RU2221225C1 - Волоконно-оптическое устройство для измерения температурного распределения - Google Patents

Волоконно-оптическое устройство для измерения температурного распределения Download PDF

Info

Publication number
RU2221225C1
RU2221225C1 RU2003110529/03A RU2003110529A RU2221225C1 RU 2221225 C1 RU2221225 C1 RU 2221225C1 RU 2003110529/03 A RU2003110529/03 A RU 2003110529/03A RU 2003110529 A RU2003110529 A RU 2003110529A RU 2221225 C1 RU2221225 C1 RU 2221225C1
Authority
RU
Russia
Prior art keywords
optical
fiber
mode
multimode
laser
Prior art date
Application number
RU2003110529/03A
Other languages
English (en)
Inventor
Б.Г. Горшков
М.В. Зазирный
А.Т. Кулаков
Original Assignee
Зазирный Максим Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зазирный Максим Владимирович filed Critical Зазирный Максим Владимирович
Priority to RU2003110529/03A priority Critical patent/RU2221225C1/ru
Application granted granted Critical
Publication of RU2221225C1 publication Critical patent/RU2221225C1/ru

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к средствам измерения температурного распределения в протяженных объектах и может быть использовано в нефтегазодобывающей промышленности. Задачей изобретения является повышение точности измерения и упрощение конструкции. Для этого устройство, содержащее импульсный источник оптического излучения, включающий лазер, чувствительный элемент датчика в виде оптического волокна и узел обработки сигналов, включающий таймер, направленный оптический ответвитель, узел спектрального разделения и фотоприемные модули, снабжено фотоприемником синхронизации. Оптическое волокно чувствительного элемента датчика выполнено многомодовым. Лазер импульсного источника оптического излучения является одномодовым волоконным с накачкой от полупроводникового лазера. Направленный оптический ответвитель выполнен связывающим одномодовое и многомодовое оптические волокна, причем импульсный источник оптического излучения связан с одномодовым входом направленного оптического ответвителя, узел спектрального разделения связан с многомодовым входом направленного оптического ответвителя, фотоприемник синхронизации связан с одномодовым выходом оптического ответвителя. Узел обработки сигналов дополнительно содержит аналого-цифровые преобразователи и цифровые накопители сигналов. Фотоприемные модули связаны с выходами узла спектрального разделения и с аналого-цифровыми преобразователями, выходы которых связаны с входами цифровых накопителей сигналов. Таймер связан с аналого-цифровыми преобразователями. Устройство может быть снабжено узлом термостабилизации опорного отрезка многомодового оптического волокна. Одномодовый волоконный лазер выполнен на ионах редкоземельных элементов. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к устройствам для измерения температурного распределения в протяженных объектах и может быть использовано в нефтегазодобывающей промышленности, например, для измерения температуры в добывающих скважинах на всем их протяжении, в энергетике.
Известно устройство для измерения температурного распределения, включающее чувствительный датчик (термометр), связанный с каротажным кабелем, и приспособление для измерения температуры, размещаемое на поверхности. В процессе выполнения в скважине спуска-подъема каротажного кабеля с присоединенным к нему термометром осуществляется регистрация термограммы по стволу скважины (патент РФ №2194855, 20.12.2002 г.).
Недостатком известного устройства является невозможность одновременной регистрации температуры по всему стволу скважины.
Известно устройство, содержащее чувствительный датчик (диагностический зонд), связанный с линией связи, измерительный блок, свободный конец линии связи связан с барабаном. Используется устройство для диагностики технологических каналов, скважин и трубопроводов (патент РФ №2149467, 20.05.2000 г.).
Недостатком известного устройства является невозможность одновременной регистрации температуры по всему технологическому каналу.
Известно волоконно-оптическое устройство для измерения температурного распределения, включающее чувствительный элемент датчика в виде оптического волокна, импульсного источника оптического излучения, направленный ответвитель, устройство спектрального разделения и фотодетекторы (патент Великобритании GB 2140554 А, 28.11.1984 г.).
Недостатком известного устройства является низкая точность измерения температурного распределения.
Задачей изобретения является создание простого по конструкции устройства, обеспечивающего высокую точность измерения температурного распределения при значительной длине чувствительного элемента за счет отношения сигнал/шум.
Поставленная задача решается тем, что в волоконно-оптическом устройстве для измерения температурного распределения, содержащем импульсный источник оптического излучения, лазер, чувствительный элемент датчика в виде оптического волокна и узел обработки сигналов, включающий таймер, направленный оптический ответвитель, узел спектрального разделения и фотоприемные модули, дополнительно введен фотоприемник синхронизации, кроме того, оптическое волокно чувствительного элемента датчика выполнено многомодовым, лазер импульсного источника оптического излучения является одномодовым волоконным с накачкой от полупроводникового лазера, направленный оптический ответвитель выполнен связывающим одномодовое и многомодовое оптические волокна, причем импульсный источник оптического излучения связан с одномодовым входом направленного оптического ответвителя, узел спектрального разделения связан с многомодовым входом направленного оптического ответвителя, фотоприемник синхронизации связан с одномодовым выходом оптического ответвителя, узел обработки сигналов дополнительно содержит аналого-цифровые преобразователи и цифровые накопители сигналов, при этом фотоприемные модули связаны с выходами узла спектрального разделения и с аналого-цифровыми преобразователями, выходы которых связаны с входами цифровых накопителей сигналов, а таймер связан с аналого-цифровыми преобразователями.
Предпочтительно, чтобы устройство было снабжено узлом термостабилизации опорного отрезка многомодового оптического волокна.
