таким образом, чтобы ее давление при температуре реакции составляло 1,5-100 атм. Концентрацию инертного газа в смеси с закисью азота подбирают таким образом, чтобы она не превышала 99%. После этого реактор нагревают до температуры реакции в области 100-350°С. Время реакции подбирается в зависимости от условий ее проведения, а также требований, предъявляемых к процессу, и может изменяться от нескольких минут до нескольких десятков часов.
Предлагаемый процесс может осуществляться без растворителей. Однако возможно проведение процесса и с применением растворителей, которые могут выбираться из широкого круга веществ, обычно применяемых в практике органического синтеза. Реакция с достаточно высокой скоростью протекает без катализатора, хотя может проводиться и в присутствии катализатора. В некоторых случаях для подавления побочных процессов к алкену целесообразно добавлять ингибиторы димеризации и полимеризации.
Предлагаемый способ получения карбонильных соединений не требует высокой чистоты исходных реагентов. Так, закись азота может быть использована как в чистом виде, так и с примесями различных газов, не оказывающих вредного влияния на показатели реакции. Исходный алкен также может содержать различные органические примеси, особенно если они не содержат двойных связей С=С.
Сущность предлагаемого изобретения иллюстрируется следующими примерами.
Примеры 1-2
Пример 1. Этот пример является сравнительным. В реактор объемом 100 см3, выполненный из нержавеющей стали и снабженный мешалкой (фирма Parr), заливают 25 см3 1-октена (Aldrich, 99%). Реактор продувают закисью азота и затем доводят ее давление до 10 атм. Реактор герметично закрывают, нагревают до 220°С и выдерживают при этой температуре 10 час. Давление закиси азота при температуре реакции составляет 30 атм. После окончания реакции реактор охлаждают до комнатной температуры и анализируют конечный состав газовой и жидкой фаз методами газовой хроматографии и хроматомассспектрометрии. Иногда для более точной идентификации продуктов реакции используют метод ЯМР.
Конверсию 1-октена и селективность по продуктам реакции рассчитывают по следующим уравнениям:
Figure 00000003
Figure 00000004
где Сi - концентрация i-гo продукта реакции,
Figure 00000005
- начальная концентрация 1-октена. В случае больших конверсии величина Х может быть рассчитана также по разнице между начальной и конечной концентрациями алкена
Figure 00000006
В результате реакции конверсия 1-октена составляет 16%. Реакция приводит к образованию следующих кислородсодержащих продуктов: 2-октанон (44%), октаналь (33%), гептаналь (23%). Суммарная селективность по этим продуктам составляет 57% (табл.1).
Пример 2 аналогичен примеру 1 с тем отличием, что вместо чистой закиси азота в реактор подают ее смесь с инертным газом - азотом, в которой концентрация N2О составляет 20% (табл.1). Начальное давление смеси в реакторе, Р0, устанавливают 90 атм. Давление закиси азота при температуре реакции составляет 30 атм. В результате реакции конверсия 1-октена составила 16.5%. В продуктах реакции обнаружены следующие кислородсодержащие соединения: 2-октанон (46%), октаналь (32%), гептаналь (22%), которые образуются с суммарной селективностью 60% (табл.1).
Этот пример показывает, что реакция жидкофазного окисления алифатических алкенов в карбонильные соединения протекает с сохранением конверсии и селективности при использовании в качестве окислителя смеси закиси азота с инертным газом.
Figure 00000007
Примеры 3-5
Примеры 3-5 показывают возможность проведения реакции с использованием смесей закиси азота с инертными газами различного состава (табл.2).
Пример 3 аналогичен примеру 2 с тем отличием, что для окисления используют смесь закиси азота с азотом, в которой концентрация N2O составляет 70%, и начальное давление в реакторе устанавливают 80 атм. Опыт проводят при 100 С в течение 60 часов. Давление N2O при температуре реакции составляет 100 атм.
Пример 4 аналогичен примеру 2, с тем отличием, что для окисления используют смесь закиси азота с азотом, в которой концентрация N2O составляет 1%, азота - 99%. Начальное давление смеси в реакторе устанавливают 100 атм. Опыт проводят при 250°С в течение 20 часов. Давление N2O при температуре реакции составляет 1,5 атм.
Пример 5 аналогичен примеру 2 с тем отличием, что для окисления используют смесь закиси азота с азотом, в которой концентрация N2O составляет 95%, азота - 5%. Начальное давление смеси в реакторе устанавливают 28 атм. Опыт проводят при 200°С в течение 12 часов. Давление N2O при температуре реакции составляет 70 атм.
Figure 00000008
Примеры 6-11
Примеры 6-11 показывают возможность селективного окисления 2-пентена в 2- и 3-пентаноны с использованием смесей закиси азота с инертными газами различного состава, в том числе с использованием растворителей. В табл. 3 приведены конверсии 2-пентена при различных условиях реакции, а также суммарные селективности по 2- и 3-пентанонам, которые во всех опытах образуются примерно в равных количествах.
