RU2204828C1 - Магнитный газоанализатор - Google Patents

Магнитный газоанализатор Download PDF

Info

Publication number
RU2204828C1
RU2204828C1 RU2001133567/28A RU2001133567A RU2204828C1 RU 2204828 C1 RU2204828 C1 RU 2204828C1 RU 2001133567/28 A RU2001133567/28 A RU 2001133567/28A RU 2001133567 A RU2001133567 A RU 2001133567A RU 2204828 C1 RU2204828 C1 RU 2204828C1
Authority
RU
Russia
Prior art keywords
gas
source
chamber
auxiliary gas
auxiliary
Prior art date
Application number
RU2001133567/28A
Other languages
English (en)
Inventor
сов Л.В. Ил
Л.В. Илясов
Е.А. Громова
Original Assignee
Тверской государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тверской государственный технический университет filed Critical Тверской государственный технический университет
Priority to RU2001133567/28A priority Critical patent/RU2204828C1/ru
Application granted granted Critical
Publication of RU2204828C1 publication Critical patent/RU2204828C1/ru

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Использование: для анализа концентрации кислорода в газовых средах. Сущность изобретения: магнитный газоанализатор содержит измерительную камеру из немагнитного материала с каналами для подвода и отвода газовых потоков, установленные в камере полюсные наконечники постоянного магнита и ложные наконечники из немагнитного материала с отверстиями в одном полюсном и в одном ложном наконечниках, которые сообщены с измерительной камерой и соединены каналами сравнительного газа с выходным штуцером источника этого газа, в каждом из которых размещен терморезистор, неравновесный электрический мост, в который включены эти терморезисторы, и измеритель сигнала неравновесного моста. Отличие анализатора состоит в том, что в анализатор дополнительно включены канал вспомогательного газа со штуцером, расположенным в его середине, источник вспомогательного газа и дроссель, при этом источник вспомогательного газа содержит две камеры, отделенные друг от друга мембраной, обладающей селективной проницаемостью к водороду, первая из камер снабжена входным и выходным штуцерами, а во второй размещен гидридный источник водорода и электронагреватель, причем канал вспомогательного газа включен между каналами сравнительного газа так, что места подсоединения этих каналов расположены между выходным штуцером источника сравнительного газа и терморезисторами, штуцер канала вспомогательного газа соединен с выходным штуцером первой камеры источника вспомогательного газа, а входной штуцер этой камеры соединен через дроссель с источником сравнительного газа. Технический результат изобретения заключается в повышении чувствительности. 1 ил.

