RU2201972C2 - Способ производства штрипсов из низколегированной стали - Google Patents

Способ производства штрипсов из низколегированной стали Download PDF

Info

Publication number
RU2201972C2
RU2201972C2 RU2001111161A RU2001111161A RU2201972C2 RU 2201972 C2 RU2201972 C2 RU 2201972C2 RU 2001111161 A RU2001111161 A RU 2001111161A RU 2001111161 A RU2001111161 A RU 2001111161A RU 2201972 C2 RU2201972 C2 RU 2201972C2
Authority
RU
Russia
Prior art keywords
rolling
strips
stand
temperature
slabs
Prior art date
Application number
RU2001111161A
Other languages
English (en)
Other versions
RU2001111161A (ru
Inventor
В.И. Ильинский
Т.Н. Попова
А.В. Голованов
А.М. Ламухин
В.А. Чурюлин
В.В. Гейер
А.И. Трайно
А.В. Зиборов
Б.Я. Балдаев
Л.И. Эфрон
Ю.Д. Морозов
О.О. Квасникова
А.А. Демидова
Original Assignee
Открытое акционерное общество "Северсталь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" filed Critical Открытое акционерное общество "Северсталь"
Priority to RU2001111161A priority Critical patent/RU2201972C2/ru
Publication of RU2001111161A publication Critical patent/RU2001111161A/ru
Application granted granted Critical
Publication of RU2201972C2 publication Critical patent/RU2201972C2/ru

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

Изобретение относится к металлургии, конкретнее к технологии изготовления толстолистовой стали, и может быть использовано при горячей прокатке штрипсов категории прочности Х52-Х65 на реверсивных станах. Технический результат состоит в улучшении качества штрипсов и исключении необходимости их термической обработки. Способ включает отливку слябов, их нагрев, многопроходную реверсивную прокатку вначале в черновой, затем в чистовой клети. Нагрев слябов осуществляют до температуры 1150-1200oС, прокатку в чистовой клети ведут с суммарным обжатием не менее 70% и завершают при температуре не выше 820oС, причем перед прокаткой в чистовой клети раскат подстуживают до температуры 920-980oС. Кроме того, прокатку в черновой клети ведут с обжатием за проход не менее 8%, а слябы отливают из стали, содержащей по массе, %: 0,003-0,14 углерода, 0,15-0,70 кремния, 0,50-1,65 марганца, не более 0,3 хрома, не более 0,3 никеля, не более 0,3 меди, 0,02-0,05 алюминия, 0,005-0,03 титана, 0,02-0,14 ванадия, 0,015-0,060 ниобия, не более 0,15 молибдена, 0,0003-0,05 кальция, остальное - железо и примеси. 2 з.п. ф-лы, 3 табл.