Пример 6 описывает окисление 2-пентена. Опыт проводят аналогично примеру 2 с тем отличием, что в качестве исходного алкена берут 2-пентен. Для этого перед началом опыта в реактор заливают 25 мл 2-пентена. Для окисления используют смесь закиси азота с азотом, в которой концентрация N2O составляет 50%, и начальное давление устанавливают 30 атм. Опыт проводят при 198°С в течение 12 часов. Давление N2О при температуре реакции составляет 28 атм.
Пример 7 аналогичен примеру 6 с тем отличием, что опыт ведут при 190°С в течение 15 часов, используя в качестве растворителя мезитилен. Для этого перед началом опыта в реактор заливают 10 мл 2-пентена и 50 мл мезитилена. Для окисления используют смесь закиси азота с азотом, в которой концентрация N2O 70%. Начальное давление смеси устанавливают 18 атм. Давление N2O при температуре реакции составляет 34 атм.
Пример 8 аналогичен примеру 7 с тем отличием, что в качестве растворителя используют толуол, и опыт ведут при 200°С в течение 5 часов. Давление N2O при температуре реакции составляет 35 атм.
Пример 9 аналогичен примеру 7 с тем отличием, что концентрация закиси азота в смеси с азотом составляет 25%, и начальное давление смеси в реакторе устанавливают 80 атм. Опыт ведут при 190°С в течение 10 часов, используя в качестве растворителя циклогексан. Давление N2О при температуре реакции составляет 34 атм.
Пример 10 аналогичен примеру 7 с тем отличием, что в качестве инертного газа вместо азота используют аргон, в котором концентрация закиси азота 50%, и начальное давление смеси в реакторе устанавливают 30 атм. В качестве растворителя используют изобутанол. Опыт проводят при 190°С в течение 15 часов. Давление N2О при температуре реакции составляет 34 атм.
Пример 11 аналогичен примеру 10 с тем отличием, что вместо аргона используют углекислый газ.
Примеры 12-13
Примеры 12-13 (табл.3) показывают возможность проведения процесса в присутствии катализатора.
Пример 12 аналогичен примеру 7 с тем отличием, что реакцию ведут в присутствии катализатора - 0,2 г Fe2O3/SiО2 (2,8 мас.% Fе2О3). Катализатор готовят путем пропитки SiО2 раствором FeCl3, сушат при 110°С и прокаливают на воздухе при 500°С в течение 2 часов.
Пример 13 аналогичен примеру 8 с тем отличием, что реакцию ведут в присутствии катализатора - 0,3 г Ag/SiO2 (1 мас.% Ag). Катализатор готовят путем пропитки SiО2 раствором AgNO3, сушат при 110°С и прокаливают на воздухе при 500°С в течение 2 часов.
Figure 00000009
Пример 14
Этот пример является сравнительным. Опыт проводят аналогично примеру 6 с тем отличием, что в реактор загружают 5 мл 2-пентена. При такой загрузке весь 2-пентен в условиях реакции находится в газовой фазе. В результате опыта конверсия 2-пентена составила около 0,5%. Это показывает, что при данных условиях реакция в газовой фазе практически не идет.
Примеры 15-25
Эти примеры демонстрируют возможность окисления с помощью закиси азота в смеси с инертным газом, различных алифатических алкенов и их производных, включающих в качестве радикалов при С=С связи атом водорода, алкильные, алкенильные или арильные радикалы и функциональные группы.
Пример 15 описывает окисление пропилена с использованием в качестве растворителя мезитилена. В реактор при комнатной температуре заливают 50 мл мезитилена и подают пропилен до давления 7 атм. Для окисления используют смесь закиси азота с азотом, в которой концентрация N2O 70%. Смесь подают так, чтобы в реакторе установилось суммарное давление 25 атм. Опыт проводят при 200°С в течение 12 часов. Давление N2O при температуре реакции составляет 36 атм. Конверсия пропилена составляет 10%. Кислородсодержащими продуктами реакции являются ацетон, пропионовый альдегид и ацетальдегид в приблизительном мольном отношении 1: 0,4:0,15.
Пример 16 описывает окисление стирола. В реактор при комнатной температуре заливают 5 мл стирола и 45 мл циклогексана. В качестве ингибитора полимеризации в реакционную смесь добавляют 0,2 г гидрохинона. Затем подают смесь закиси азота с азотом, в которой концентрация N2O 95%. Начальное давление смеси в реакторе устанавливают 12 атм. Опыт проводят при 199°С в течение 12 час. Давление N2O при температуре реакции составляет 50 атм. В качестве кислородсодержащих продуктов реакции образуются бензальдегид, ацетофенон и фенилацетальдегид в приблизительном мольном отношении 7,5:2:1.
Пример 17 описывает окисление 1-гексена. Опыт проводят аналогично примеру 2 с тем отличием, что в качестве исходного алкена берут 25 мл 1-гексена. Для окисления используют смесь закиси азота с азотом, в которой концентрация N2O 70%, и начальное давление устанавливают 45 атм. Опыт проводят при 197°С в течение 12 час. Давление N2O при температуре реакции составляет 70 атм. В результате реакции конверсия 1-гексена составляет 11%. В продуктах реакции обнаружены следующие кислородсодержащие соединения: 2-гексанон (32%), гексаналь (30%), пентаналь (32%).
Пример 18 аналогичен примеру 17 с тем отличием, что вместо 1-гексена используют 1-октен и реакцию проводят при 300°С в течение 2 часов. Давление N2O при температуре реакции составляет 85 атм. В результате реакции конверсия 1-октена составила 63%. В продуктах реакции обнаружены следующие кислородсодержащие соединения: 2-октанон (50%), октаналь (32%), гептаналь (18%).
