RU2220116C2 - Способ производства стекла во флоат-печи - Google Patents

Способ производства стекла во флоат-печи Download PDF

Info

Publication number
RU2220116C2
RU2220116C2 RU96121512/63A RU96121512A RU2220116C2 RU 2220116 C2 RU2220116 C2 RU 2220116C2 RU 96121512/63 A RU96121512/63 A RU 96121512/63A RU 96121512 A RU96121512 A RU 96121512A RU 2220116 C2 RU2220116 C2 RU 2220116C2
Authority
RU
Russia
Prior art keywords
glass
float
zone
channel
conditioning zone
Prior art date
Application number
RU96121512/63A
Other languages
English (en)
Other versions
RU96121512A (ru
Inventor
Питер Джеймс УАЙТФИЛД
Роберт Эмметт ТРЕВЕЛИАН
Эндрю Майкл КИЛИ
Дэвид МАРТЛЬЮ
Original Assignee
Пилкингтон Плс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пилкингтон Плс filed Critical Пилкингтон Плс
Publication of RU96121512A publication Critical patent/RU96121512A/ru
Application granted granted Critical
Publication of RU2220116C2 publication Critical patent/RU2220116C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

Способ производства стекла во флоат-печи, при этом устройство представляет собой печь, содержащую зону плавления, зону осветления и зону кондиционирования, сообщающуюся с зоной осветления. Выход из зоны кондиционирования ведет во флоат-канал. Перемешивание мешалками, имеющими вал, выступающий вниз в расплавленное стекло, с перемешивающим устройством, имеющим в целом прямоугольную конфигурацию, а также большую и малую оси разных размеров, копланарные с осью вала, осуществляется в зоне кондиционирования вблизи от входа во флоат-канал. Мешалки вращают в противоположных направлениях со скоростью 2-20 об/мин и не в фазе друг с другом, при этом обеспечивают перемещение перемешиваемого стекла из стороны в сторону по ширине, равной по меньшей мере ширине флоат-канала, а стекло, текущее к флоат-каналу вдоль торцевых стенок зоны кондиционирования, возвращают к стороне мешалок, находящейся выше по потоку. Технический результат: обеспечение быстрой перенастройки при изготовлении разных типов стекол. 3 з.п.ф-лы, 3 ил.