Description

Изобретение относится к металлургии, конкретнее к технологии изготовления толстолистовой стали, и может быть использовано при горячей прокатке штрипсов категории прочности Х52-Х65 на реверсивных станах.
Штрипсы категории прочности Х52-Х65 (горячекатаные листы) для изготовления прямошовных труб магистральных газопроводов должны отвечать следующему комплексу механических свойств (табл.1).
Известен способ производства стальных листов, включающий выплавку и непрерывную разливку в слябы низколегированной стали, содержащей по массе, %:
Углерод - 0,04-0,10
Кремний - 0,01-0,50
Марганец - 0,4-1,5
Хром - 0,05-1,0
Молибден - 0,05-1,0
Ванадий - 0,01-0,1
Бор - 0,0005-0,005
Алюминий - 0,001-0,1
Железо и примеси - Остальное
Отлитые слябы нагревают до температуры 1250oС и прокатывают с суммарным обжатием не менее 75%. Прокатанные листы подвергают закалке из аустенитной области и высокотемпературному отпуску [1].
Недостатки известного способа состоят в том, что толстолистовая сталь имеет низкие пластические и вязкостные свойства при отрицательных температурах. Это ухудшает качество листов. Кроме того, необходимость проведения термического улучшения (закалки и отпуска) листов после прокатки усложняет и удорожает производство.
Известен также способ производства толстолистовой низколегированной стали, включающий отливку слябов следующего химического состава, мас.%:
Углерод - 0,02-0,3
Марганец - 0,5-2,5
Алюминий - 0,005-0,1
Кремний - 0,05-1,0
Ниобий - 0,003-0,01
Железо - Остальное
Слябы нагревают до температуры 950-1050oС и прокатывают при температуре выше точки Аr3 с суммарным обжатием 50-70%. Прокатанные листы охлаждают на воздухе [2].
При таком способе производства листы имеют недостаточную прочность и пластичность, что ухудшает их качество.
Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства штрипсов из низколегированной стали марки 09Г2ФБ. Способ включает непрерывную отливку слябов, их нагрев до температуры 1180oС, многопроходную реверсивную прокатку в черновой клети, после которой раскаты имеют температуру не ниже 1050oС, последующую многопроходную реверсивную прокатку, которую завершают при температуре 900-1000oС. Прокатанные листы охлаждают на воздухе. Для повышения механических свойств горячекатаные листы подвергают термической обработке - закалке с отпуском [3] - прототип.
Недостатки известного способа состоят в том, что штрипсы из низколегированной стали имеют недостаточные вязкостные свойства, низкую пластичность, доля вязкой составляющей в изломе не превышает 50%. В результате штрипсы имеют низкое качество. Кроме того, дополнительная термическая обработка усложняет и удорожает производство штрипсов.
Техническая задача, решаемая изобретением, состоит в улучшении качества штрипсов и исключении необходимости их термической обработки.
Поставленная техническая задача решается тем, что в известном способе производства штрипсов из низколегированной стали, включающем отливку слябов, их нагрев, многопроходную реверсивную прокатку в черновой клети, затем в чистовой клети, согласно предложению, нагрев слябов осуществляют до температуры 1150-1200oС, прокатку в чистовой клети ведут с суммарным обжатием не менее 70% и завершают при температуре не выше 820oС, причем перед прокаткой в чистовой клети раскат подстуживают до температуры 920-980oС. Кроме того, прокатку в черновой клети ведут с обжатием за проход не менее 8%, а слябы отливают из стали, имеющей следующий химический состав, мас.%:
Углерод - 0,003-0,14
Кремний - 0,15-0,70
Марганец - 0,50-1,65
Хром - Не более 0,3
Никель - Не более 0,3
Медь - Не более 0,3
Алюминий - 0,02-0,05
Титан - 0,005-0,03
Ванадий - 0,02-0,14
Ниобий - 0,015-0,060
Молибден - Не более 0,15
Кальций - 0,0003-0,05
Железо - Остальное
Сущность изобретения состоит в следующем. При нагреве литых слябов до температуры 1150-1200oС происходит аустенитизация низколегированной стали, растворение дисперсных карбонитридных упрочняющих частиц. Многопроходная прокатка в черновой клети с обжатием раската по толщине за проход не менее 8% обеспечивает разрушение литой структуры, подавляет разнобалльность аустенитных зерен.
Подстуживание раската перед прокаткой в чистовой клети до температуры 920-960oС обеспечивает завершение рекристаллизации деформированных зерен аустенита и в то же время позволяет замедлить рост зерен аустенита в паузах между проходами при прокатке в чистовой клети. Последующая многопроходная прокатка в чистовой клети с суммарным обжатием по толщине не менее 70% в температурном интервале от 920-980 oС до 820oС позволяет "проработать" микроструктуру штрипса на всю толщину, устранить осевую рыхлость и осевые трещины в литом слябе, сформировать равномерную мелкозернистую перлитную микроструктуру, обладающую повышенными вязкостными и прочностными свойствами. Использование для отливки слябов низколегированной стали предложенного состава при обеспечении заданной прочности позволяет повысить показатель относительного удлинения штрипсов до величины 32-38% и вязкостные свойства при отрицательных температурах. За счет этого достигается улучшение качества штрипсов и исключается необходимость проведения дополнительной термической обработки.
Экспериментально установлено, что повышение температуры нагрева сляба более 1200oС приводит к чрезмерному росту зерен аустенита, а также требует увеличения продолжительности задержки раската для его охлаждения до температуры начала прокатки в чистовой клети. Это ухудшает равномерность микроструктуры и свойства штрипсов. Снижение температуры нагрева менее 1200oС не обеспечивает полного растворения упрочняющих дисперсных карбонитридных частиц, что ухудшает гомогенность микроструктуры и механические свойства стали.
При обжатии за проход в черновой клети менее 8% вследствие неравномерности деформации по толщине листа формируется неравномерная зеренная структура, что способствует сохранению осевой рыхлости, ухудшает качество штрипсов.
Если температура, до которой подстуживают раскат перед чистовой группой, превышает 980oС, то не достигается необходимый уровень прочности в прокатанных штрипсах. Снижение этой температуры ниже 920oС вызывает анизотропию механических свойств горячекатаного штрипса, что недопустимо.
При суммарном обжатии в чистовых проходах менее 70% и завершении прокатки при температуре выше 820oС не достигается оптимальная степень измельчения зерен микроструктуры и механическая проработка стали на всю толщину штрипса. Это ведет к снижению прочностных и вязкостных свойств.
Углерод в низколегированной стали предложенного состава определяет ее прочность. Снижение содержания углерода менее 0,003% приводит к падению ее прочности ниже допустимого уровня. Увеличение содержания углерода более 0,14% ухудшает пластические и вязкостные свойства штрипсов, приводит к их неравномерности из-за ликвации.
При содержании кремния менее 0,15% ухудшается раскисленность стали, снижается прочность штрипсов. Увеличение содержания кремния более 0,70% приводит к возрастанию количества силикатных включений, снижает ударную вязкость штрипсов.
Снижение содержания марганца менее 0,50% увеличивает окисленность стали, ухудшает качество штрипсов. Повышение содержания марганца более 1,65% увеличивает отношение предела текучести к временному сопротивлению разрыву, что недопустимо.
Хром, никель и медь повышают прочность и коррозионную стойкость штрипсов. Являясь примесными элементами, при концентрации каждого из них до 0,3% они не оказывают вредного влияния на свариваемость штрипсов при производстве труб, но расширяют возможности использования металлического лома при выплавке, что удешевляет производство штрипсов.
Алюминий раскисляет и модифицирует сталь. При концентрации менее 0,02% его воздействие проявляется слабо, что ухудшает механические свойства штрипсов. Увеличение его содержания более 0,05% графитизирует углерод, что также ухудшает качество штрипсов.
Ванадий измельчает зерно микроструктуры, повышает прочность и вязкость штрипсов, прокатанных по предложенным режимам. При содержании ванадия менее 0,02% штрипсы имеют недостаточную вязкость при отрицательных температурах. Увеличение содержания ванадия сверх 0,14% оказалось нецелесообразным, так как не улучшало свойств штрипсов.
Ниобий в стали при температуре прокатки в чистовой клети от 920-980oС до менее 820oС, при суммарном обжатии не менее 70% способствует получению ячеистой дислокационной микроструктуры стали, обеспечивающей сочетание прочностных и пластических свойств штрипсов без дополнительной термообработки. При концентрации ниобия менее 0,015% механические свойства штрипсов в горячекатаном состоянии недостаточно высоки. Повышение концентрации более 0,060% не приводит к дальнейшему повышению механических свойств штрипсов, поэтому нецелесообразно.
Молибден обеспечивает получение горячекатаных штрипсов заданной категории прочности в диапазоне от Х52 (когда молибден не используется) до Х65 (когда содержание его составляет 0,15%). Увеличение содержания молибдена сверх 0,15% не ведет к дальнейшему повышению качества штрипсов, а лишь увеличивает расход легирующих, что нецелесообразно.
Кальций оказывает модифицирующее действие, связывает серу в тугоплавкое соединение, что позволяет повысить качество штрипсов. При концентрации кальция менее 0,0003% его положительное воздействие не проявляется. Увеличение содержания кальция сверх 0,05% приводит к росту неметаллических включений, снижению пластичности и ударной вязкости штрипсов.
Следует также отметить, что сталь предложенного состава может содержать в виде примесей не более 0,018% фосфора, не более 0,007% серы и не более 0,010% азота. При указанных предельных концентрациях эти элементы в стали предложенного состава не оказывают заметного негативного воздействия на качество штрипсов, тогда как их удаление из расплава стали существенно повышает затраты на производство и усложняет технологический процесс.
Примеры реализации способа
В электродуговой печи емкостью 100 т производят выплавку низколегированных сталей различного состава (табл. 1).
Выплавленные стали составов 1-6 разливают на вертикальной МНЛЗ в слябы сечением 200х1350 мм, которые охлаждают в термостате.
Готовые слябы нагревают в методической печи до температуры Тн=1175oС и прокатывают в черновой клети кварто толстолистового реверсивного стана 2800 за 7 проходов (с разбивкой ширины) в раскат толщиной 45 мм с обжатием за проход по толщине ε, превышающем 8% по схеме, приведенной в конце описания.
После 7-го прохода раскаты толщиной 45 мм с температурой 990oС подстуживают до температуры Tч = 950oС и задают в чистовую реверсивную клеть кварто, где раскаты обжимают за 5 проходов в штрипсы толщиной 12,0 мм с суммарным обжатием εΣ, составляющим:
Figure 00000001