Пример 19 аналогичен примеру 17 с тем отличием, что в реактор загружают 10 г 1-октадецена (С18Н36) и в качестве растворителя 15 мл н-гептана. Для окисления используют смесь закиси азота с азотом, в которой концентрация N2О 20%, и начальное давление устанавливают 45 атм. Опыт проводят при 300°С в течение 2 часов. Давление N2О в условиях реакции составляет 17 атм. В качестве кислородсодержащих продуктов образуются 2-октадеканон, октадеканаль и гептадеканаль с суммарной селективностью 84%. Конверсия 1-октадецена составляет 24%.
Пример 20 аналогичен примеру 17 с тем отличием, что в реактор загружают 25 см3 2-нонена (C9H18). В реактор подают смесь закиси азота с азотом, в которой концентрация N2О 20%, и начальное давление смеси устанавливают 45 атм. Опыт проводят при 350°С в течение 2 часов. Давление N2О в условиях реакции составляет 18 атм. Конверсия 2-нонена составляет 13,7% при суммарной селективности образования 2-нонанона и 3-нонанона 90,5%.
Пример 21 аналогичен примеру 17 с тем отличием, что в реактор загружают 8 г стильбена и в качестве растворителя 15 мл толуола. В реактор подают смесь закиси азота с азотом, в которой концентрация N2О 70%, и начальное давление смеси устанавливают 45 атм. Опыт проводят при 220°С в течение 6 часов. Давление N2O в условиях реакции составляет 72 атм. В качестве кислородсодержащего продукта образуется деоксибензоин (2-фенилацетофенон). Конверсия стильбена составляет 25,5%.
Пример 22 аналогичен примеру 17 с тем отличием, что в реактор загружают 10 г 11-гексадецен-1-ил ацетата [СН3(СН2)3СН=СН(СН2)10(ООССН3)] и в качестве растворителя 15 мл толуола. В реактор подают смесь закиси азота с азотом, в которой концентрация N2O 40%, и начальное давление смеси устанавливают 40 атм. Опыт проводят при 230°С в течение 5 часов. Давление N2O в условиях реакции составляет 30 атм. В качестве кислородсодержащих продуктов образуются 12-оксо-гексадекан-1-ил ацетат [СН3(СН2)3(С=O)СН2(СН2)10(ООССН3)] и 11-оксо-гексадекан-1-ил ацетат [СН3(СН2)3СН2(С=O)(СН2)10(ООССН3)] в приблизительном отношении 1:1 с суммарной селективностью 90% при конверсии 11-гексадецен-1-ил ацетата 18,3%.
Пример 23 аналогичен примеру 22 с тем отличием, что в реактор загружают 10 г олеинового спирта [СН3(СН2)7СН=СН(СН2)8OН] и в качестве растворителя 15 мл мезитилена. Опыт проводят при 230°С в течение 5 часов. Давление N2O в условиях реакции составляет 30 атм. В качестве кислородсодержащих продуктов образуются 1-гидрокси-10-октадеканон [СН3(СН2)7(С=O)СН2(СН2)8OН] и 1-гидрокси-9-октадеканон [СН3(СН2)7СН2(С=O)(СН2)8OН] в приблизительном отношении 1:1 с суммарной селективностью 89% при конверсии олеинового спирта 16,8%.
Пример 24 аналогичен примеру 17 с тем отличием, что в реактор загружают 25 см3 5-гексен-2-она. В реактор подают смесь закиси азота с инертным газом - азотом, в которой концентрация N2O составляет 70%. Начальное давление смеси в реакторе, Р0, устанавливают 45 атм. Опыт проводят при 220°С в течение 5 часов. Давление N2O в условиях реакции составляет 72 атм. В качестве кислородсодержащих продуктов образуются 2,5-гександион, 5-оксопентаналь и 4-оксопентаналь с суммарной селективностью 80,4% при конверсии 5-гексен-2-она 24,7%.
Пример 25 аналогичен примеру 24 с тем отличием, что в реактор загружают 25 см3 1,7-октадиена. Опыт проводят при 220°С в течение 5 часов. Давление N2O в условиях реакции составляет 72 атм. Конверсия 1,7-октадиена составляет 22%. В качестве основных кислородсодержащих продуктов образуются 7-октен-2-он, 7-октеналь, 6-гептеналь (80%), а также 2,7-октандион, октандиаль и 7-оксооктаналь (20%).
Примеры 2-13 и 15-25 показывают возможность окисления алифатических алкенов в карбонильные соединения с помощью закиси азота, разбавленной инертным газом. Проведение процесса без использования инертного газа-разбавителя приводит к образованию взрывоопасных композиций алкен-N2О в газовой фазе при заполнении реактора закисью азота, его разогреве или в условиях реакции. Например, проведение процесса по примеру 1 без добавления инертного газа приводит к образованию смесей, содержащих до 16,5% паров алкена в закиси азота, взрывоопасность которых описана в работах [G. Panetier, A. Sicard, V Symposium on Combustion, 620 (1955); Б.Б. Брандт, Л.А. Матов, А.И. Розловский, В.С. Хайлов, Хим. пром., 1960, №5, с.67-73]. Проведение процесса в аналогичных условиях, но с использованием смеси N2O-инертный газ, в которой концентрация N2O составляет 20% (пример 2), позволяет исключить образование взрывоопасных смесей и обеспечить безопасность процесса.
Согласно предлагаемому способу, содержание N2O в инертном газе может изменяться в широких пределах, включая область концентраций закиси азота 25% и менее, в которой исключается возможность взрывоопасных ситуаций на всех стадиях процесса при любых композициях с алкеном. Как показывают примеры 2, 9, 19 и 20, реакция окисления в этой области протекает с высокой эффективностью.
В настоящем изобретении предложен способ получения карбонильных соединений, основанный на реакции жидкофазного окисления алифатических алкенов С240 смесью закиси азота с инертным газом. Процесс обеспечивает высокую селективность, взрывобезопасность работы и является перспективным для промышленного применения.

