RU2186399C2 - Ультразвуковое устройство для измерения скорости потока - Google Patents

Ультразвуковое устройство для измерения скорости потока Download PDF

Info

Publication number
RU2186399C2
RU2186399C2 RU99118675/28A RU99118675A RU2186399C2 RU 2186399 C2 RU2186399 C2 RU 2186399C2 RU 99118675/28 A RU99118675/28 A RU 99118675/28A RU 99118675 A RU99118675 A RU 99118675A RU 2186399 C2 RU2186399 C2 RU 2186399C2
Authority
RU
Russia
Prior art keywords
output
frequency
unit
amplifier
pulse
Prior art date
Application number
RU99118675/28A
Other languages
English (en)
Other versions
RU99118675A (ru
Inventor
Хак Соо ЧАНГ (KR)
Хак Соо ЧАНГ
Original Assignee
Чангмин Тек. Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19548267&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2186399(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Чангмин Тек. Ко., Лтд. filed Critical Чангмин Тек. Ко., Лтд.
Publication of RU99118675A publication Critical patent/RU99118675A/ru
Application granted granted Critical
Publication of RU2186399C2 publication Critical patent/RU2186399C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Устройство предназначено для измерения скорости большой реки или канала открытого шлюза. Два преобразователя расположены под углом к направлению потока и предназначены для передачи и приема ультразвукового сигнала. Блок коммутации соединен с преобразователями и связан с приемным и выходным усилителями. Генератор с частотной модуляцией соединен с выходным усилителем и с одновибратором. Одновибратор соединен с блоком генерации управляющих прямоугольных импульсов, который управляет одновременно и выходным коммутационным блоком. Между выходным усилителем и выходным коммутационным блоком подсоединен аттенюатор. Приемный усилитель передает принятый сигнал на частотный дискриминатор через выходной коммутационный блок. Частотный дискриминатор соединен через блок формирования импульса с блоком для измерения временного интервала. Обеспечивается повышение точности измерения. 3 ил.