В одном из конкретных примеров реализации изобретения в устройстве источник накачки представляет собой полупроводниковый лазер, а импульсный волоконный лазер представляет собой одномодовый лазер на ионах иттербия с длиной волны генерации около 1,08 мкм.
Изобретение поясняется блок-схемой устройства, приведенной на чертеже.
Устройство включает приспособление для измерения температуры и чувствительный элемент датчика 4 в виде многомодового оптического волокна. Приспособление для измерения температуры содержит импульсный одномодовый волоконный лазер на ионах редкоземельных элементов 2, который в конкретном случае выполнен на ионах иттербия с длиной волны генерации около 1,08 мкм. Выход источника накачки 1 связан отрезком многомодового оптического волокна с входом импульсного волоконного лазера 2, имеющего выход на одномодовое оптическое волокно. Направленный оптический ответвитель 3 связывает одномодовое оптическое волокно с выхода лазера 2 с оптическим многомодовым волокном (чувствительным элементом датчика 4). Вход узла 5 спектрального разделения, обратно рассеянного в волокне излучения, связан с многомодовым выходом ответвителя 3. Первый и второй фотоприемные модули 6, 7 оптически связаны с выходом узла 5 спектрального разделения. Входы первого и второго аналого-цифровых преобразователей 8, 9 соединены с выходами фотоприемных модулей 6, 7 соответственно. Выходы преобразователей 8, 9 соединены с входами первого и второго цифровых накопителей сигналов 10, 11 соответственно. Выходы цифровых накопителей 10, 11 объединены цифровой шиной 12, которая выполнена с возможностью подключения к компьютеру 13. Таймер 15 выполнен цифровым, соединен с фотоприемником синхронизации 14 и с преобразователями 8, 9. Устройство может быть снабжено блоком термостабилизации 16 опорного отрезка многомодового оптического волокна (чувствительного элемента датчика 4), что еще в большей мере будет способствовать повышению точности измерений. Блок термостабилизации 16 обеспечивает поддержание постоянной температуры некоторого (опорного) участка многомодового оптического волокна (чувствительного элемента датчика 4). Источник накачки 1 может представлять собой полупроводниковый лазер. Направленный оптический ответвитель 3 может быть выполнен, в частности, по сварной технологии. Многомодовое оптическое волокно (чувствительный элемент датчика 4) представляет собой в конкретном примере воплощения кабель определенной конструкции, выдерживающий необходимую растягивающую нагрузку и допускающий эксплуатацию в необходимом диапазоне температур. Его длина может составлять несколько километров. Он может располагаться на лебедочном барабане, например, установки для проведения геофизических исследований в скважинах. Приспособление для измерения температуры может быть выполнено в виде отдельных блоков и смонтировано на этой же установке.
Устройство работает следующим образом. После расположения известным образом чувствительного элемента датчика 4 (многомодового оптического волокна), например, в скважине включают источник накачки 1, и под действием излучения накачки происходит импульсная генерация лазера 2 в режиме релаксации. Лазерное излучение по одномодовому оптическому волокну поступает в направленный оптический ответвитель 3, а далее в многомодовое оптическое волокно (чувствительный элемент датчика 4). Соединение одномодового и многомодового оптических волокон в направленном ответвителе 3 обеспечивает малые потери при вводе излучения в многомодовое оптическое волокно из одномодового и при прохождении излучения в обратном направлении по многомодовому оптическому волокну (чувствительному элементу датчика 4). При распространении излучения по многомодовому оптическому волокну (чувствительному элементу датчика 4) происходит рассеяние излучения с преобладанием релеевской (несмещенной) компоненты и двух компонент комбинационного рассеяния (стоксовой и антистоксовой). Отношение интенсивности антистоксовой компоненты комбинационного рассеивания к интенсивности релеевского рассеяния или к интенсивности стоксовой компоненты комбинационного рассеивания есть функция абсолютной температуры соответствующего участка многомодового оптического волокна (чувствительного элемента датчика 4). Поэтому для получения температурного распределения в объекте измерения излучение рассеяния разделяется на спектральные компоненты узлом 5 спектрального разделения, каждая из которых принимается индивидуальным фотоприемным модулем 6, 7. Электрические сигналы с выхода модулей 6, 7 поступают в аналого-цифровые преобразователи 8, 9, оцифровываются и затем происходит синхронное цифровое накопление сигналов для повышения отношения сигнал/шум в цифровых накопителях 10, 11. По объединяющей их цифровой шине 12 эти накопители отправляют накопленную информацию в компьютер 13, где и вычисляется температурное распределение, обеспечивается удобное для пользователя представление измерительной информации и ее хранение. Аналого-цифровые преобразователи 8, 9 запускаются в работу по сигналам цифрового таймера 15, который синхронизируется по моменту генерации лазерного импульса фотоприемником синхронизации 14. Блок термостабилизации 16 поддерживает постоянной температуру некоторого участка многомодового оптического волокна, играющего роль опорного канала.
Пример. С использованием предлагаемого устройства было проведено измерение температурного распределения в нагнетательной скважине №1768 глубиной 1714 м на месторождении “Возейское” НГДУ “Комиарктикнефть”. Измерения проводились во время закачки в скважину жидкости сразу после прекращения закачки и через 2 часа после прекращения закачки. Для сопоставительного анализа была проведена параллельно термометрия с использованием аппаратуры КСА-Т7. Данные измерений температурного распределения с использованием предлагаемого устройства подтвердились.
Использование изобретения позволяет, расположив чувствительный элемент датчика, например, в скважине, получать температурное распределение по всему стволу скважины. При этом устройство отличается простотой конструкции, позволяет повысить точность и упростить процесс измерений.

