RU2179537C2 - Стеклопанель, содержащая прозрачную функциональную пленку, сопло для осаждения пленки из газовой фазы и способ формирования пленки с помощью этого сопла - Google Patents

Стеклопанель, содержащая прозрачную функциональную пленку, сопло для осаждения пленки из газовой фазы и способ формирования пленки с помощью этого сопла Download PDF

Info

Publication number
RU2179537C2
RU2179537C2 RU97105847/03A RU97105847A RU2179537C2 RU 2179537 C2 RU2179537 C2 RU 2179537C2 RU 97105847/03 A RU97105847/03 A RU 97105847/03A RU 97105847 A RU97105847 A RU 97105847A RU 2179537 C2 RU2179537 C2 RU 2179537C2
Authority
RU
Russia
Prior art keywords
film
refractive index
glass
oxide
glass panel
Prior art date
Application number
RU97105847/03A
Other languages
English (en)
Other versions
RU97105847A (ru
Inventor
Буар Филип
Загдун Жорж
Original Assignee
Сэн-Гобэн Витраж
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэн-Гобэн Витраж filed Critical Сэн-Гобэн Витраж
Publication of RU97105847A publication Critical patent/RU97105847A/ru
Application granted granted Critical
Publication of RU2179537C2 publication Critical patent/RU2179537C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/91Coatings containing at least one layer having a composition gradient through its thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Details Of Aerials (AREA)
  • Liquid Crystal (AREA)
  • Chemical Vapour Deposition (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Предмет изобретения - стеклопанель, содержащая прозрачную подложку 1, преимущественно выполненную из стекла и снабженную по крайней мере одной функциональной проводящей и/или с низкой эмиссионной способностью прозрачной тонкой пленкой 3. Чтобы улучшить оптический и, главным образом, колориметрический внешний вид стеклопанели, между подложкой 1 и функциональной пленкой 3 помещена по крайней мере одна промежуточная пленка 2. Эта по крайней мере одна промежуточная пленка имеет градиент показателя преломления, убывающий по толщине. Промежуточная пленка включает по меньшей мере два компонента с различными показателями преломления. Компонент с высоким показателем преломления основан на оксиде олова, титана, циркония, алюминия, магния, ванадия, нитриде кремния или оксикарбиде кремния. Компонент с низким показателем преломления основан на оксиде кремния, оксинитриде кремния или оксикарбиде кремния. Панель также может быть снабжена защитной пленкой. Изобретение также относится к способу формирования пленки и устройству в виде сопла, предназначенному для производства стеклопанели такого типа, а именно для осаждения пленки из газовой фазы. Сопло включает инжекционные щели для подачи газообразных полупродуктов, имеющих разный состав, и для откачки вытекающего потока газов, расположенные таким образом, чтобы образовать U-образный поток газов над лентой стекла. Технический результат изобретения - улучшение оптического внешнего вида стеклопанели и разработка способа ее производства. 3 с. и 15 з.п.ф-лы, 4 табл. 7 ил.

Description

Изобретение относится к стеклопанели, содержащей стеклянную подложку, снабженную функциональной тонкой пленкой, причем последняя имеет свойства прозрачности, электропроводности и/или низкой эмиссионной способности.
Оно также относится к процессам для получения такой стеклопанели, в частности, посредством пиролиза или технологий, использующих вакуум.
Этот тип функциональной пленки главным образом применим для стеклопанелей, предназначенных для зданий: стеклянная подложка, покрытая пленкой с низкой эмиссионной способностью, позволяет снизить эмиссию через стеклопанель в дальней инфракрасной области, из которой она образует часть излучения, выходящую изнутри помещения наружу. Комфорт жителей заметно улучшается, главным образом зимой, путем снижения потерь энергии, частично обусловленных такой утечкой радиации. Подложка, покрытая таким образом и затем объединенная с другой подложкой через слой газа, и пленка с низкой эмиссионной способностью, расположенная как поверхность 3 (рассматривая с наиболее удаленной от центра поверхности), составляют очень эффективное изолирующее двойное застекление.
Эти пленки из-за их электропроводности также применимы для стеклопанелей, предназначенных для автомашин, например, чтобы создавать нагреваемые окна, обеспечивая подведение тока.
Пленки металлических оксидов, проявляющих такие свойства, представляют собой, например, слои окиси индия, легированной оловом (ITO), или окиси цинка, легированной алюминием (Al: ZnO), окиси цинка, легированной индием (In: ZnO), окиси цинка, легированной оловом (Sn: ZnO), окиси цинка, легированной фтором (F: ZnO), или окиси олова, легированной фтором (F: SnО2).