Description

Область техники
Изобретение относится к технике для измерения скорости потока жидкости с использованием ультразвукового пучка и в частности к ультразвуковому измерительному устройству для измерения скорости течения большой реки или канала открытого шлюза.
Известный уровень техники
Обычный измеритель скорости потока способен измерить скорость потока на линии поперечного сечения более широкой калибровочной трубки с использованием ультразвукового пучка на линии поперечного сечения более широкой калибровочной трубки или открытого канала, по которому течет жидкость. В настоящее время скорость потока измеряется ультразвуковым дифференциальным способом следующим образом
Figure 00000002
(1)
где Δt = t12 и t21 равно времени, в течение которого ультразвуковой пучок передается под углом φ или наоборот в направлении движения жидкости, L обозначает интервал между двумя ультразвуковыми преобразователями, d равно Lcosφ и С обозначает скорость звука в жидкости (ниже вместо этого она называется скоростью передачи ультразвука).
Способ измерения скорости потока с использованием разности во времени прохождения ультразвука хорошо известен и он используется в большинстве ультразвуковых измерителей скорости потока. Другими словами, чтобы измерить времена прохождения ультразвука t12 и t21, измеряется время от момента передачи ультразвука до момента его приема. Если расстояние L между ультразвуковыми преобразователями сравнительно больше или в потоке жидкости возникают различного размера водовороты или завихрения, или концентрация взвесей в жидкости изменяется в реальной реке, звуковое давление ультразвукового пучка в точке приема сильно колеблется, так как ультразвуковой пучок отражается или диффундирует, или изменяется коэффициент затухания за счет поглощения.
Из описания к а.с. 769337, 07.10.1980, известен ультразвуковой измеритель скорости потока, содержащий два преобразователя, расположенных под определенным углом к направлению потока и предназначенных для передачи и приема ультразвукового сигнала, коммутатор, соединенный с преобразователями, генераторы управляющих импульсов, частотные дискриминаторы. В измерителе из а.с. разностный частотно-импульсный сигнал, несущий информацию о расходе или количестве измеряемой среды, поступает на вход индикаторного прибора только при наличии разрешающих логических уровней с частотных дискриминаторов. Но и в этом случае принятый сигнал может стать импульсом в форме колокола, потому что более высокого порядка синусоидальная составляющая ультразвукового пучка сильно поглощается. Для этой составляющей ошибка при приеме, доходящая до нескольких периодов ультразвукового пучка, обычно возникает при контроле момента приема ультразвукового пучка и не совсем редок случай не установления момента приема.
Чтобы не исказить форму принятого импульса при передаче и приеме ультразвукового пучка, используется широкополосный усилитель, но при этом усиливаются различные шумы. Особенно это вызывает затруднения при измерении времени передачи ультразвука из-за импульсных шумов.
Как упомянуто выше, из-за этих факторов в более широкой калибровочной трубке, в более широкой реке или канале открытого шлюза, было много случаев, когда время передачи ультразвука t12 и t21 не было точно измерено в точке приема. Также измеритель скорости потока для трубки сравнительно малого внутреннего диаметра может вызвать у датчика ультразвука ударное возбуждение. В это время эффективность преобразования электричества в ультразвуковые волны в значительной степени ухудшается.
В результате эти проблемы затрудняют измерение скорости потока ультразвуковым дифференциальным способом таким образом, чтобы ультразвуковой пучок передавался и принимался в канале открытого шлюза, имеющем большую ширину, и в реке. Использование такого ультразвукового измерителя скорости потока ограничено.
Чтобы решить эти проблемы и обеспечить преимущества, в основу изобретения положена задача создания устройства для измерения скорости потока ультразвуковым дифференциальным способом, в котором вместо ультразвуковых импульсов передаются и принимаются непрерывные ультразвуковые волны (синусоидальная волна) и измеряется их время прохождения.
Краткое описание изобретения