В завершающем 5-м проходе температура штрипса составляет Ткп=800oС.
Прокатанные штрипсы охлаждают на воздухе, обрезают на ширину 2262 мм и проводят испытания механических свойств.
Варианты прокатки штрипсов по различным режимам из сталей различного состава приведены в табл.2.
Как следует из табл. 2 и 3, при реализации предложенного способа (варианты 2-4) достигается повышение качества штрипсов. В горячекатаном состоянии их свойства соответствуют стандарту APJ 5U для категорий прочности Х52-Х65, поэтому дополнительная термическая обработка (закалка + отпуск) не требуется.
В случаях запредельных значений заявленных параметров (варианты 1 и 5) и при реализации способа-прототипа штрипсы по своим качественным показателям не соответствуют требованиям стандарта. Механические свойства штрипсов могут быть несколько улучшены после дополнительной термической обработки.
Технико-экономические преимущества предложенного способа заключаются в том, что горячая прокатка штрипсов по предложенным оптимальным режимам из стали предложенного состава обеспечивают формирование требуемого повышенного комплекса механических свойств, за счет чего достигается улучшение качества штрипсов. Кроме того, повышенный комплекс механических свойств горячекатаных штрипсов исключает необходимость их дополнительной термической обработки.
В качестве базового объекта при определении технико-экономических преимуществ предложенного способа принят способ-прототип.
Использование предложенного способа производства штрипсов из низколегированной стали повысит уровень рентабельности их получения на 10-18%
Источники информации
1. Заявка Японии 61-163210, МПК С 21 D 8/00, 1986.
2. Заявка Японии 61-223125, МПК С 21 D 8/02, С 22 С 38/54, 1986.
3. Ю. И. Матросов и др. Сталь для магистральных газопроводов. - М.: Металлургия, 1989, с.241-243, 271-273 - прототип.

