RU2208811C2 - Способ получения информации о шумящих в море объектах - Google Patents

Способ получения информации о шумящих в море объектах Download PDF

Info

Publication number
RU2208811C2
RU2208811C2 RU2001126296A RU2001126296A RU2208811C2 RU 2208811 C2 RU2208811 C2 RU 2208811C2 RU 2001126296 A RU2001126296 A RU 2001126296A RU 2001126296 A RU2001126296 A RU 2001126296A RU 2208811 C2 RU2208811 C2 RU 2208811C2
Authority
RU
Russia
Prior art keywords
distance
signals
objects
signal
calculated
Prior art date
Application number
RU2001126296A
Other languages
English (en)
Inventor
Н.С. Алексеев
С.М. Величкин
В.И. Клячкин
Ю.М. Козлов
О.Г. Обчинец
Ю.П. Подгайский
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор"
Priority to RU2001126296A priority Critical patent/RU2208811C2/ru
Application granted granted Critical
Publication of RU2208811C2 publication Critical patent/RU2208811C2/ru

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Предлагается способ получения информации о шумящих в море объектах, в котором шум, излученный движущимися объектами, принимают антенной, по меньшей мере, в трех пространственных каналах наблюдения сигнала, приходящего под разными углами из-за вертикальной рефракции звука, принятый шумовой сигнал дискретизуют по времени и квантуют на несколько уровней, измеряют скорость звука в воде в зависимости от глубины и волнение поверхности моря, по измеренным данным и известным характеристикам дна и известным характеристикам приемной системы рассчитывают сигнал объекта в каждом пространственном канале для нескольких значений расстояния, решая уравнение гидроакустики в пассивном режиме, и в результате сравнения измеренных значений сигнала с расчетными принимают решение о дистанции и скорости и о наличии нескольких шумящих объектов на одном направлении, причем о количестве объектов судят по числу шагов, имеющих это совпадение, а скорость принимают равной отношению длины шага по расстоянию к интервалу дискретизации по времени. Достигаемым техническим результатом изобретения является обеспечение возможности одновременного определения дистанции и радиальной скорости движущихся в море объектов, находящихся на одном направлении, и определения числа этих объектов. 1 ил.