Description

Настоящее изобретение относится к способу производства расплавленного стекла. Точнее, настоящее изобретение относится к способу производства расплавленного стекла, посредством которого дефекты стекла, поступающего во флоат-ванну, исключаются или по меньшей мере сводятся к минимуму.
Обычно печь для варки флоат-стекла содержит зону плавления, зону осветления и зону кондиционирования. В зоне плавления, как предполагает само название, происходит плавление компонентов, используемых для производства стекла. В зоне осветления удаляются пузырьки, которые находятся в расплавленном стекле. Из зоны осветления расплавленное стекло проходит в зону кондиционирования, где охлаждается перед поступлением во флоат-канал на его пути во флоат-ванну.
Хотя каждый из компонентов, который плавится для образования стекла, номинального является гомогенным, имеет место различие в размерах зерен. Кроме того, сырьевые материалы отличаются друг от друга по размерам зерен. Хотя и осуществляется порционное перемешивание, оно никогда не бывает идеальным. Помимо этого, в зависимости от условий, при которых хранятся материалы, может происходить сегрегация зерен и/или реакция между ними. Известно, что эти различия приводят к неоднородности готового стекла.
Компоненты перемешиваются друг с другом и непрерывно подаются в зону плавления, где смесь первоначально формирует слой, плавающий на уже расплавленном стекле. Перемешивание гранулированных материалов никогда не бывает безупречным, и если провести исследование в достаточно небольшом масштабе, то внутри смеси от одного места к другому могут быть обнаружены отчетливые различия средней химической композиции. Когда происходит плавление смеси, может возникнуть дополнительная неоднородность. Например, в большинстве флоат-стекол богатые щелочью жидкие фазы стекают по наклонным верхним поверхностям плавающего стекла. Кроме того, флоат-стекла часто изготавливают в регенеративных печах, и при этом неоднородность может иметь место в том случае, когда обогрев изменяется от одной стороны к другой. Другими возможными источниками неоднородности являются коррозия огнеупора, растворение атмосферы печи в стекле и избирательные потери некоторых составляющих стекла за счет испарения.
В зоне кондиционирования стекло охлаждается, при этом могут возникнуть дополнительные проблемы вследствие термических конвекционных потоков, создаваемых при таком охлаждении. Охлаждение происходит тогда, когда стекло встречается с боковыми стенками и донной частью зоны кондиционирования, однако контролируемое охлаждение обычно осуществляется в нижнем направлении, то есть верхняя поверхность расплавленного стекла охлаждается до желаемой степени обычно посредством воздуха. Создаваемые конвекционные течения обычно приводят к извилистым формам потока, обеспечивающим прохождение значительной части стекла через зону кондиционирования. В результате стекло, которое затрачивает значительное время на прохождение по этим сложным путям течения, будет сведено в продукт со стеклом, прохождение которого происходит относительно быстрее, ввиду чего существующая неоднородность усиливается.
Все эти источники неоднородности могут вызвать в готовом стекле отдельные дефекты или дефекты в виде свилей. Свиль, как хорошо известно, взаимосвязана с оптическим эффектом, создаваемым стеклом, когда часть стекла, смежные друг с другом, имеют разные оптические плотности или показатели преломления.
Длительное время пребывания может привести к значительным проблемам, если печь должна быть переключена с производства одного типа стекла, например тонированного стекла, на производство иного типа стекла, например прозрачного стекла. В таком случае требуется весьма продолжительное время для вымывания некоторых частей тонированного стекла из зоны кондиционирования. Легко понять, что печь должна быть совершенно свободна от остатков тонированного стекла, прежде чем может быть достигнут коммерчески приемлемый нормативный уровень производимого прозрачного стекла. Это объясняется тем, что свили или полосы тонированного стекла сами по себе проявляются в прозрачном стекле, причем последнее не будет иметь приемлемого качества, пока не исчезнут все эти свили и полосы.
В настоящем изобретении сделана попытка способа и устройства для производства стекла, посредством которых вышеупомянутые проблемы решаются или, по меньшей мере, сводятся к минимуму. В настоящем изобретении поставлена задача обеспечения возможности выполнения более быстрой перенастройки при изготовлении разных типов стекол в тем, чтобы коммерчески приемлемая марка нового стекла получалась без чрезмерной, а поэтому дорогостоящей, задержки во времени.
Поставленная задача решается тем, что в устройстве для производства стекла во флоат-печи, содержащем зону плавления, зону осветления и зону кондиционирования, последовательно пересекаемые расплавленным стеклом, и флоат-канал, в который расплавленное стекло заходит из зоны кондиционирования, перемешивающие средства располагают таким образом, чтобы при их использовании размещать расплавленное стекло по всей ширине выхода из зоны кондиционирования во флоат-канал.
Концепция обеспечения перемешивания стекла сразу же за входом во флоат-канал, как мы полагаем, совершенно нова. Обычно полагают, что расплавленное стекло в этой области слишком холодное, чтобы осуществлялось адекватное перемешивание. Кроме того, в стекольной промышленности обычно считается, что перемешивание должно происходить в ограниченных пространствах, таких, как каналы. Основные недостатки перемешивания в каналах заключаются в а) получении неприемлемых свойств, б) в проблеме, связанной с износом материала, из которого изготовлен канал, и в) в привнесении отдельных дефектов. Причем все они некоторым образом взаимосвязаны.
Высокие температуры, обычно используемые в стекловаренных печах, а также коррозионный характер расплавленного стекла обуславливают важность выбора материалов при конструировании мешалок. Мешалки обычно изготавливают из одного из трех разных типов материалов. Ими являются: а) огнеупорные материалы, например силлиманит, б) огнеупорные металлы, например платина или молибден, с) трубки из малоуглеродистой стали. Каждому из этих материалов свойственны свои проблемы.