Claims (3)

1. Способ производства штрипсов из низколегированной стали, включающий отливку слябов, их нагрев, многопроходную реверсивную прокатку в черновой клети, затем в чистовой клети, отличающийся тем, что нагрев слябов осуществляют до температуры 1150-1200oС, прокатку в чистовой клети ведут с суммарным обжатием не менее 70% и завершают при температуре не выше 820oС, причем перед прокаткой в чистовой клети раскат подстуживают до температуры 920-980oС.
2. Способ по п.1, отличающийся тем, что прокатку в черновой клети ведут с обжатием за проход не менее 8%.
3. Способ по пп.1 и 2, отличающийся тем, что слябы отливают из стали, имеющей следующий химический состав, мас.%:
Углерод - 0,003 - 0,14
Кремний - 0,15 - 0,70
Марганец - 0,50 - 1,65
Хром - Не более 0,3
Никель - Не более 0,3
Медь - Не более 0,3
Алюминий - 0,02 - 0,05
Титан - 0,005 - 0,03
Ванадий - 0,02 - 0,14
Ниобий - 0,015 - 0,060
Молибден - Не более 0,15
Кальций - 0,0003 - 0,05
Железо - Остальноео
RU2001111161A 2001-04-23 2001-04-23 Способ производства штрипсов из низколегированной стали RU2201972C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001111161A RU2201972C2 (ru) 2001-04-23 2001-04-23 Способ производства штрипсов из низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001111161A RU2201972C2 (ru) 2001-04-23 2001-04-23 Способ производства штрипсов из низколегированной стали