Ультразвуковое устройство для измерения скорости потока включает в себя два преобразователя, расположенные под определенным углом один к другому в направлении движения потока на участке, предназначенном для измерения скорости потока. Два преобразователя соединены через преобразовательный коммутационный участок с выходным усилителем. Усилитель соединен с генератором для модуляции частоты и генерации непрерывной волны определенной модулированной частоты. Генератор с частотной модуляцией соединен с одновибратором для генерации заданного частотного импульса, обеспечивающего работу генератора с частотной модуляцией. Одновибратор соединен с участком, генерирующим управляющие прямоугольные импульсы, обеспечивающие работу одновибратора в заданный период, а также управление выходным коммутационным участком, в котором выходной усилитель усиливает выходной сигнал от генератора с частотной модуляцией для подачи его в свою очередь на передающие преобразователи, при этом участок для генерации управляющих прямоугольных импульсов соединен одним входным выводом с принимающим усилителем, а другим своим входным выводом с аттенюатором для подавления выходного напряжения выходного усилителя, своим выходным выводом с частотным дискриминатором для определения момента частотной модуляции. Частотный дискриминатор соединен с участком для формирования импульса и придания своему выходу формы прямоугольного импульса. Участок для формирования импульса соединен с участком измерения временного интервала для замера временной разности между двумя импульсами от участка для формирования импульсов. Участок измерения временного интервала соединен с арифметико-логическим процессорным устройством для вычисления скорости потока.
Краткое описание чертежей
Изобретение теперь будет описано подробно со ссылкой на приложенные чертежи, в которых:
фиг. 1 изображает блок-схему, иллюстрирующую ультразвуковое устройство для измерения скорости потока в соответствии с изобретением;
фиг. 2 - диаграмму, иллюстрирующую работу ультразвукового устройства для измерения скорости потока в соответствии с изобретением; и
фиг. 3А и 3В - виды, иллюстрирующие частотную модуляцию ультразвукового пучка.
Подробное описание изобретения
Как показано на фиг.1 и 2, ультразвуковой передающий преобразователь 1 и ультразвуковой приемный преобразователь 2 расположены один против другого и электрически соединены с блоком 14 коммутации преобразователей, который связан с выходным усилителем 6 и приемным усилителем 7. Таким образом, чтобы привести в действие ультразвуковой передающий преобразователь 1, выходной усилитель 6 соединяют с генератором 3 с частотной модуляцией для генерации непрерывной волны определенной модулирующей частоты. Генератор 3 с частотной модуляцией соединен с одновибратором 4 для генерации импульса заданной частоты и для подачи его на генератор 3. Одновибратор 4 соединен с блоком 5 генерации управляющих прямоугольных импульсов, обеспечивающих работу одновибратора 4 в заданный период и одновременно управление блоком 8 выходной коммутации. Выходной усилитель 6 усиливает выходной сигнал от генератора 3 с частотной модуляцией для подачи его на передающий преобразователь 1. Аттенюатор 13 подсоединен между выходным усилителем 6 и блоком 8 выходной коммутации для подавления выходного напряжения усилителя 6. Приемный усилитель 7 подает усиленный принятый сигнал через блок 8 выходной коммутации на частотный дискриминатор 9. Блок 10 формирования импульса принимает выходное напряжение от блока 8 выходной коммутации для формирования его в виде прямоугольного импульса. Блок 11 для измерения временного интервала измеряет разность времени между двумя импульсами от блока 10 формирования импульсов. Арифметико-логическое процессорное устройство 12 вычисляет скорость потока с использованием ультразвукового дифференциального способа. Аттенюатор 13 соединен с блоком 8 выходной коммутации.
Ультразвуковое устройство для измерения скорости потока работает следующим образом.
Блок 5 для генерации управляющих прямоугольных импульсов генерирует длинный импульс T1 прямоугольной формы, имеющий заданный период, как показано на фиг. 2А. Одновибратор 4 работает у переднего фронта длинного прямоугольного импульса T1 для генерации прямоугольного импульса, имеющего период Т2, как показано на фиг.2 В. Генератор 3 с частотной модуляцией генерирует сигнал периодически изменяющейся частоты или синусоидальной частоты f, в котором частота колебаний f изменяется на частоту колебаний fо (равную f+Δf)) для периода Т2 прямоугольного импульса и затем возвращается к синусоидальной частоте f у заднего фронта прямоугольного импульса с периодом Т2, как показано на фиг. 2С, в котором частота fо является резонансной частотой преобразователей 1 и 2, а Δf является девиацией частоты. Затем частотно-модулированный генератор 3 подает свой выход на выходной усилитель 6, выходной усилитель 6 усиливает частотно-модулированный сигнал для подачи его через блок 14 коммутации преобразователей на передающий преобразователь 1. Передающий преобразователь 1 вводит ультразвуковой пучок в жидкость, как показано на фиг.2D. В то же самое время сигнал от выходного усилителя 6 вводится через аттенюатор 13 и блок 8 выходной коммутации в частотный дискриминатор 9. Таким образом частотный дискриминатор 9 генерирует выходное напряжение для частотно-модулированного периода Δf, показанного на фиг.2Е. Напряжение сигнала вводится в блок 10 формирования импульса для генерации импульса, как показано на фиг.2F.