Огнеупорные материалы имеют тенденцию к растворению в стекле и приводят к изменению показателя преломления и взаимосвязанным с этим дефектам. Они также имеют тенденцию к сбросу "камней", то есть к появлению в стекле дефектов в виде отдельных твердых частиц. Наконец, после длительного использования они имеют тенденцию к разрушению и к выпадению в стекло, из которого их чрезвычайно трудно утилизировать. Наибольший недостаток использования огнеупорных металлов, безусловно, заключается в их стоимости. Одного они также могут привести к появлению пузырьковых образований, действуя в качестве электродов электролитических реакций.
Сталь, например малоуглеродистая сталь, определенно является предпочтительным материалом вследствие ее малой стоимости, легкой доступности и обрабатываемости. Однако она имеет существенный недостаток, который заключается в ее низкой точке плавления. Поэтому мешалки из такого материала должны подвергаться охлаждению, причем самый очевидный способ охлаждения предполагает использование воды. Однако обычно считается, что в каналах водяное охлаждение мешалок не может быть осуществлено. Водяное охлаждение чрезмерно понижает температуру стекла и в настоящее время считается, что это приводит к привнесению в стекло дополнительных дефектов. Кроме того, если происходит поломка производственной линии, то мешалки могут вызвать застывание стекла в канале. Это, в свою очередь, может привести к физическому повреждению самого канала.
Установлено, что вследствие перемешивания непосредственно близко от выхода из зоны кондиционирования к флоат-каналу и за счет гарантии того, что стекло полностью размешано, перед тем, как оно поступает во флоат-канал, вышеупомянутые проблемы не возникают, либо в значительной степени сводятся к минимуму.
Предпочтительно, чтобы упомянутое средство перемешивания содержало, по меньшей мере, одну пару мешалок. Также предпочтительно, чтобы каждая мешалка содержала вал, который в процессе ее использования фактически выступает вертикально вниз в расплавленное стекло, при этом упомянутый вал на своем нижнем конце удерживает перемешивающее устройство, копланарное с осью вала, причем перемешивающее устройство имеет большую ось и меньшую ось разных размеров и обычно прямоугольную конфигурацию.
Желательно, чтобы в этом случае перемешивающее устройство содержало пару лопаток, расположенных по отношению друг к другу под углом, фактически составляющим 180o, и под углом 90o к оси вала, при этом мешалки каждой пары смещены относительно друг друга на угол, фактически составляющий 90o, и вращаются в противоположных направлениях.
В особенно предпочтительном варианте осуществления настоящего изобретения лопатки мешалки в работе полностью погружены в расплавленное стекло.
Желательно, чтобы средства перемешивания были снабжены охлаждающими средствами. При такой компоновке особенно предпочтительно, чтобы перемешивающие средства были изготовлены из стальных труб, а охлаждающие средства содержали водоохладительное устройство.
Согласно второму аспекту настоящего изобретения создан способ производства стекла в плоской или флоат-печи, содержащий стадии плавления порции компонентов стекла в зоне плавления печи, осветление расплавленного стекла в зоне осветления для удаления из него пузырьков, прохождение расплавленного стекла из зоны осветления в зону кондиционирования, охлаждение расплавленного стекла в зоне кондиционирования и введение кондиционированного стекла во флоат-канал, при этом стекло подвергается перемешиванию в области выхода из зоны кондиционирования во флоат-каналы, так что стекло полностью размешано, когда оно входит во флоат-канал.
Предпочтительно, чтобы упомянутое перемешивание осуществлялось, по меньшей мере, одной парой мешалок и вращением пары мешалок в противоположных направлениях.
Предпочтительно, чтобы парные мешалки были идентичны друг другу и чтобы каждая из них содержала вал, при ее использовании фактически проходящий вертикально вниз в расплавленное стекло, при этом каждый упомянутый вал на своем нижнем конце удерживает конструкции, которые образуют фактически прямоугольный перемешивающий элемент или лопатку, копланарную с осью вала, причем эти мешалки устанавливаются для парного использования, так что их лопатки вращаются со смещением по фазе фактически на 9o, при этом их вращение противоположно.
Ниже настоящее изобретение будет описано посредством примера со ссылкой на прилагаемые чертежи, на которых:
на фиг.1 представлен схематический вид в продольном сечении стекловаренной печи, выполненной согласно настоящему изобретению;
на фиг. 2 в увеличенном масштабе представлен вертикальный вид мешалок, составляющая часть печи согласно настоящему изобретению;
на фиг. 3 представлен вид в плане, показывающий размешивание стекла, создаваемое мешалками, показанными на фиг.2.
На фиг.1 показана стекловаренная печь, в целом обозначенная позицией 1. Печь содержит зону плавления 2. Смесь сырьевых материалов, которые расплавлены для образования стекла, обозначена позицией 3. В показанном варианте осуществления конструкции компоненты плавятся способом, известным как поперечный разогрев через отверстия 4. Как видно на фиг.1, когда материалы плавятся, они образуют постепенно утоньшающийся слой 5 на поверхности расплавленного стекла 6.
Затем расплавленное стекло проходит в зону осветления 7. Это наиболее горячая часть печи, причем в этой зоне пузырьки, образованные в расплавленном стекле в зоне плавления 2, удаляются или их количество, по меньшей мере, сводится к минимуму. Непосредственно далее по ходу в направлении потока расплавленного стекла находится зона кондиционирования 8, в которой осветленное стекло охлаждается.
По ряду причин, включая объем выпуска стекла и термические конвекционные потоки, в пределах зоны плавления 2 имеется определенное количество нециркулирующего стекла. Однако, когда стекло проходит в зону осветления 7, то в основном здесь происходит разделение по направлениям и могут быть четко видны характерные признаки рециркуляционного потока. Прямой поток примыкает к поверхности расплавленного стекла в зоне осветления и течет через зону кондиционирования в виде части, примыкающей к верхней поверхности расплавленного стекла 6. Затем этот прямой поток 12 входит во флоат-канал 13, откуда он проходит в флоат-ванне (не показана).