Description

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования.
Известен способ измерения дистанции и продольной скорости точечного источника с помощью двух- и трехэлементного интерферометра или с помощью антенны с расщепленной апертурой на две половины, в котором используются фазовые соотношения сигнала в интерферометре или в приемной антенне и учитывается кривизна волнового фронта сигнала (В.В. Караваев, В.В. Сазонов "Статистическая теория пассивной локации", М., Радио и связь, 1987 г., стр. 136).
Этот способ измерения можно улучшить при использовании согласованной с распределением на апертуре антенны и изменением во времени волновой картины наблюдаемого сигнала (Подводная акустика и обработка сигналов. Пер. с англ. /Под. ред. М. Бьерне. М., Мир, 1985 г., стр.325-328 и стр. 415-418). В этом способе измерение дистанции и скорости объектов определяется кривизной волнового фронта и ограничивается его искажениями. Способ - сложный, требует применения сложной дорогостоящей аппаратуры для введения управляемого амплитудно-фазового распределения.
Известен способ обнаружения шумящих объектов по патенту РФ 2110810 от 26.07.95 г., в котором шумы принимают двумя половинами антенны, разнесенной в пространстве по горизонту. Однако этот способ работоспособен при обнаружении объектов не одинакового типа, при их нахождении в ближней зоне акустической освещенности и малодостоверен при нахождении их в дальней зоне акустической освещенности из-за влияния явления вертикальной рефракции звука.
Известен также спектрально-частотный способ измерения дальности до источника шумоизлучения (патент РФ 2128848 от 09.10.97 г.), основанный на использовании частотной зависимости пространственного затухания и поглощения сигнала в морской среде от дальности. По этому способу осуществляются прием смеси сигнала шумоизлучения и помехи, измерение частотного спектра смеси принятого сигнала шумоизлучения и помехи, реализуется предварительное формирование набора прогнозируемых спектров сигнала шумоизлучения в точке приема для заранее выбранных сочетаний дальности и параметров наклона частотного спектра сигнала шумоизлучения, вычисление опорного спектра по каждому из прогнозируемых спектров набора, вычисление величины функциональной корреляции между измеренной смесью принятого сигнала шумоизлучения и помехи и каждым опорным спектром из набора, а подбор гипотетического значения дальности осуществляется путем определения максимальной величины функциональной корреляции, при которой гипотетическое значение дальности принимается истинным. Способ работоспособен при нахождении объектов в ближней зоне акустической освещенности и малодостоверен - в дальней зоне акустической освещенности из-за влияния явления вертикальной рефракции звука на форму спектра, а также из-за влияния изменения величины пространственного затухания, зависящей от района использования способа, и влияния изменения спектра помехи в зависимости от состояния водной поверхности.
В области шумопеленгования методов одновременного определения дистанции и радиальной составляющей скорости движущихся в море нескольких объектов, находящихся на одном направлении, в настоящее время неизвестно.
Наиболее близким по технической сущности к предлагаемому является способ измерения дистанции, изложенный в монографии B.C. Бурдика "Анализ гидроакустических систем". Пер. с англ., Л., Судостроение, 1988 г., стр. 377, в соответствии с которым с помощью автокорреляционной функции сигнала можно определить расстояние до цели в пассивном режиме при многолучевом распространении в ближней зоне акустической освещенности.
Звуковой сигнал принимают антенной, которая предполагается ненаправленной в вертикальной плоскости и не различает углы прихода сигнала в вертикальной плоскости, но различают время межлучевого запаздывания сигнала. Широкополосный сигнал с выхода приемной антенны подается на коррелятор. Вычисляют автокорреляционную функцию принимаемого многолучевого сигнала. Выделяют корреляционный максимум, измеряют время межлучевой задержки, и вычисляют разность длин двух траекторий лучей по известной скорости звука. Вычисляют горизонтальное расстояние до цели по вычисленной разности длин траекторий, известной глубине моря и глубине погружения приемной антенны (В.С. Бурдик "Анализ гидроакустических систем. Пер. с англ., Л., Судостроение, 1988 г., стр. 377).
Это техническое решение содержит следующие операции:
- прием гидроакустического шумового сигнала с помощью сформированного пространственного канала приемной антенны, причем антенна не обеспечивает разрешения траекторий лучей по углу прихода в вертикальной плоскости;
- частотно-временную обработку этого сигнала, содержащую формирование одного пространственного канала и частотного диапазона, определяющего ширину главного максимума функции автокорреляции принятого сигнала;
- вычисление функции автокорреляции, включая осреднение (накопление) во времени;
- выделение корреляционного максимума;
- измерение времени межлучевой задержки, равного сдвигу выделенного корреляционного максимума относительно главного корреляционного максимума;
- вычисление разности длин двух траекторий лучей по известной скорости звука;
- вычисление горизонтального расстояния до шумящего объекта по вычисленной разности длин траекторий, известной глубине моря и глубине погружения приемной антенны.
Способ, однако, не учитывает влияния вертикальной рефракции звука и чрезвычайно сильно зависит от фактических гидроакустических условий и возможности прогноза тонкой многолучевой структуры (с точностью до фазы сигнала) и не позволяет получить сведений о скорости шумящих объектов.
Таким образом, желательно иметь способ определения дистанции и скорости движущихся в море нескольких объектов, который одновременно позволил бы с большей достоверностью определить дистанцию, а также скорость шумящего объекта, и не содержал бы сложных и дорогостоящих в реализации операций корреляционного, спектрального, взаимного корреляционного анализа и т.п.