Publications (2)

Publication Number Publication Date
RU2001111161A RU2001111161A (ru) 2003-02-27
RU2201972C2 true RU2201972C2 (ru) 2003-04-10

Family

ID=20248876

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001111161A RU2201972C2 (ru) 2001-04-23 2001-04-23 Способ производства штрипсов из низколегированной стали

Country Status (1)

Country Link
RU (1) RU2201972C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409955C (zh) * 2006-09-29 2008-08-13 邯郸钢铁股份有限公司 一种csp薄板坯生产线冷轧供料的工艺方法
RU2458751C1 (ru) * 2011-02-25 2012-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали классов прочности к52-к60
RU2458754C1 (ru) * 2011-03-17 2012-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали класса прочности х70
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
CN110369519A (zh) * 2019-07-23 2019-10-25 唐山中厚板材有限公司 500MPa级低合金高强钢板的轧制过程板型控制方法
CN116060440A (zh) * 2023-03-06 2023-05-05 太原科技大学 一种镍基合金线材及其制备方法
RU2799194C1 (ru) * 2022-12-13 2023-07-04 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного толстолистового проката с повышенной огнестойкостью на реверсивном стане

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАТРОСОВ Ю.И. и др. Сталь для магистральных газопроводов. - М.: Металлургия, с.241-243, 271-273. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409955C (zh) * 2006-09-29 2008-08-13 邯郸钢铁股份有限公司 一种csp薄板坯生产线冷轧供料的工艺方法
RU2458751C1 (ru) * 2011-02-25 2012-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали классов прочности к52-к60
RU2458754C1 (ru) * 2011-03-17 2012-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали класса прочности х70
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
CN110369519A (zh) * 2019-07-23 2019-10-25 唐山中厚板材有限公司 500MPa级低合金高强钢板的轧制过程板型控制方法
RU2799194C1 (ru) * 2022-12-13 2023-07-04 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного толстолистового проката с повышенной огнестойкостью на реверсивном стане
CN116060440A (zh) * 2023-03-06 2023-05-05 太原科技大学 一种镍基合金线材及其制备方法
CN116060440B (zh) * 2023-03-06 2023-06-20 太原科技大学 一种镍基合金线材及其制备方法

Similar Documents

Publication Publication Date Title
CN109642286B (zh) 铁素体系不锈钢热轧退火钢板及其制造方法
RU2393239C1 (ru) Способ производства толстолистового низколегированного штрипса
EP3034643B1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
CN110546294B (zh) 铁素体系不锈钢热轧退火钢板及其制造方法
RU2675307C1 (ru) Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью
EP2123780A1 (en) Processes for production of steel sheets for cans
CN114981462B (zh) 钢板、部件及其制造方法
JP5353578B2 (ja) 穴広げ性に優れた高強度熱延鋼板及びその製造方法
RU2442831C1 (ru) Способ производства высокопрочной листовой стали
JP2010229514A (ja) 冷延鋼板およびその製造方法
RU2318027C1 (ru) Способ производства толстолистового проката
RU2201972C2 (ru) Способ производства штрипсов из низколегированной стали
JP2010126808A (ja) 冷延鋼板およびその製造方法
RU2500820C1 (ru) Способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов
JP4905031B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
RU2433191C1 (ru) Способ производства высокопрочной листовой стали
RU2341565C2 (ru) Способ производства штрипсов из низколегированной стали
RU2346060C2 (ru) Способ производства штрипсов
RU2292404C1 (ru) Способ производства полос для изготовления труб
RU2318881C2 (ru) Способ производства полос для изготовления обсадных труб
JP6179609B2 (ja) 冷間加工性に優れた厚肉高強度鋼板の製造方法
RU2241769C1 (ru) Способ производства штрипсов из низколегированной стали
EP4029962A1 (en) Hot rolled steel sheet for electroseamed steel pipe and method for producing same, electroseamed steel pipe and method for producing same, line pipe, and building structure
RU2262537C1 (ru) Способ производства штрипсов из низколегированной стали
JP2007177293A (ja) 超高強度鋼板およびその製造方法