Эти металлические окисные пленки могут быть получены различными процессами: вакуумными процессами (тепловым испарением или напылением, возможно используя магнетрон), или пиролизом металлорганических соединений, распыляемых в жидкой, твердой или газообразной форме с помощью рабочего газа на поверхность стеклянной подложки, нагретой до высокой температуры, но которая тем не менее меньше температуры размягчения стекла. Эти соединения, приведенные таким образом в контакт с горячей поверхностью, разлагаются, окисляясь так, чтобы образовать пленку металлического оксида на этой поверхности. Последняя технология наиболее выгодна, постольку поскольку она позволяет предусмотреть непрерывное осаждение непосредственно на ленте из стекла в производственной линии поточного типа.
Однако чтобы достичь высокого уровня качества для этих пленок, главным образом с точки зрения значений эмиссионной способности и/или электропроводности, их толщина должна быть по крайней мере 180 нм или в действительности больше чем 400 нм, а обычно между 350 и 550 нм. Тонкая пленка, имеющая такие толщины, придает подложке, которую она покрывает, внешний вид в отраженном свете, главным образом окрашивание, что не может иметь высокую оценку с эстетической точки зрения.
Таким образом, возникает проблема внешнего вида в отраженном свете и, более конкретно, приобретенного остаточного окрашивания подложки, покрытой таким образом. Вот почему в соответствии с изложением патента ЕР-В-0125153 пленка из окиси олова, легированной фтором F: SnO2, толщина которой только приблизительно составляет от 163 до 165 нм, осажденная на прозрачной подложке листового стекла толщиной 4 мм, дает последней окрашивание в отраженном свете в голубых тонах, т.е. окрашивание, которое в настоящее время высоко ценится как в строительстве зданий, так и в производстве автомашин. С другой стороны, замечено, что пленка такого же типа, но в то же время имеющая толщину 360 нм, и следовательно, пленка, имеющая превосходящее качество, дает той же самой подложке внешний вид в отраженном свете "со стороны пленки" в зелено-фиолетовых тонах, т. е. цвет, который не очень желателен по эстетическим причинам.
Различные технические решения, направленные на улучшение оптического внешнего вида стеклопанелей, снабженных функциональными пленками, имеющими такие характеристики, уже предлагались. Так в европейской патентной публикации ЕР-А-0573325 так называемое "промежуточное" покрытие вводится между подложкой и функциональной пленкой, причем оптическая толщина этого покрытия соответственно выбирается так, чтобы получить остаточный цвет в отраженном свете, который находится в голубых тонах и, более того, не очень интенсивный. Имея в виду такую же цель, описание патентной публикации WO-94/25410 предлагает на этот раз поместить функциональную пленку между двумя покрытиями, одно называемое "внутренним" покрытием и другое называемое "внешним" покрытием; комбинация выбора характеристик толщины и показателя преломления этих двух покрытий расширяет рамки точной корректировки колориметрического внешнего вида стеклопанели в отраженном свете.
Известна также стеклопанель, содержащая прозрачную подложку, преимущественно выполненную из стекла, снабженную по меньшей мере одной функциональной проводящей и/или с низкой эмиссионной способностью прозрачной тонкой пленкой, между которыми помещена по меньшей мере одна промежуточная пленка, имеющая убывающий по ее толщине показатель преломления от значения, близкого к показателю преломления функциональной пленки до значения, близкого к показателю преломления подложки с обеспечением улучшения оптической и преимущественно колориметрической характеристик стеклопанели (см. ЕР, А 0519690).
Известен способ формирования пленки с помощью сопла, описанный в US, A4293326, при котором газообразную смесь подают в первую инжекционную щель, дополнительно подают вторую газообразную смесь через вторую инжекционную щель, так что газовые потоки, исходящие из этих первой и второй щелей, текут по стеклу в зону осаждения в виде безвихревого потока, за исключением того места на выходе второй инжекционной щели, в котором создают область возмущения, чтобы активировать взаимную диффузию двух газовых потоков.
Задачей изобретения является создание стеклопанели, представляющей собой многослойный блок тонких пленок, включающий функциональные пленки, проявляющие хорошие тепловые/электрические свойства и внешний вид в отраженном свете, приятный для глаз настолько, насколько это возможно, и главным образом, имеющие в отраженном свете цвет не очень интенсивный, чуть-чуть отражающий и стойкий и эстетически приятный, а также создать способ получения такой стеклопанели и сопло для осуществления этого способа.
Также предметом изобретения является разработка процесса для производства этих стеклопанелей, так же как и завода, необходимого для его реализации.