Затем в момент, когда прямоугольный длинный импульс с периодом T1 достигает заднего фронта, блок 8 выходной коммутации и блок 14 коммутации преобразователей переключаются для ввода выходного сигнала от приемного усилителя 7 в частотный дискриминатор 9. Другими словами ультразвуковой пучок от передающего преобразователя 1 передается через жидкость в приемный преобразователь 2. Приемный преобразователь 2 срабатывает при приеме сигнала от передающего преобразователя 1, когда его выходной сигнал подается на приемный усилитель 7. Приемный усилитель 7 усиливает принятый сигнал, как показано на фиг. 2G для подачи его на частотный дискриминатор 9. Частотный дискриминатор генерирует сигнал, как показано на фиг.2Н, задействующий блок 10 формирования импульса. Блок 10 формирования импульса генерирует короткий импульс, как показано на фиг.2I, в котором выходные сигналы (фиг.2Е и Н) частотного дискриминатора 9 равны один другому и их время задержки τ, основанное на неустановившихся явлениях, становится одинаково.
Блок 11 для измерения временного интервала принимает короткие импульсы, как показано на фиг.2F и I, для измерения интервала времени t12 между ними и форма коротких импульсов определяется блоком 10 формирования импульсов, когда на него подается выходной сигнал частотного дискриминатора 9. Блок 11 для измерения временного интервала вводит сигнал временного интервала в арифметико-логическое процессорное устройство 12 для хранения его в ЗУ этого устройства 12. Следует заметить, что t12 является временем, в течение которого ультразвуковой пучок вынужден пройти от передающего преобразователя 1 до приемного преобразователя 2.
Когда заканчивается измерение времени прохождения ультразвука от передающего преобразователя 1 до приемного преобразователя 2, блок 14 коммутации преобразователей задействуется при заднем фронте импульсного сигнала от блока 5 для генерации управляющих прямоугольных импульсов, чтобы обеспечить передачу ультразвукового пучка от приемного преобразователя 2 до передающего преобразователя 1. Аналогичным образом измеряется время передачи ультразвука t21, чтобы ввести его в арифметико-логическое процессорное устройство 12.
Арифметико-логическое процессорное устройство 12 запоминает расстояние между двумя преобразователями L и расстояние d (равное Lcosφ), ранее введенное в ЗУ, и вычисляет скорость потока V по формуле (1) с использованием результатов по времени передачи ультразвука t12 и t21. Если намечено рассчитать скорость потока, расчетная скорость потока может быть введена в устройство для вычисления скорости потока.
Здесь следует заметить, что эффективность передающего преобразователя повышается от трех до пяти раз в случае использования ультразвукового импульса, потому что ультразвуковой импульс не передается и используется частотно-модулированная ультразвуковая синусоидальная волна. Интенсивность ультразвукового пучка также повышается. Что более важно, это поймать момент, когда изменяется частота принятого сигнала, а не факт регистрации амплитуды принятого сигнала для измерения времени передачи ультразвука. И исключается ошибка, вызванная определением времени задержки, потому что один частотный дискриминатор детектирует принимаемый и передаваемый сигналы.
Поэтому, даже если амплитуда принимаемого сигнала сильно меняется, принимаемый сигнал усиливается в достаточной степени. Например, принимаемый сигнал усиливается до состояния насыщения (которое достигает уровня входного допустимого напряжения частотного дискриминатора), чтобы его можно было ввести в частотный дискриминатор. Легко удалить шумы посредством полосового фильтра частотой fо~f, потому что синусоидальная волна передается и принимается непрерывно. Это также устраняет путаницу, возникающую при измерении времени передачи ультразвука в связи с тем, что используется широкополосный усилитель для исключения искажения волновой формы, если используется ультразвуковой пучок.
На фиг. 3 показана волновая форма выходного сигнала от приемного преобразователя. Разность между амплитудой а2 принятого сигнала на резонансной частоте fо и амплитудой a1 принятого сигнала на частоте f (равна f0+Δf или f0-Δf)) становится гораздо больше по мере того, как повышается девиация частоты. Но, если частота Δf/f0 приблизительно равна 0,1, разность между амплитудами a1 и а2 не становится значительно больше.