Description

Изобретение относится к средствам аналитической техники, а именно к анализаторам концентрации кислорода в газовых средах, использующих в работе явление втягивания парамагнитных газов в магнитное поле.
Известен магнитный газоанализатор (Агейкин Д.И. Магнитные газоанализаторы. М.: Госэнергоиздат, 1963. с.25-26), содержащий проточную камеру, в которой на тонкой упругой нити подвешен миниатюрный ротор из диамагнитного материала, имеющий форму гантели. Одна половина ротора размещена в неоднородном магнитном поле. При изменении концентрации кислорода в газовой среде, протекающей через камеру, ротор поворачивается на некоторый угол, так как изменяется сила втягивания кислорода в магнитное поле. Угол поворота ротора является мерой концентрации кислорода.
Недостатком такого анализатора является высокая чувствительность к вибрациям, сложность конструкции и высокая стоимость.
Наиболее близким по технической сущности является магнитный газоанализатор (авторское свидетельство 221387, БИ 21, 1968), содержащий измерительную камеру из немагнитного материала с каналами для подвода и отвода газовых потоков, установленные в камере полюсные наконечники постоянного магнита и ложные наконечники из немагнитного материала с отверстиями в одном полюсном и в одном ложном наконечниках, которые сообщены с измерительной камерой и соединены каналами сравнительного газа с выходным штуцером источника этого газа, в каждом из которых размещен терморезистор, неравновесный электрический мост, в который включены эти терморезисторы, и измеритель сигнала неравновесного моста.
При протекании через измерительную камеру газоанализатора анализируемого газа, содержащего кислород, последний втягивается в неоднородное магнитное поле полюсных наконечников постоянного магнита, что вызывает изменение расхода сравнительного газа, вытекающего из отверстия в этом полюсном наконечнике, а это вызывает изменение теплового режима одного из терморезисторов, что и вызывает разбаланс неравновесного моста, который и является мерой концентрации кислорода.
Недостатком такого магнитного газоанализатора является низкая чувствительность, составляющая 0,25 мВ/об.% (Фарзане Н.Г., Илясов Л.В. Автоматические детекторы газов и жидкостей. М.: Энергоиздат, 1983, с.59-60).
Задачей предлагаемого изобретения является увеличение чувствительности магнитного контроля концентрации кислорода в газовых средах.
Технический результат - создание магнитного газоанализатора, обладающего на порядок большей чувствительностью, чем известные.
Технический результат достигается тем, что в состав магнитного газоанализатора, содержащего измерительную камеру из немагнитного материала с каналами для подвода и отвода газовых потоков, установленные в камере полюсные наконечники постоянного магнита и ложные наконечники из немагнитного материала с отверстиями в одном полюсном и в одном ложном наконечниках, которые сообщены с измерительной камерой и соединены каналами сравнительного газа с выходным штуцером источника этого газа, в каждом из которых размещен терморезистор, неравновесный электрический мост, в который включены эти терморезисторы, и измеритель сигнала неравновесного моста, дополнительно включены канал вспомогательного газа со штуцером, расположенным в его середине, источник вспомогательного газа и дроссель, при этом источник вспомогательного газа содержит две камеры, отделенные друг от друга мембраной, обладающей селективной проницаемостью к водороду, первая из камер снабжена входным и выходным штуцерами, а во второй размещен гидридный источник водорода и электронагреватель, причем канал вспомогательного газа включен между каналами сравнительного газа так, что места подсоединения этих каналов расположены между выходным штуцером источника сравнительного газа и терморезисторами, штуцер канала вспомогательного газа соединен с выходным штуцером первой камеры источника вспомогательного газа, а входной штуцер этой камеры соединен через дроссель с источником сравнительного газа.
Такая конструкция магнитного газоанализатора обеспечивает увеличение чувствительности измерения концентрации кислорода в газовых средах в 8-10 раз за счет того, что отвод теплоты от терморезисторов осуществляется не только за счет изменения расхода сравнительного газа, но и за счет изменения теплопроводности потока газов, омывающего терморезисторы, которое связано с изменением соотношения расходов сравнительного газа и вспомогательного газа, содержащего водород.
По сравнению с прототипом заявленная конструкция имеет отличительные особенности в совокупности элементов и их взаимном расположении.
Схема магнитного газоанализатора показана на чертеже.
Магнитный газоанализатор содержит измерительную камеру 1 из немагнитного материала с каналами 2 и 3 для подвода и отвода газовых потоков, в которой установлены полюсные наконечники 4 и 5 постоянного магнита 6 и ложные наконечники 7 и 8 из немагнитного материала.