Вследствие термических конвекционных течений также имеется рециркуляционная структура потока. Одна из проблем, которая возникает при такой схеме, заключается в наличии "застойных" областей, где расплавленное стекло становится относительно холодным и вязким; как только стекло входит в такую область, появляется тенденция к его нахождению здесь в течение продолжительного периода. Одна такая область примыкает к передней торцевой стенке 14 зоны кондиционирования. Именно удерживание стекла в этих областях приводит к чрезмерному времени переключения, когда печь 1 переключается с изготовления тонированного стекла на прозрачное стекло. Стекло, циркулирующее в зоне кондиционирования 8, извлекается из нее довольно быстро, однако стекло, которое собирается в "застойных" областях, стремится остаться здесь длительное время и удаляется с затруднениями.
Обычно зона кондиционирования 8 охлаждается. В этой зоне тепло удаляется с поверхности стекла и через основание и боковые стенки зоны. Однако большая часть тепла отводится с поверхности стекла. Для того, чтобы этого добиться, обычно обеспечивают воздушный поток над верхней поверхностью стекла. Однако это приводит к делению на две части. Охлаждение верхней поверхности создает в стекле неблагоприятные термические циркуляции, известные как термическое инвертирование. Иными словами, более холодное, более плотное стекло вблизи от поверхности удерживается более теплым, менее плотным стеклом, а при определенных условиях это может создать местные формы циркуляции стекла, которые приводят к появлению в готовом стекле неприемлемых полос. Соответственно интенсивность вышеупомянутого охлаждения стекла должна быть ограничена. Обычно эта проблема решается посредством создания достаточно большой зоны кондиционирования, при этом достигаются надлежащие скорости охлаждения она единичную поверхность. Здесь необходимо помнить о том, что должно гарантироваться охлаждение стекла, поскольку существует оптимальная температура, при которой стекло должно входить во флоат-канал. К сожалению создание большой зоны кондиционирования 8 значительно увеличивает капитальные затраты на монтаж печи и существенно повышает время, требуемое для полной промывки печи при смене тональности.
В настоящем изобретении также создана, по меньшей мере, одна пара мешалок 15, наилучшим образом показанных на фиг.2, которые расположены как раз ближе по ходу от входа 16 во флоат-канал. Для ясности на фиг.2 показана только одна пара мешалок 15. Мешалки 15а и 15в идентичны. Каждая из них содержит вал 17, который выступает фактически вертикально вниз в расплавленное стекло. Валы приводятся в движение соответствующими приводными средствами, которые не показаны. На своем нижнем свободном конце каждый вал удерживает пару лопаток 18а и 18в. Лопатки 18а и 18в проходят фактически под углом 90o к оси вала 18. Две лопатки располагаются по отношению друг к другу под углом, фактически составляющим 180o. Из фиг.2 очевидно, что две мешалки установлены таким образом, что их лопатки 18а и 18в по фазе вращения смещены относительно друг друга на угол, фактически составляющий 90o, и вращаются с одинаковой скоростью, при этом их скорость находится в диапазоне 2-20 об/мин, но имеют противоположное направление.
Действие таких мешалок представлено на фиг.3. На этой фигуре схематически представлена траектория незначительной части стекла под действием мешалок. Нетрудно заметить, что часть стекла в зоне кондиционирования вынуждена перемещаться с одной стороны к другой по ширине, по меньшей мере равной ширине канала. Такое движение является существенным отличительным признаком гомогенизационного процесса: все расплавленное стекло размешивается и нехарактерные области будут прослаиваться остальной частью стекла, при этом создаваемое ими оптическое искажение сводится к минимуму. В зависимости от ширины зоны кондиционирования 8 и от размера мешалок 15а, 15в стекло 6 может либо надлежащим образом размешиваться перед входом во флоат-канал, либо такое размешивание может быть достигнуто на входе в канал. В любом случае цель одна и та же: препятствовать стеклу, которое не перемешивается из-за хода мешалок 15а, 15в, и входу в канал вдоль боковых и торцевых стенок кондиционера. Из фиг. 3 также видно, что стекло, которое следует по этому пути ко входу 16 канала, собирается посредством стекла, которое подвергается действию мешалок 15а, 15в, но не пропускается в канал и возвращается к ближней по ходу стороне от мешалок 15а, 15в.
Мешалки 15а, 15в устраняют любые оптические дефекты, которые в ином случае могли бы быть образованы в области входа 16 в канал. Такое устранение дефектов обеспечивает более высокие скорости поверхностного охлаждения, используемого в кондиционере. В существующих печах для варки флоат-стекла, в которых производительность ограничивается из-за необходимости избегать такие проблемы, это означает, что может быть обеспечен более высокий съем стекломассы. Как вариант, в новых печах можно будет создавать значительно меньшую зону кондиционирования 8 для получения стекла на входе во флоат-канал, имеющего надлежащую температуру. Этим, безусловно, обеспечивается экономия капитальных затрат.
Другая выгода от перемешивания в области входа во флоат-канал заключается в том, что мешалки 15а, 15в могут охлаждаться водой. Чтобы добиться одной и той же температуры стекла, входящего во флоат-канал, работа зоны кондиционирования может осуществляться при более высокой температуре, иными словами, требуется меньшее количество охлаждающего воздуха, которое должно быть подано к поверхности расплавленного стекла в части зоны кондиционирования 8 ближе по ходу от мешалок 15а, 15в. Когда зона кондиционирования 8 действует при повышенной температуре, расплавленное стекло, безусловно, становится более текучим. Это означает, что "застойные" области стекла, примыкающие к передней торцевой стенке зоны кондиционирования 8, становятся меньше, а также то, что такие области легче промыть, когда происходит переключение печи 1 с изготовления одного типа стекла на другое. Еще одно преимущество, обеспечиваемое настоящим изобретением, заключается в том, что значительно меньше вероятность возникновения кристаллизации стекла.