Задачей изобретения является обеспечение возможности одновременного определения дистанции и радиальной скорости движущихся в море объектов, находящихся на одном направлении, и определения числа этих объектов.
Для решения поставленной задачи в известный способ измерения расстояния, обеспечивающий прием с помощью гидроакустической антенны шумового сигнала от шумящих в море объектов, частотно-временную обработку сигнала, содержащую формирование пространственного канала наблюдения и частотного диапазона, детектирование и осреднение (накопление) по времени, введены новые операции, а именно:
- прием многолучевого сигнала антенной в трех и более сформированных пространственных каналах наблюдения сигнала, приходящего под разными углами из-за вертикальной рефракции звука;
- дискретизацию по времени с интервалом dj и квантование сигналов на три и более уровней;
- измерение скорости звука в воде в зависимости от глубины и волнения поверхности моря;
- вычисление по измеренным данным и известным характеристикам дна величины сигнала шумящего объекта в каждом пространственном канале для нескольких значений расстояния, решая уравнение гидроакустики (Справочник по гидроакустике, Л. , Судостроение, 1988 г., стр. 525) в пассивном режиме с учетом характеристик приемной системы;
- сопоставление принятых сигналов для трех и более моментов времени j с квантованными на те же уровни m расчетными значениями сигналов, полученными для нескольких (по числу моментов времени) дискретных значений расстояния с шагом dq;
- сдвиг расчетных значений сигналов на s шагов dq по расстоянию;
- вычисление квадратов разностей между ординатами точек, определяющих положение центров тяжести по времени и расстоянию массивов, образованных совокупностью измеренных и рассчитанных ненулевых сопоставляемых сигналов одного и того же уровня m;
- вычисление минимального по величине сдвига s и шага dq среднего значения полученных квадратов разностей по всем уровням m квантования;
- регистрацию расстояния в качестве оценки дистанции, соответствующей полученному минимуму;
- вычисление радиальной скорости по длине шага по расстоянию dq и величине интервала дискретизации dj;
- определение числа объектов по количеству сигналов, для которых последовательно по мере их появления на выходе приемной системы выполнены указанные выше операции.
При этом регистрируется картина поля в виде массива |Uk| совокупности принимаемых сигналов уровня m с элементами
|Uk|ij = U[i,Rk(j)];
k = 1, 2, 3 ...,
где |Uk|ij - выходной сигнал i-го пространственного канала в j-й момент времени, в который k-й источник находился на неизвестной дистанции Rk(j). Количество уровней квантования выбирается в зависимости от требуемой точности измерения.
Для нескольких источников, расположенных на одном направлении, выходной сигнал будет отражать суперпозицию полей источников и будет представлять сумму фрагментов |Uk|
|U| = |U1|+|U2|+...+|Uk|+...
Источники, расположенные в радиальном направлении друг относительно друга, на расстоянии, много меньшем расстояния от точки приема, то есть при Rk+1-Rk<<Rk, имеют вклады в отклики пространственного канала величины одного порядка. При этом условии их вклады не маскируют друг друга.
Для вычисления расстояния и радиальной скорости источника делается прогнозная оценка вклада в выходной сигнал k-го шумящего источника на расстоянии [Rk(q)] q-го шага прогноза. При вычислении этой прогнозной оценки вклада шумящего источника рассчитывают уровень его сигнала в каждом пространственном канале для нескольких значений расстояния в интервале прогноза, содержащем, возможно, и оценку искомой дистанции Rk(j), равной расстоянию прогноза [Rk(q)].
Известно, что при измерениях в море гипотеза о сферическом законе расширения фронта волны с учетом фокусировки и поглощения энергии обеспечивает приемлемое соответствие полученным данным для самых разных условий. Существующие гидроакустические условия учитываются с точностью до аномалии распространения относительно однородной безграничной среды со сферическим законом распространения с учетом поглощения. Для определения расчетного уровня сигнала шумящего объекта в пассивном режиме в зависимости от дистанции решают уравнение гидроакустики. Оно связывает технические характеристики гидроакустической аппаратуры шумопеленгаторной станции, параметры шумящего объекта взаимодействия, характер его расположения относительно приемной антенны и границ среды, и особенности распространения сигналов и шумов в океане.
УИ-ПР=УШ-ПН+ПО=УП+ПО,
где УИ (уровень источника) - интенсивность шумоизлучения на акустической оси в 1 м от источника;
ПР (потери распространения) - величина ослабления сигнала при распространении в морской среде между точкой, находящейся в 1 м от источника, и удаленной точкой, в которой расположен фазовый центр приемной антенны;
УП (уровень помех) - интенсивность помех на выходе приемника, равная разности интенсивности шумов (УШ) и показателя направленности (ПН);
ПО (порог обнаружения) - отношение мощности сигнала определенной формы к мощности помехи. Упомянутые расчеты могут быть проведены по алгоритмам, приведенным, например, в книге Матвиенко В.Н., Тарасюка Ю.Ф. "Дальность действия гидроакустических средств". Л., Судостроение, 1981 г., стр. 212-214.
Расчетную величину прогнозного сигнала заменяют ближайшим значением m-го уровня квантования W{ i,[Rk(q)]}. Квантованный на те же уровни, на которые квантуются выходные сигналы шумопеленгаторной станции, массив расчетных сигналов [|Wk|] получают для нескольких дискретных значений расстояния [Rk(q)] с некоторым шагом [dRk(q)]
[dRk(q)]=dq=[Rk(q)]-[Rk(q-1)].
Совокупность рассчитанных сигналов уровня m образует текущее значение [|Wk|] прогнозной оценки вклада k-го шумящего источника в выходной сигнал.
Для сопоставления прогнозной оценки сигналов [|Wk|] с измеренным массивом сигналов |Uk| сдвигают элементы [|Wk|]iq массива [|Wk|] по индексу q на величину s и получают новый массив [|Wk|] расчетных сигналов того же уровня m, элементы которого равны
Figure 00000002