Полюсный наконечник 4 и ложный наконечник 7 снабжены отверстиями 9 и 10, которые сообщены с измерительной камерой 1 и соединены каналами 11 и 12 с выходным штуцером 13 источника 14 сравнительного газа. В каналах 11 и 12 размещены терморезисторы 15 и 16, которые включены в неравновесный мост 17, а к измерительной диагонали моста подключены измеритель разности потенциалов 18, например электронный потенциометр или микровольтметр. Неравновесный мост кроме терморезисторов 15 и 16 содержит постоянные резисторы R1, R2 и переменный резистор R0, служащий для настройки начального значения сигнала неравновесного моста 17.
Для питания неравновесного моста 17 служит стабилизированный источник напряжения 19.
В состав магнитного газоанализатора дополнительно включены канал вспомогательного газа 20 с расположенным в его середине штуцером 21, источник вспомогательного газа 22 и дроссель 23. Источник вспомогательного газа содержит две камеры 24 и 25, отделенные друг от друга мембраной 26, обладающей селективной проницаемостью к водороду. Камера 24 снабжена входным 27 и выходным 28 штуцерами, а в камере 25 размещен гидридный источник водорода 29 (Подгорный А.Н. и др. Водород - топливо будущего. К.: Науковая думка, 1978, с. 56-58) и электронагреватель 30, который подключен к стабилизированному источнику питания 31. Канал вспомогательного газа 20 включен между каналами 11 и 12 сравнительного газа так, что места соединения 32 и 33 этих каналов расположены между выходным штуцером источника сравнительного газа и терморезисторами. Штуцер 21 канала вспомогательного газа соединен с выходным штуцером 28 камеры 24, штуцер 27 через дроссель 23 соединен с источником сравнительного газа 14.
Работа магнитного газоанализатора осуществляется следующим образом.
От источника сравнительного газа 14 непрерывно подают потоки сравнительного газа (воздуха или азота) со стабильными параметрами в каналы 11 и 12 и к дросселю 23. В камеру 1 подают поток анализируемого газа с постоянным расходом. Гидридный источник водорода нагревают до температуры 180-200oС с помощью нагревателя 30 за счет энергии источника питания 31. При этом из источника выделяется водород, который диффундирует через мембрану 26 и попадает в поток сравнительного газа, поступающего через штуцер 27 от дросселя 23. В результате смешения в камере 24 потока сравнительного газа и диффундирующего через мембрану 26 водорода образуется вспомогательный газ, который подают через штуцер 21 в канал 20, а из последнего он поступает в каналы 11 и 12. Концентрация водорода во вспомогательном газе постоянна и может подбираться путем изменения расхода сравнительного газа, поступающего из дросселя 23. Таким образом терморезисторы 15 и 16 непрерывно омываются газовыми потоками, состоящими из сравнительного газа и водорода. За счет теплообмена между терморезисторами 15 и 16 и названными потоками при постоянной концентрации кислорода в анализируемом газе терморезисторы 15 и 16 нагреваются током неравновесного моста 17 до некоторых постоянных температур. С помощью резистора R0 устанавливают начальные значения разбаланса неравновесного моста 17. При изменении концентрации кислорода, например при увеличении, истечению смеси газов из полюсного наконечника 9 будет оказываться большее сопротивление за счет втягивания в магнитное поле больших количеств кислорода, содержащегося в анализируемом газе. Поэтому расход смеси газов через канал 11 уменьшится. Одновременно изменится (при соответствующем подборе пневматических сопротивлений каналов 11, 12, 20) соотношение потоков сравнительного и вспомогательного газов так, что концентрация водорода в смеси, омывающей терморезистор 15, уменьшится, а в смеси, омывающей терморезистор 16, увеличится.
В результате терморезистор 15 будет омываться потоком газа, движущимся с меньшей скоростью и содержащим меньше водорода, а терморезистор 16 будет омываться потоком газа, движущимся с большей скоростью и содержащим больше водорода. Поэтому температура терморезистора 15 будет увеличиваться, а терморезистора 16 - уменьшаться.
Изменение сопротивлений терморезисторов 15 и 16 вызывает разбаланс неравновесного моста, который измеряется потенциометром 18 и пропорционален концентрации кислорода в анализируемом газе.
Интенсивность теплообмена между терморезисторами 15 и 16 и газовыми потоками в данном магнитном газоанализаторе существенно больше, чем при омывании их только чистым сравнительным газом (в анализаторе-прототипе), так как теплообмен при омывании терморезисторов газовой смесью, содержащей водород с изменяющейся концентрацией, будет происходить не только за счет конвекции, но и еще за счет теплопроводности. Использование этого явления позволяет, как показывают эксперименты, увеличить чувствительность измерения в 8-10 раз.
Преимуществом предлагаемого технического решения являются:
- простота конструкции и эксплуатации;
- возможность применения для модернизации существующих магнитных газоанализаторов;
- относительно невысокая стоимость.
Предлагаемое устройство может быть реализовано на базе существующих магнитных газоанализаторов и гидридного источника водорода.
Устройство может найти применение как для высокочувствительного автоматического контроля концентрации кислорода на технологических потоках различных отраслей промышленности, так и для измерения концентрации при исследовании процесса дыхания и кислородной терапии в медицинских учреждениях. Оно может быть также использовано в качестве равночувствительного детектора в промышленной газовой хроматографии.