Claims (5)

1. Способ получения карбонильных соединений с числом атомов С240, осуществляемый путем контакта с закисью азота в жидкой фазе алифатических алкенов С240 формулы
Figure 00000010
где R1, R2, R3, R4 – радикалы, которые могут быть представлены атомами водорода, алкильными, алкенильными или арильными радикалами, в том числе содержащими функциональные группы, кроме радикалов, которые включают в свой состав неароматические карбоциклы, имеющие в своем составе двойные связи С=С,
отличающийся тем, что реакцию проводят при температуре 100-3500С и давлении закиси азота 1,5-100 атм в присутствии инертного газа-разбавителя.
2. Способ по п.1, в котором концентрация инертного газа в реакционной смеси не превышает 99%.
3. Способ по любому из пп.1 и 2, в котором концентрацию инертного газа подбирают таким образом, чтобы содержание N2O в смеси с инертным газом составляло не более 25% для исключения возможности образования взрывоопасных композиций на всех стадиях процесса.
4. Способ по любому из пп.1-3, в котором реакцию проводят в присутствии катализатора.
5. Способ по любому из пп.1-4, в котором реакцию проводят в присутствии растворителя.
RU2002106989/04A 2002-03-20 2002-03-20 Способ получения карбонильных соединений RU2227133C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2002106989/04A RU2227133C2 (ru) 2002-03-20 2002-03-20 Способ получения карбонильных соединений
PCT/RU2002/000491 WO2003078370A1 (fr) 2002-03-20 2002-11-06 Procede de production des composes carbonyles
AU2002349594A AU2002349594A1 (en) 2002-03-20 2002-11-06 Method for producing carbonyl compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002106989/04A RU2227133C2 (ru) 2002-03-20 2002-03-20 Способ получения карбонильных соединений