Claims (4)

1. Способ производства стекла во флоат-печи, включающий стадии, на которых плавят стеклообразующую композицию в зоне плавления (2), осветляют расплавленное стекло в зоне осветления (7) для удаления из него пузырьков, обеспечивают пропускание расплавленного стекла из зоны осветления (7) в зону кондиционирования (8), и обеспечивают выход стекла из зоны кондиционирования (8) во флоат-канал (13), отличающийся тем, что перемешивают расплавленное стекло в области выхода (16) из зоны кондиционирования (8) во флоат-канал (13) с использованием, по меньшей мере, одной пары мешалок (15а, 15b), каждая из которых содержит вал (17), который существенно выступает вертикально вниз в расплавленное стекло и удерживает на своем нижнем конце перемешивающее устройство (18а, 18b), копланарное с осью вала, причем перемешивающее устройство имеет большую и малую оси различных размеров и, в основном, прямоугольную конфигурацию, и вращают мешалки (15а, 15b) в противоположных направлениях со скоростью 2-20 об/мин и не в фазе друг с другом, при этом обеспечивают перемещение перемешиваемого стекла из стороны в сторону по ширине, равной, по меньшей мере, ширине флоат-канала (13), а стекло, текущее к флоат-каналу вдоль торцевых стенок (14) зоны кондиционирования, возвращают к стороне мешалок (15а, 15b), находящейся выше по потоку.
2. Способ по п.1, отличающийся тем, что мешалки (15а, 15b) единственной или каждой пары вращают со смещением по фазе относительно друг друга фактически на 90°.
3. Способ по п.1 или 2, отличающийся тем, что включает дополнительный этап, на котором охлаждают мешалки (15а, 15b) в зоне кондиционирования (8).
4. Способ по п.3, отличающийся тем, что охлаждение осуществляют посредством водяного охлаждения.
RU96121512/63A 1995-10-28 1996-10-25 Способ производства стекла во флоат-печи RU2220116C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB95/22123.0 1995-10-28
GB9522123A GB2306467A (en) 1995-10-28 1995-10-28 Method and apparatus for making glass