Claims (3)

1. Волоконно-оптическое устройство для измерения температурного распределения, содержащее импульсный источник оптического излучения, включающий лазер, чувствительный элемент датчика в виде оптического волокна и узел обработки сигналов, включающий таймер, направленный оптический ответвитель, узел спектрального разделения и фотоприемные модули, отличающееся тем, что дополнительно введен фотоприемник синхронизации, оптическое волокно чувствительного элемента датчика выполнено многомодовым, лазер импульсного источника оптического излучения является одномодовым волоконным с накачкой от полупроводникового лазера, направленный оптический ответвитель выполнен связывающим одномодовое и многомодовое оптические волокна, причем импульсный источник оптического излучения связан с одномодовым входом направленного оптического ответвителя, узел спектрального разделения связан с многомодовым входом направленного оптического ответвителя, фотоприемник синхронизации связан с одномодовым выходом оптического ответвителя, узел обработки сигналов дополнительно содержит аналого-цифровые преобразователи и цифровые накопители сигналов, при этом фотоприемные модули связаны с выходами узла спектрального разделения и с аналого-цифровыми преобразователями, выходы которых связаны с входами цифровых накопителей сигналов, а таймер связан с аналого-цифровыми преобразователями.
2. Устройство по п.1, отличающееся тем, что оно снабжено узлом термостабилизации опорного отрезка многомодового оптического волокна.
3. Устройство по п.1 или 2, отличающееся тем, что одномодовый волоконный лазер выполнен на ионах редкоземельных элементов.
RU2003110529/03A 2003-04-15 2003-04-15 Волоконно-оптическое устройство для измерения температурного распределения RU2221225C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003110529/03A RU2221225C1 (ru) 2003-04-15 2003-04-15 Волоконно-оптическое устройство для измерения температурного распределения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003110529/03A RU2221225C1 (ru) 2003-04-15 2003-04-15 Волоконно-оптическое устройство для измерения температурного распределения