Предмет изобретения - во-первых, стеклопанель, содержащая прозрачную подложку, в частности, сделанную из стекла, снабженную по крайней мере одной функциональной прозрачной тонкой пленкой. В рамках изобретения под "функциональной" пленкой подразумевается пленка, обладающая свойствами электропроводности и/или тепловыми свойствами, и особенно свойством низкой эмиссионной способности. Чтобы улучшить оптический внешний вид стеклопанели, главным образом по отношению к колориметрии, по крайней мере одна так называемая "промежуточная" пленка помещается между подложкой и этой функциональной пленкой, эта по крайней мере одна промежуточная пленка имеет убывающий градиент показателя преломления по толщине. Под "убывающим градиентом" в рамках изобретения подразумевается тот факт, что показатель преломления пленки убывает по толщине прогрессивно по мере удаления от поверхности несущей подложки.
В соответствии с предпочтительным вариантом воплощения, кроме того, на функциональной пленке осаждается по крайней мере одна так называемая "внешняя" тонкая пленка, показатель преломления и геометрическая толщина которой выбраны так, чтобы способствовать улучшению оптического внешнего вида стеклопанели в комбинации с промежуточной пленкой.
Удивительно, но фактически оказалось, что вложение между подложкой и функциональной пленкой пленки, показатель преломления которой прогрессивно убывает, имело чрезвычайно положительное влияние на внешний вид стеклопанели в отраженном свете как с чисто эстетической точки зрения, так и с точки зрения производства: с одной стороны, стеклопанель в соответствии с изобретением имела приятный цвет в отраженном свете "со стороны пленок", и, более конкретно, в голубом диапазоне; этот цвет сильно ослаблялся "при разбавлении белым" и, кроме того, был лишен любого отблеска, поскольку это связано с наиболее желательным значением отражения света. Эти эффекты "антиотражения" (просветления) и "антицвета" - кроме того, подчеркиваются присутствием "внешнего" покрытия, упомянутого выше.
Однако более того, было замечено, что эта промежуточная пленка, характерная для изобретения, позволила улучшить как стабильность, так и однородность внешнего вида стеклопанели в отраженном свете.
Это потому, что, как известно, в зависимости от выбранного способа производства осаждения тонкой пленки задаются такие допуски по толщинам пленок, за пределами которых глаз очень точно воспринимает вариации во внешнем виде между одной стеклопанелью и другой или между одной областью стеклопанели и другой. Эти вариации вызваны интерференцией за счет неравномерности толщины пленок и, главным образом, толщины функциональной пленки. Однако оказалось, что промежуточная пленка, характерная для настоящего изобретения, в значительной степени ослабляет эти вариации во внешнем виде, что позволяет, в зависимости от того, какой способ осаждения выбран, значительно снижать количество отходов стеклопанели после осаждения пленок, обусловленных радужностью (цветами побежалости) или дефектами в оптическом внешнем виде, или, наоборот, позволяет принимать менее жесткие производственные допуски по толщинам пленок, что выгодно с точки зрения качества стеклопанелей или рентабельности их изготовления.
Преимущественно полная вариация показателя преломления по толщине промежуточной пленки в соответствии с изобретением выбирается со значением, по крайней мере равным 0,2, и главным образом между 0,25 и 0,80.
Таким образом, самый низкий показатель преломления в этом градиенте показателя находится предпочтительно между 1,45 и 1,60, в то время как самый высокий показатель преломления - предпочтительно между 1,70 и 2,35. Разница между самым низким показателем и самым высоким показателем фактически должна выбираться относительно большой, чтобы получить выгоды от изобретения оптимальным способом.
Предпочтительный способ получения такого градиента показателя состоит в уменьшении показателя преломления промежуточной пленки от значения, близкого к показателю преломления функциональной пленки, до значения, близкого к показателю преломления подложки.
Что касается геометрической толщины промежуточной пленки, то она выбирается предпочтительно между 30 и 120 нм, например, между 40 и 120 нм, главным образом, между 45 и 90 нм или между 50 и 100 нм. Фактически толщина должна быть достаточной для того, чтобы действительно создавать градиент показателя преломления.
Имеются различные возможные способы создания такого градиента показателя преломления. Простейший из них это получить его, прогрессивно изменяя химический состав промежуточной пленки по толщине, главным образом, смешивая по крайней мере два компонента, имеющих различные показатели преломления, причем количество компонента или смеси компонентов, имеющих самый высокий показатель преломления (или показатели), постепенно уменьшается по толщине. Выбор этих компонентов, например, может быть следующим: для компонентов с низким показателем подходят окись кремния, оксинитрид кремния или оксикарбид кремния, а для компонентов с высоким показателем подходят окись олова, окись титана, окись циркония, окис алюминия, окись магния, окись ванадия, оксикарбид кремния или нитрид кремния или смесь, по крайней мере, двух из этих соединений.