Claims (1)

  1. Магнитный газоанализатор, содержащий измерительную камеру из немагнитного материала с каналами для подвода и отвода газовых потоков, установленные в камере полюсные наконечники постоянного магнита и ложные наконечники из немагнитного материала с отверстиями в одном полюсном и в одном ложном наконечниках, которые сообщены с измерительной камерой и соединены каналами сравнительного газа с выходным штуцером источника этого газа, в каждом из которых размещен терморезистор, неравновесный электрический мост, в который включены эти терморезисторы, и измеритель сигнала неравновесного моста, отличающийся тем, что в анализатор дополнительно включены канал вспомогательного газа со штуцером, расположенным в его середине, источник вспомогательного газа и дроссель, при этом источник вспомогательного газа содержит две камеры, отделенные друг от друга мембраной, обладающей селективной проницаемостью к водороду, первая из камер снабжена входным и выходным штуцерами, а во второй размещен гидридный источник водорода и электронагреватель, причем канал вспомогательного газа включен между каналами сравнительного газа так, что места подсоединения этих каналов расположены между выходным штуцером источника сравнительного газа и терморезисторами, штуцер канала вспомогательного газа соединен с выходным штуцером первой камеры источника вспомогательного газа, а входной штуцер этой камеры соединен через дроссель с источником сравнительного газа.
RU2001133567/28A 2001-12-10 2001-12-10 Магнитный газоанализатор RU2204828C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001133567/28A RU2204828C1 (ru) 2001-12-10 2001-12-10 Магнитный газоанализатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001133567/28A RU2204828C1 (ru) 2001-12-10 2001-12-10 Магнитный газоанализатор

Publications (1)

Publication Number Publication Date
RU2204828C1 true RU2204828C1 (ru) 2003-05-20

Family

ID=20254691

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001133567/28A RU2204828C1 (ru) 2001-12-10 2001-12-10 Магнитный газоанализатор

Country Status (1)

Country Link
RU (1) RU2204828C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Автоматические газоанализаторы. - М., 1961, с. 95-145. *

Similar Documents

Publication Publication Date Title
US4461173A (en) Multirange flowmeter
US4594879A (en) Thermal conductivity detector
JPH0671124A (ja) 空気ろ過器の目詰まり検出装置
JPH01501096A (ja) 熱伝導率検出器組立体
US3753656A (en) Gas chromatograph
US2899281A (en) Catalytic ozone analyzer
US10060866B2 (en) Thermal conductivity detector and detector module
US5789258A (en) Method for generating vapor streams
RU2204828C1 (ru) Магнитный газоанализатор
US3285055A (en) Temperature control system
CN102725628A (zh) 表征固体材料的方法和装置以及确定探针分子的热力学特性的方法和设备
US3616679A (en) Paramagnetic oxygen detector
CN217688766U (zh) 热导检测装置
US3756069A (en) Gas analyzer apparatus
US3471776A (en) Fluid bridge method and means of detecting gases having magnetic susceptibility
US3646803A (en) Paramagnetic gas-measuring device
US4860574A (en) Paramagnetic oxygen analyzer
US3292421A (en) Paramagnetic gas analyzer
RU196305U1 (ru) Термохимический газоанализатор
CN106680363B (zh) 桥臂热敏元件及其加工方法、磁压力式氧检测器
US3060723A (en) Means for determining dissolved gas concentrations in liquids
CN206420726U (zh) 气体吸附脱附测试装置
Weitzel et al. Continuous Analysis of Ortho‐Parahydrogen Mixtures
US4067227A (en) Hydrogen transfer system for gas chromatograph
US10962395B2 (en) Method and apparatus for measuring the flow rate of a shielding gas mixture

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031211