Мерой близости относительного расположения измеренных и расчетных массивов сигналов D(s, dq) является среднее по всем уровням квантования значение квадрата разности ординат центров тяжести совокупности ненулевых элементов массивов |Uk| (по времени j) и [|Wk|] (по расстоянию q).
Figure 00000003

где M - число уровней квантования,
j0(|Uk|ij) - ордината центра тяжести по времени совокупностей принятых ненулевых сигналов m-го уровня
|Uk|ij≠0;
Figure 00000004

Figure 00000005

Jmin, Jmax - минимальное и максимальное значение ординаты j совокупностей принятых ненулевых сигналов m-го уровня;
imax(j,|Uk|ij), imin(j,|Uk|ij) - зависимость максимальной и минимальной абсциссы i совокупностей принятых ненулевых сигналов m-го уровня от ординаты j;
q0([|Wk|]iq) - ордината центра тяжести по расстоянию совокупностей расчетных ненулевых сигналов m-го уровня
[|Wk|]iq≠0;
Figure 00000006

Figure 00000007

Qmin, Qmax - минимальное и максимальное значение ординаты q совокупностей расчетных ненулевых сигналов m-го уровня;
imax(q,[|Wk|]iq), imin(q,[|Wk|]iq) - зависимость максимальной и минимальной абсциссы i совокупностей расчетных ненулевых сигналов m-го уровня от ординаты q. Находят минимальное по величине сдвига s и длине шага dq значение D
Figure 00000008