Publications (2)

Publication Number Publication Date
RU2002106989A RU2002106989A (ru) 2003-10-10
RU2227133C2 true RU2227133C2 (ru) 2004-04-20

Family

ID=28036516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002106989/04A RU2227133C2 (ru) 2002-03-20 2002-03-20 Способ получения карбонильных соединений

Country Status (3)

Country Link
AU (1) AU2002349594A1 (ru)
RU (1) RU2227133C2 (ru)
WO (1) WO2003078370A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055608A2 (fr) * 2005-11-08 2007-05-18 Institut Problem Khimicheskoi Fiziki Rossiiskoi Akademii Nauk Procede de fabrication de methylethylcetone
RU2570818C1 (ru) * 2015-01-12 2015-12-10 Открытое акционерное общество "Газпромнефть - Московский НПЗ" Способ получения карбонильных соединений с2-с4
RU2609264C1 (ru) * 2015-12-09 2017-01-31 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Способ получения высокооктановых компонентов из олефинов каталитического крекинга

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004016652D1 (de) * 2003-05-23 2008-10-30 Boreskova Inst Kataliza Sibir Verfahren zur einführung von carbonylgruppen in polymere mit kohlenstoff-kohlenstoff-doppelbindungen
DE102004046167A1 (de) 2004-09-23 2006-04-06 Basf Ag Verfahren zur Reinigung und Aufkonzentrierung von Distickstoffmonoxid
DE102004046171A1 (de) 2004-09-23 2006-04-13 Basf Ag Verfahren zur Herstellung von Cyclopentanon
DE102005055588A1 (de) 2005-11-22 2007-05-24 Basf Ag Verfahren zur Isolierung von N2O
EP2041060B1 (de) 2006-06-29 2009-12-16 Basf Se Verfahren zur herstellung von cyclischen ketonen
WO2008000756A1 (de) 2006-06-29 2008-01-03 Basf Aktiengesellschaft Verfahren zur herstellung von cyclischen ketonen
BRPI0719326A2 (pt) 2006-12-11 2014-02-04 Basf Se Processo para purificar uma mistura gasosa
US8808430B2 (en) 2008-04-02 2014-08-19 Basf Se Process for purifying N2O
KR101581062B1 (ko) 2008-04-02 2015-12-30 바스프 에스이 일산화이질소의 정제 방법
CN104761438A (zh) 2008-08-29 2015-07-08 巴斯夫欧洲公司 制备环酮的方法
US8420866B2 (en) 2008-12-30 2013-04-16 Basf Se Process for preparing ketones by reacting 1,1-disubstituted olefins with N2O
CN102498145B (zh) * 2009-07-10 2013-10-23 巴斯夫欧洲公司 基于可再生资源生产多元醇的方法
GB201019701D0 (en) 2010-11-19 2011-01-05 Invista Tech Sarl Reaction process
WO2014165424A1 (en) 2013-04-03 2014-10-09 Shell Oil Company PROCESS FOR PREPARING C10 to C30 ALCOHOLS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB649680A (en) * 1948-09-22 1951-01-31 Gerard Dunstan Buckley Manufacture of oxidation products from olefinic compounds
SU504749A1 (ru) * 1974-04-19 1976-02-28 Казанский Химико-Технологический Институт Им.С.М.Кирова Способ получени 1,4-дизамещенных бутандионов-2,3