Publications (2)

Publication Number Publication Date
RU96121512A RU96121512A (ru) 1999-01-27
RU2220116C2 true RU2220116C2 (ru) 2003-12-27

Family

ID=10783060

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96121512/63A RU2220116C2 (ru) 1995-10-28 1996-10-25 Способ производства стекла во флоат-печи

Country Status (22)

Country Link
US (1) US5827341A (ru)
EP (1) EP0770582B1 (ru)
JP (1) JP4031541B2 (ru)
KR (1) KR100422602B1 (ru)
CN (1) CN1124993C (ru)
AR (1) AR004123A1 (ru)
AU (1) AU714218B2 (ru)
BR (1) BR9605257A (ru)
CA (1) CA2188213C (ru)
CZ (1) CZ288158B6 (ru)
DE (1) DE69601339T2 (ru)
ES (1) ES2128144T3 (ru)
GB (1) GB2306467A (ru)
HU (1) HU216304B (ru)
MX (1) MX9605075A (ru)
MY (1) MY115863A (ru)
PL (1) PL190158B1 (ru)
RU (1) RU2220116C2 (ru)
TR (1) TR199600856A2 (ru)
TW (1) TW372943B (ru)
UA (1) UA48133C2 (ru)
ZA (1) ZA968834B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555732C1 (ru) * 2014-04-15 2015-07-10 Открытое Акционерное Общество "Научно-Исследовательский Институт Технического Стекла" Способ варки стекла

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9616364D0 (en) * 1996-08-03 1996-09-11 Pilkington Plc Float glass production
FR2816305B1 (fr) * 2000-11-07 2003-03-14 Saint Gobain Ct Recherches Regenerateur de four verrier
WO2003048054A1 (en) * 2001-11-30 2003-06-12 Corning Incorporated Method and apparatus for homogenizing molten glass by stirring
DE10332692A1 (de) * 2003-07-18 2005-02-17 Schott Ag Rührvorrichtung zum Behandeln einer Glasschmelze
US7926301B2 (en) * 2007-08-16 2011-04-19 Corning Incorporated Method and apparatus for controlling the level of a molten material in a glass manufacturing system
US20100199721A1 (en) * 2008-11-12 2010-08-12 Keisha Chantelle Ann Antoine Apparatus and method for reducing gaseous inclusions in a glass
FR2951156B3 (fr) * 2009-10-14 2011-09-16 Fives Stein Perfectionnements apportes au controle de la convection du verre dans un four de verre equipe d'un corset
DE102013204451A1 (de) 2013-03-14 2014-09-18 Schott Ag Vorrichtung und Verfahren zur Herstellung von Glas, umfassend eineRührvorrichtung zum Rühren einer Glasschmelze
CN106380060B (zh) * 2016-08-29 2019-12-10 中国建筑材料科学研究总院 一种硫系红外玻璃的连续熔制设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1810911A (en) * 1926-03-01 1931-06-23 Libbey Owens Ford Glass Co Glass melting furnace and process for producing molten glass
US1898039A (en) * 1927-03-04 1933-02-21 William A Morton Process for producing homogeneous glass in tanks
US2063842A (en) * 1935-01-04 1936-12-08 Hartford Empire Co Selective apparatus for and method of controlling flow of glass to tank or furnace forehearths
US2124092A (en) * 1935-03-27 1938-07-19 Ball Brothers Co Method and apparatus for feeding thermoplastic material
US3236618A (en) * 1963-03-15 1966-02-22 Owens Illinois Glass Co Glass stirring apparatus
GB1456241A (en) * 1973-01-12 1976-11-24 Pilkington Brothers Ltd Glass melting tanks
TR18556A (tr) * 1974-04-26 1977-03-24 Pilkington Brothers Ltd Cam eritmede veya bununla ilgili islahat
GB1531742A (en) * 1975-01-31 1978-11-08 Pilkington Brothers Ltd Manufacture of glass
US4082528A (en) * 1975-01-31 1978-04-04 Pilkington Brothers Limited Glass melting tank with temperature control and method of melting
US4055408A (en) * 1976-11-17 1977-10-25 Owens-Illinois, Inc. Forehearth homogenization method and apparatus
GB1557630A (en) * 1977-06-03 1979-12-12 Pilkington Brothers Ltd Glass manufacture
FR2478064A1 (fr) * 1980-03-11 1981-09-18 Saint Gobain Vitrage Procede et four pour la production de verre fondu
US4339261A (en) * 1980-09-08 1982-07-13 Libbey-Owens-Ford Company Drive system for glass furnace stirrers
US4744809A (en) * 1987-01-02 1988-05-17 Ppg Industries, Inc. Method and apparatus for homogenizing flat glass
US5194081A (en) * 1989-06-13 1993-03-16 Pilkington Plc Glass melting process
US5006145A (en) * 1990-02-26 1991-04-09 Ppg Industries, Inc. Center biased stirring for improved glass homogenization
FR2703042B1 (fr) * 1993-03-23 1995-06-09 Saint Gobain Vitrage Int Canal d'ecoulement pour le transfert du verre en fusion.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555732C1 (ru) * 2014-04-15 2015-07-10 Открытое Акционерное Общество "Научно-Исследовательский Институт Технического Стекла" Способ варки стекла