Claims (1)

  1. Ультразвуковое устройство для измерения скорости потока, включающее два преобразователя, расположенных под углом к направлению потока и предназначенных для передачи и приема ультразвукового сигнала, блок коммутации преобразователей, соединенный с преобразователями, блок генерации управляющих импульсов, частотный дискриминатор, отличающееся тем, что блок коммутации преобразователя связан с приемным усилителем и выходным усилителем, который соединяется с генератором с частотной модуляцией, с возможностью генерации непрерывной волны определенной модулирующей частоты, при этом генератор с частотной модуляцией соединен с одновибратором для генерации импульса заданной частоты и с возможностью подачи его на генератор с частотной модуляцией, причем одновибратор соединяется с блоком генерации управляющих прямоугольных импульсов, который выполнен с возможностью обеспечения работы одновибратора в заданный период и одновременного управления выходным коммутационным блоком, при этом выходной усилитель выполнен с возможностью усиления выходного сигнала от генератора с частотной модуляцией для подачи его на передающий преобразователь, а между выходным усилителем и выходным коммутационным блоком подсоединяется аттенюатор с возможностью подавления выходного напряжения выходного усилителя, при этом приемный усилитель выполнен с возможностью усиления принятого сигнала для подачи его через выходной коммутационный блок на частотный дискриминатор, который соединен с блоком формирования импульса с возможностью формирования выходного импульса прямоугольной формы, причем блок формирования импульса подсоединяется к блоку для измерения временного интервала, выполненного с возможностью измерения разности времени между двумя импульсами, и блок для измерения временного интервала подсоединяется к арифметико-логическому процессорному устройству вычисления скорости потока.
RU99118675/28A 1998-08-26 1999-08-25 Ультразвуковое устройство для измерения скорости потока RU2186399C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998/34534 1998-08-26
KR1019980034534A KR100276462B1 (ko) 1998-08-26 1998-08-26 초음파 유속측정 장치

Publications (2)

Publication Number Publication Date
RU99118675A RU99118675A (ru) 2001-07-20
RU2186399C2 true RU2186399C2 (ru) 2002-07-27

Family

ID=19548267

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99118675/28A RU2186399C2 (ru) 1998-08-26 1999-08-25 Ультразвуковое устройство для измерения скорости потока

Country Status (6)

Country Link
US (1) US6012338A (ru)
KR (1) KR100276462B1 (ru)
CN (1) CN1167953C (ru)
CA (1) CA2279239A1 (ru)
DE (1) DE19939391C2 (ru)
RU (1) RU2186399C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220816A (zh) * 2020-01-19 2020-06-02 中船重工海声科技有限公司 采用跳频信号的时差式超声波流速测量方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349504B1 (ko) 2000-04-24 2002-08-21 주식회사 창민테크 초음파 유속 측정장치
US7917321B2 (en) * 2008-02-25 2011-03-29 Daniel Measurement And Control, Inc. Method and system of determining a pattern of arrival time cycle skip in an acoustic flow meter
US7658114B1 (en) 2008-11-17 2010-02-09 General Electric Company Ultrasonic flow meter
CN102023298B (zh) * 2009-09-17 2013-06-05 建兴电子科技股份有限公司 设定超音波检测周期的方法及其装置
CN102109600B (zh) * 2009-12-24 2013-02-20 占志彪 一种基于超声波的移动物体检测方法
CN101726626B (zh) * 2009-12-29 2011-10-05 杭州电子科技大学 深海热液口速度场原位在线声学检测方法
CN101866165B (zh) * 2010-06-30 2012-02-22 清华大学 基于现场可编程门阵列的回波飞行时间测量方法
CN102455060B (zh) * 2010-10-18 2014-03-26 海尔集团公司 一种燃气热水器燃气的控制方法
RU2530832C1 (ru) * 2013-06-11 2014-10-20 Общество с ограниченной ответственностью "ЛОМО МЕТЕО" Ультразвуковой измеритель скоростей потока
CN104330120B (zh) * 2014-10-28 2017-09-19 姜跃炜 用于低能耗超声波流量表的流量检测方法及***
CN105629289B (zh) * 2015-12-29 2019-04-02 深圳大学 用于飞行时间测量***的重合信号产生方法和***
RU175145U1 (ru) * 2017-09-05 2017-11-27 Сергей Александрович Мосиенко Акустический анемометр
KR200490072Y1 (ko) 2018-04-05 2019-09-20 주식회사 대정알파 초음파 유량계의 보호 덮개 장치
CN110220976B (zh) * 2019-06-02 2022-04-15 朱爱华 一种基于调频连续波超声成像***及检测方法
CN115792273B (zh) * 2022-11-02 2024-02-23 清华大学 用于测量流体流速的方法、测流设备和计算机存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2431346A1 (de) * 1974-06-29 1976-02-12 Draegerwerk Ag Verfahren und vorrichtung fuer die messung der stroemungsgeschwindigkeit von medien mittels ultraschall
GB1602185A (en) * 1977-06-03 1981-11-11 Standard Telephones Cables Ltd Measuring fluid flow
US4203322A (en) * 1977-09-29 1980-05-20 E. I. Du Pont De Nemours And Company Apparatus for the ultrasonic measurement of the flow velocity of fluent media
US4145925A (en) * 1978-01-09 1979-03-27 Medtronic, Inc. Digital liquid velocity measuring system
DE2963483D1 (en) * 1978-07-22 1982-09-30 Robert James Redding Fluid flow measuring apparatus
US4262545A (en) * 1979-03-21 1981-04-21 The Bendix Corporation Acoustic fluid velocity measuring system
IT1144295B (it) * 1981-07-10 1986-10-29 Fiat Ricerche Dispositivo ultrasonico per la misura della portata di un fluido in un condotto
GB8430217D0 (en) * 1984-11-30 1985-01-09 Redding R J Electronic gas meter
US4787252A (en) * 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
DE4322849C1 (de) * 1993-07-08 1994-12-08 Sick Optik Elektronik Erwin Verfahren zur Bestimmung der Laufzeit von Schallsignalen und Schallwellen-Laufzeit-Bestimmungsvorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220816A (zh) * 2020-01-19 2020-06-02 中船重工海声科技有限公司 采用跳频信号的时差式超声波流速测量方法
CN111220816B (zh) * 2020-01-19 2022-04-08 中船重工海声科技有限公司 采用跳频信号的时差式超声波流速测量方法