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Chem.Soc.(1951) 2999-3016. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055608A2 (fr) * 2005-11-08 2007-05-18 Institut Problem Khimicheskoi Fiziki Rossiiskoi Akademii Nauk Procede de fabrication de methylethylcetone
WO2007055608A3 (fr) * 2005-11-08 2007-11-22 Inst Khim Fiz Rossiiskoi Akade Procede de fabrication de methylethylcetone
RU2570818C1 (ru) * 2015-01-12 2015-12-10 Открытое акционерное общество "Газпромнефть - Московский НПЗ" Способ получения карбонильных соединений с2-с4
US9975836B2 (en) 2015-01-12 2018-05-22 Aktsionernoe Obschestvo Gazpromneft—Moskovsky Npz (Ao “Gazpromneft-Mnpz”) Method of producing C2-C4 carbonyl compounds
RU2609264C1 (ru) * 2015-12-09 2017-01-31 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Способ получения высокооктановых компонентов из олефинов каталитического крекинга
US10336670B2 (en) 2015-12-09 2019-07-02 Aktsionernoe Obschestvo “Gazpromneft—Moskovsky NPZ” (AO Gazpromneft-MNPZ) Method for producing high-octane components from olefins from catalytic cracking

Also Published As

Publication number Publication date
AU2002349594A1 (en) 2003-09-29
WO2003078370A1 (fr) 2003-09-25

Similar Documents

Publication Publication Date Title
RU2227133C2 (ru) Способ получения карбонильных соединений
Parmon et al. Nitrous oxide in oxidation chemistry and catalysis: application and production
Dhakshinamoorthy et al. Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide
Hutchings et al. New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst
Dubkov et al. Non-catalytic liquid phase oxidation of alkenes with nitrous oxide. 2. Oxidation of cyclopentene to cyclopentanone
US7456313B2 (en) Liquid-phase (AMM)oxidation process
JPH06508106A (ja) 炭化水素系フィード、特に低級アルカンをエステル、アルコールおよび任意に炭化水素に変換するための触媒を用いる方法
Vanoye et al. Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation
US3946081A (en) Oxidative splitting of unsaturated hydrocarbons
RU2205175C1 (ru) Способ получения циклогексанона
RU2227135C2 (ru) Способ получения циклопентанона
RU2227136C2 (ru) Способ получения моноциклических кетонов с7-с20
RU2227134C2 (ru) Способ получения замещенных моноциклических кетонов
Räisänen et al. Mn (II) acetate: an efficient and versatile oxidation catalyst for alcohols
JP4328535B2 (ja) 多成分溶媒系での過酸化水素の直接合成
WO2001077052A1 (en) Catalytic oxidation of organic substrates by transition metal complexes in organic solvent media expanded by supercritical or subcritical carbon dioxide
US9144786B2 (en) Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
US3459810A (en) Process for the preparation of ethylbenzene hydroperoxide
RU2189374C2 (ru) Способ получения углеводородной фракции предпочтительно для применения в двигателях
Hendry et al. Retarding effects of polyarylmethanes in autoxidation reactions
EP1584613A2 (en) Improved catalytic oxidation process
US10479748B2 (en) Oxidation of C1-9-alkanes
WO2012066296A2 (en) Nitrous oxide-containing ionic liquids as chemical reagents
Panov Cyclohexanone preparation via the gas phase carboxidation of cyclohexene by nitrous oxide
Song et al. Influence of hydrogen on n-butane isomerization over sulfated zirconia catalysts

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090321