Publications (1)

Publication Number Publication Date
RU2221225C1 true RU2221225C1 (ru) 2004-01-10

Family

ID=32091953

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003110529/03A RU2221225C1 (ru) 2003-04-15 2003-04-15 Волоконно-оптическое устройство для измерения температурного распределения

Country Status (1)

Country Link
RU (1) RU2221225C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445590C1 (ru) * 2010-11-10 2012-03-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Устройство для измерения температурного распределения в горизонтальной скважине
RU2580151C1 (ru) * 2014-11-19 2016-04-10 Общество с ограниченной ответственностью "СибСенсор" (ООО "СибСенсор") Способ определения температурного распределения вдоль оптоволоконной линии

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445590C1 (ru) * 2010-11-10 2012-03-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Устройство для измерения температурного распределения в горизонтальной скважине
RU2580151C1 (ru) * 2014-11-19 2016-04-10 Общество с ограниченной ответственностью "СибСенсор" (ООО "СибСенсор") Способ определения температурного распределения вдоль оптоволоконной линии

Similar Documents

Publication Publication Date Title
RU2413188C2 (ru) Волоконно-оптическое устройство для измерения температурного распределения (варианты)
CA2288746C (en) Distributed sensing system
US7859654B2 (en) Frequency-scanned optical time domain reflectometry
CA2777504C (en) Stimulated brillouin system with multiple fbg's
CN107843357B (zh) 基于拉曼散射的分布式光纤温度及应变检测方法
CN108303197A (zh) 基于后向散射增强光纤分布式温度和应变双参量传感装置及其解调方法
CN109029769A (zh) 基于分布式光纤拉曼传感技术的高精度温度解调方法
CN210089716U (zh) 一种基于多芯光纤传感的多参量同步传感采集仪
CN110440838B (zh) 一种基于多芯光纤的多参量光纤传感仪器和传感方法
CN108760080B (zh) 一种基于ase噪声的分布式光纤拉曼测温装置及方法
CN104111086B (zh) 基于低布里渊散射阈值传感光纤的光时域反射仪的装置与方法
CN103616091A (zh) 一种分布式光纤温度和应力传感装置
CN102607736B (zh) 一种光纤光栅结合布里渊散射信号检测的传感结构
US8797541B2 (en) Optical network configuration with intrinsic delay for swept-wavelength interferometry systems
RU2552222C1 (ru) Способ измерения температурного распределения и устройство для его осуществления
CN207036297U (zh) 一种光纤光栅测温***
CN102706451A (zh) 利用受激布里渊光损耗机制的高精度光谱分析仪
CN109029770A (zh) 基于环路解调的分布式光纤拉曼温度及应变解调方法
RU2271446C1 (ru) Устройство для мониторинга виброакустической характеристики протяженного объекта
RU2221225C1 (ru) Волоконно-оптическое устройство для измерения температурного распределения
CN202631153U (zh) 带有自动补偿功能的单端口分布式光纤温度传感器
CN107101697B (zh) 一种准分布式光纤液位传感器的装置及其测量液位的方法
RU2319988C2 (ru) Оптоволоконная мультисенсорная система, датчик температуры/деформации для оптоволоконной мультисенсорной системы, способ записи датчика (варианты)
RU2445590C1 (ru) Устройство для измерения температурного распределения в горизонтальной скважине
RU2583060C1 (ru) Способ измерения температурного распределения в объекте и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050416

NF4A Reinstatement of patent
PC41 Official registration of the transfer of exclusive right

Effective date: 20110301