Also Published As

Publication number Publication date
UA48133C2 (ru) 2002-08-15
CA2188213A1 (en) 1997-04-29
JP4031541B2 (ja) 2008-01-09
PL190158B1 (pl) 2005-11-30
GB2306467A (en) 1997-05-07
DE69601339T2 (de) 1999-06-17
AU714218B2 (en) 1999-12-23
CZ288158B6 (en) 2001-05-16
DE69601339D1 (de) 1999-02-25
MX9605075A (es) 1997-04-30
MY115863A (en) 2003-09-30
EP0770582B1 (en) 1999-01-13
KR970020997A (ko) 1997-05-28
HUP9602958A2 (en) 1997-05-28
HU9602958D0 (en) 1996-12-30
ES2128144T3 (es) 1999-05-01
ZA968834B (en) 1997-04-29
CN1156695A (zh) 1997-08-13
HUP9602958A3 (en) 1998-08-28
US5827341A (en) 1998-10-27
GB9522123D0 (en) 1996-01-03
CZ309196A3 (en) 1997-07-16
AU7029796A (en) 1997-05-01
TR199600856A2 (tr) 1997-05-21
AR004123A1 (es) 1998-09-30
CN1124993C (zh) 2003-10-22
CA2188213C (en) 2005-02-22
PL316704A1 (en) 1997-05-12
KR100422602B1 (ko) 2004-06-12
BR9605257A (pt) 1998-07-21
EP0770582A1 (en) 1997-05-02
TW372943B (en) 1999-11-01
JPH09165221A (ja) 1997-06-24
HU216304B (hu) 1999-06-28

Similar Documents

Publication Publication Date Title
KR101482293B1 (ko) 광학적 성질 유리에 대한 용융유리 운송장치
KR101306065B1 (ko) 용융 유리 공급 장치 및 유리 성형품의 제조 방법
US4046546A (en) Method and apparatus for refining glass in a melting tank
RU2220116C2 (ru) Способ производства стекла во флоат-печи
EP0393882B1 (en) Method and apparatus for processing molten glass
US4994099A (en) Method for fining molten glass
JPS5839777B2 (ja) 溶融ガラスの製造方法およびそのための溶融炉
US4317669A (en) Glass melting furnace having a submerged weir
JPS5888126A (ja) 溶融ガラスの撹拌装置
US4517000A (en) Apparatus for producing molten glass
SU1190984A3 (ru) Способ варки стекла
CN213113039U (zh) 激光玻璃熔炼炉
JPS6031774B2 (ja) 溶融ガラスの調質方法
KR200228874Y1 (ko) 용융유리 피더용 교반장치
JP2002326822A (ja) フォアハースおよびゴブ製造装置並びにゴブ製造方法
KR200285891Y1 (ko) 유리용융로
RU2339589C1 (ru) Способ эксплуатации ванной стекловаренной печи
KR20020053636A (ko) 용융유리 피더용 교반장치
JPS6221721A (ja) フロ−トガラスの製造装置
KR20020063710A (ko) 용융유리 피더용 교반장치
KR20030090098A (ko) 유리용융로
MXPA98002597A (en) Process and apparatus for modifying and homogenizing glass melts

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20071026