при s=0,±1,±2, ..., dq=dRk1, dRk2, ...
По результатам поиска минимума фиксируют оценки дистанции и радиальной скорости. Искомую дистанцию принимают равной значению расстояния, соответствующему вычисленному минимуму, Rk(j)=[Rk(q)]. Искомую скорость принимают равной отношению длины шага по расстоянию [dRk(q)] к величине интервала dj дискретизации, Vk(j)=[dRk(q)]/dj (оценка скорости движения шумящего объекта является вынужденным результатом реализации заявляемого способа). Число источников, находящихся на одном направлении, определяют количеством массивов "сигналов" |Uk|, для которых последовательно по мере их появления на выходе приемной системы выполнены указанные выше процедуры.
На чертеже приведена блок-схема приемной системы, реализующей заявляемый способ измерения дистанции и радиальной скорости шумящих в море объектов. На чертеже обозначены: антенна 1, позволяющая сформировать веер характеристик направленности в вертикальной плоскости, формирователь 2, диапазонные фильтры 3, детекторы 4, накопители (осреднители) 5, блок расчета поля сигнала, решения уравнения гидроакустики 6, измеритель скорости звука 7, измеритель волнения 8, банк характеристик дна 9, дискретизатор, квантователь 10, вычислитель минимального квадрата разности, дистанции, скорости и числа объектов 11 и индикатор 12.
Предлагаемый способ осуществляется с помощью приемной системы следующим образом. Шумовые сигналы принимаются антенной 1. Сигналы с выхода антенны передаются в блок 2 формирования пространственных каналов наблюдения. С выхода блока 2 сигналы поступают на вход диапазонных фильтров блока 3. Далее через блоки детектирования 4 и накопления (осреднения) 5 сигналы поступают на вход блока дискретизации и квантования уровня 10. С выхода блока 10 сигналы поступают в вычислитель минимальной величины квадрата разности, дистанции, скорости и числа объектов 11, в который поступают из блока 6 расчетные значения сигналов. В вычислительном устройстве 6 рассчитывается акустическое поле сигналов и решается уравнение гидроакустики по данным, поступающим:
- от устройства измерения скорости звука в зависимости от глубины 7 (в качестве такого устройства может быть применен измеритель XSV ВМС США); (Тарасюк Ю.Ф. Измеритель скорости звука XSV для ВМС США, Судостроение за рубежом, 1979, 4, с. 90-93);
- от измерителя волнения поверхности моря 8, (Простаков А.Л. "Электронный ключ к океану". Л., Судостроение, 1986, с. 69);
- от районированного банка характеристик дна 9 (Океанографические таблицы. Л., Гидрометеоиздат, 1975 г.).
С выхода блока 6 квантованные по уровню сигналы передаются в вычислитель 11, который сдвигает расчетные значения сигналов на несколько шагов по расстоянию, вычисляет среднее по всем уровням квантования значение квадратов разности между ординатами центров тяжести по времени и расстоянию совокупности принятых и расчетных ненулевых сигналов. Вычисляет минимальную величину среднего квадрата разности по числу шагов сдвига и длине шага сдвига по расстоянию и фиксирует в качестве искомой дистанции дискретное значение расстояния, соответствующее вычисленному минимуму, в качестве искомой скорости - отношение длины шага по расстоянию к величине шага дискретизации. Вычисляет число источников сигналов, для которых последовательно по мере их появления на выходе приемной системы выполнены указанные выше процедуры, и выдает значения искомых величин по каждому из шумящих в море объектов на индикатор 12.

Claims (1)