Also Published As

Publication number Publication date
US6012338A (en) 2000-01-11
CA2279239A1 (en) 2000-02-26
KR20000014902A (ko) 2000-03-15
DE19939391C2 (de) 2002-09-05
CN1167953C (zh) 2004-09-22
KR100276462B1 (ko) 2000-12-15
CN1247985A (zh) 2000-03-22
DE19939391A1 (de) 2000-03-09

Similar Documents

Publication Publication Date Title
RU2186399C2 (ru) Ультразвуковое устройство для измерения скорости потока
JP3028723B2 (ja) 超音波式流体振動流量計
US4468971A (en) Ultrasonic flowmeter for clean and dirty fluids
JP2019502119A (ja) 改良型ビーム整形音響信号伝搬時間差式流量計
JP2000111374A (ja) 超音波流速測定方法と装置
KR100298474B1 (ko) 초음파유속측정방법
RU2000125676A (ru) Передающая и приемная схема для ультразвукового расходомера
US3727454A (en) Ultrasonic systems for carrying out flow measurements in fluids
US6842716B1 (en) Method and apparatus for measuring the propagation time of a signal, in particular a ultrasonic signal
US4391150A (en) Electro-acoustic flowmeter
US3623363A (en) Ultrasonic flowmeter
JP2003014515A (ja) 超音波流量計
JP3215847B2 (ja) 流速測定方法
JPH0361892B2 (ru)
JPH0117090B2 (ru)
US4183245A (en) Synchronous frequency-to-voltage converter for doppler apparatus
JPH08233624A (ja) 超音波式流体振動流量計
JP2760079B2 (ja) 超音波センサ
JPH0324607B2 (ru)
JPS58176522A (ja) 超音波流速計
RU2190191C1 (ru) Ультразвуковой импульсный расходомер
JP2723291B2 (ja) 超音波センサ
RU2091716C1 (ru) Вихревой расходомер
RU2073830C1 (ru) Способ измерения расхода жидких и газообразных сред
SU735922A1 (ru) Коррел ционный измеритель скорости потока

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050826