  1. Способ получения информации о шумящих в море объектах, включающий прием гидроакустических сигналов первичного поля шумоизлучения объектов, отличающийся тем, что осуществляют частотно-временную обработку принятых гидроакустических сигналов, содержащую формирование, по меньшей мере, трех пространственных каналов наблюдения сигналов, приходящих под различными углами из-за вертикальной рефракции звука, формируют частотные диапазоны, детектируют сигналы, осредняют по времени, дискретизуют по времени, квантуют на три и более уровней, измеряют скорость звука в воде в зависимости от глубины и волнение поверхности моря, по измеренным данным и известным характеристикам дна рассчитывают сигнал шумящего объекта в каждом пространственном канале для нескольких значений расстояния, решая уравнение гидроакустики в пассивном режиме для отдельного объекта с учетом характеристик приемной системы, принятые сигналы для нескольких, не менее трех, моментов времени сопоставляют с квантованными на то же число уровней расчетными значениями сигналов, полученными для нескольких, по числу моментов времени, дискретных значений расстояния до отдельного объекта с некоторым шагом, сдвигают расчетные значения сигналов на несколько шагов по расстоянию, получают среднее по всем уровням квантования значение квадратов разности ординат центров тяжести совокупностей принятых ненулевых сигналов по времени и ординат центров тяжести совокупностей расчетных ненулевых сигналов по расстоянию, находят минимальную по числу шагов сдвига по расстоянию и длине шага сдвига величину полученного среднего значения, в качестве искомой дистанции принимают значение расстояния, соответствующее вычисленному минимуму, в качестве искомой скорости - отношение длины шага по расстоянию к величине шага дискретизации по времени, число источников определяют количеством сигналов, для которых последовательно по мере их появления на выходе приемной системы выполнены указанные выше процедуры.
RU2001126296A 2001-09-27 2001-09-27 Способ получения информации о шумящих в море объектах RU2208811C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001126296A RU2208811C2 (ru) 2001-09-27 2001-09-27 Способ получения информации о шумящих в море объектах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001126296A RU2208811C2 (ru) 2001-09-27 2001-09-27 Способ получения информации о шумящих в море объектах

Publications (1)

Publication Number Publication Date
RU2208811C2 true RU2208811C2 (ru) 2003-07-20

Family

ID=29210497

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001126296A RU2208811C2 (ru) 2001-09-27 2001-09-27 Способ получения информации о шумящих в море объектах

Country Status (1)

Country Link
RU (1) RU2208811C2 (ru)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2478982C2 (ru) * 2011-05-23 2013-04-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Способ определения звукового давления движущегося протяженного источника акустического поля
RU2498238C2 (ru) * 2011-10-28 2013-11-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Способ локализации зон шумоизлучения движущегося транспортного средства
RU2548400C1 (ru) * 2014-01-30 2015-04-20 Открытое акционерное общество "Концерн "Океанприбор" Способ совместной оценки дистанции до шумящего в море объекта и его шумности
RU2550576C1 (ru) * 2014-01-30 2015-05-10 Открытое акционерное общество "Концерн "Океанприбор" Способ измерения дистанции до шумящего объекта
RU2559310C2 (ru) * 2013-10-18 2015-08-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ оценки дистанции до шумящего в море объекта
RU2580216C1 (ru) * 2014-12-01 2016-04-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ локализации областей акустического излучения
RU2602732C1 (ru) * 2015-06-25 2016-11-20 Акционерное общество "Акустический институт имени академика Н.Н. Андреева" Способ пассивного определения координат шумящего в море объекта
RU2624798C1 (ru) * 2016-07-27 2017-07-06 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ определения местоположения шумящего в море объекта
RU2650830C1 (ru) * 2017-03-28 2018-04-17 Акционерное Общество "Концерн "Океанприбор" Устройство получения информации о шумящем в море объекте
RU2694271C2 (ru) * 2017-10-25 2019-07-11 Акционерное Общество "Концерн "Океанприбор" Устройство классификации шумящих объектов
RU2786599C1 (ru) * 2021-12-29 2022-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ обнаружения движения подводного источника широкополосного шума

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БУРДИК B.C. Анализ гидроакустических систем. - Л.: Судостроение, 1988, с. 377, 378. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2478982C2 (ru) * 2011-05-23 2013-04-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Способ определения звукового давления движущегося протяженного источника акустического поля
RU2498238C2 (ru) * 2011-10-28 2013-11-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Способ локализации зон шумоизлучения движущегося транспортного средства
RU2559310C2 (ru) * 2013-10-18 2015-08-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ оценки дистанции до шумящего в море объекта
RU2548400C1 (ru) * 2014-01-30 2015-04-20 Открытое акционерное общество "Концерн "Океанприбор" Способ совместной оценки дистанции до шумящего в море объекта и его шумности
RU2550576C1 (ru) * 2014-01-30 2015-05-10 Открытое акционерное общество "Концерн "Океанприбор" Способ измерения дистанции до шумящего объекта
RU2580216C1 (ru) * 2014-12-01 2016-04-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ локализации областей акустического излучения
RU2602732C1 (ru) * 2015-06-25 2016-11-20 Акционерное общество "Акустический институт имени академика Н.Н. Андреева" Способ пассивного определения координат шумящего в море объекта
RU2624798C1 (ru) * 2016-07-27 2017-07-06 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ определения местоположения шумящего в море объекта
RU2650830C1 (ru) * 2017-03-28 2018-04-17 Акционерное Общество "Концерн "Океанприбор" Устройство получения информации о шумящем в море объекте
RU2694271C2 (ru) * 2017-10-25 2019-07-11 Акционерное Общество "Концерн "Океанприбор" Устройство классификации шумящих объектов
RU2786599C1 (ru) * 2021-12-29 2022-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ обнаружения движения подводного источника широкополосного шума
RU2814151C1 (ru) * 2023-07-25 2024-02-22 Акционерное Общество "Концерн "Океанприбор" Гидроакустический способ определения параметров движения цели в режиме шумопеленгования

Similar Documents

Publication Publication Date Title
US7106656B2 (en) Sonar system and process
US7315488B2 (en) Methods and systems for passive range and depth localization
RU2602732C1 (ru) Способ пассивного определения координат шумящего в море объекта
RU2590933C1 (ru) Устройство получения информации о шумящем в море объекте
RU2208811C2 (ru) Способ получения информации о шумящих в море объектах
RU2739000C1 (ru) Гидроакустический комплекс для обнаружения движущегося подводного источника звука, измерения пеленга на источник звука и горизонта источника звука в мелком море
RU2537472C1 (ru) Гидроакустический комплекс для обнаружения движущегося заглубленного источника звука и измерения его координат в мелком море
RU2156984C1 (ru) Способ получения информации о шумящем в море объекте и способ получения цветовых шкал для него
RU2529355C2 (ru) Способ определения пространственного распределения ионосферных неоднородностей
RU2515179C1 (ru) Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2399062C1 (ru) Ионосферный зонд-радиопеленгатор
RU2692841C1 (ru) Гидроакустический способ определения параметров цели при использовании взрывного сигнала с беспроводной системой связи
RU2225991C2 (ru) Навигационная гидроакустическая станция освещения ближней обстановки
RU2724962C1 (ru) Способ определения координат морской шумящей цели
RU2626295C1 (ru) Система автоматического обнаружения и классификации гидролокатора ближнего действия
RU2624826C1 (ru) Способ классификации целей, адаптированный к гидроакустическим условиям
RU2703804C1 (ru) Способ классификации морских объектов пассивными гидроакустическими средствами
RU2460088C1 (ru) Способ обнаружения локального объекта на фоне распределенной помехи
CN110471032A (zh) 一种水下目标被动定位的方法
RU2510608C1 (ru) Способ измерения толщины льда с подводного носителя
RU2768011C1 (ru) Способ одноэтапного адаптивного определения координат источников радиоизлучений
RU2110810C1 (ru) Способ обнаружения шумящих объектов
RU2711432C1 (ru) Способ пассивного определения координат источников гидроакустического излучения
Rahaman et al. Performance Enhancement of Active Sonar System in Under Water Environment Using Spherical Hydrophone Array
RU2816481C1 (ru) Способ определения глубины погружения шумящего в море объекта

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170928