Этот градиент может быть получен использованием вакуумной техники или пиролизом, главным образом, пиролизом в газовой фазе. Чтобы сделать это, в соответствии с изобретением разработано подходящее сопло подачи газа. Это сопло размещается над стеклом, перпендикулярно к направлению движения, когда стекло выступает в форме ленты листового стекла, и предпочтительно размещается внутри действующей камеры лодочки для вытягивания стекла. Оно включает в себя первую входную "лапку", вторую входную "лапку", центральный профилированный блок и выходную "лапку". Первая инжекционная щель газового полупродукта делается между двумя верхними "лапками", а вторая инжекционная щель делается между центральным блоком и нижней "лапкой". Щель для откачки вытекающего потока остаточного газа обеспечивается между центральным профилированным блоком и выходной "лапкой". Таким образом, все эти щели и нижние поверхности "лапок" и центрального блока направляют газовые потоки, поставляемые двумя инжекционными щелями, по стеклу в зоне осаждения, с траекторией потока, имеющей приблизительную форму U. Для того чтобы создать парциальное (частичное) и прогрессивное смешивание между этими двумя газовыми потоками в зоне осаждения и, таким образом, создавать желательный градиент состава, корректируются некоторые геометрические параметра сопла. Два важных параметра представляют собой, с одной стороны, расстояние 1 между инжекционными щелями и, с другой стороны, относительные конфигурации двух входных "лапок" и центрального блока. Следовательно, чтобы достичь желательного эффекта, предпочтительный вариант воплощения состоит в том, что нижняя поверхность центрального блока находится на более высоком уровне, чем нижняя поверхность второй соседней с ним входной "лапки", и нижняя поверхность этой второй входной "лапки" сама по себе находится на более высоком уровне, чем нижняя поверхность первой входной "лапки".
Что касается расстояния 1 между двумя щелями, то в большинстве случаев его выгодно выбирать равным до 3/4 от полной длины зоны осаждения, главным образом, приблизительно от 1/4 до 2/3 от упомянутой длины.
Чтобы получить желательный убывающий градиент показателя преломления для изготовления промежуточной пленки в соответствии с изобретением, необходимо затем подавать в первую инжекционную щель химическую активную смесь, которая производит пиролиз, в виде оксида с заданным наибольшим показателем преломления (ТiO2, SnO2, ZrО2, MgO, V2O5, SiOxCy, Si3N4, смесь по крайней мере двух из этих оксидов или, по крайней мере, одного из этих оксидов с Аl2O3) и во вторую инжекционную щель подавать химически активную смесь, производящую пиролиз, в виде оксида, имеющего наименьший показатель (такого как SiO2).
Конечно, с другой стороны, если это требуется, необходимо обратить ситуацию, чтобы получать растущий градиент показателя преломления.
Изобретение также имеет отношение к процессу, в котором применяется такое сопло, и к стеклопанелям, полученным упомянутым процессом.
Что касается так называемой "внешней" тонкой пленки, упомянутой ранее, лежащей над функциональной пленкой, то она предпочтительно выбирается имеющей показатель преломления между 1,4 и 1,7 и геометрическую толщину между 70 и 120 нм. Это потому, что с такими характеристиками получается оптимальный оптический внешний вид, главным образом, наибольшее снижение отражения света RL и, следовательно, поэтому наибольший рост пропускания света TL. Чтобы сформировать эту пленку, можно выбирать различные диэлектрические материалы, главным образом, на основе по крайней мере одного из следующих компонентов: окиси кремния, оксинитрида кремния, оксикарбида кремния, окиси алюминия или смеси окиси кремния и окиси алюминия, также содержащей галогенид типа фтора.
Для того чтобы изготовить такую пленку, можно обратиться к технологии вакуумного осаждения, главным образом, технологии напыления химически активного или неактивного типа. Также возможно использовать технологию пиролиза, более конкретно, в газовой фазе, также называемое CVD ("осаждение из газовой фазы"), главным образом для непрерывного осаждения на листовом стекле, используя кремнийорганические промежуточные соединения, объединенные с окислительным газом типа кислорода (или любым другим более слабо окисленным газом, таким как Н2O или N2O) в инертном разбавляющем газе типа азота, таком как диэтилсилан (двухэтиловый кремневодород) Si (СН3)2Н2, гексаметилдисилан (СН3)3-Si-Si(СН3)3, тетраэтилортосиликат Si(OC2H5)4, гексаметилдисилоксан (СН3)3-Si-O-Si(СН3)3, октаметилциклотетрасилоксан ((СН3)2SiO)3, тетраметилциклотетрасилоксан (СН3НSiO)4, так же как гексаметилдисилазан или тетраметилсилан, и/или используя известные металлорганические полупродукты (промежуточные соединения), главным образом имеющие функциональную группу алкоксида (алкоголята) или (β -дикетона). Возможно также воспользоваться технологией осаждения, использующей пиролиз порошка или жидкой фазы. Для более подробного рассмотрения схемы (структуры) и способов получения этой "внешней" пленки, можно сделать соответствующую ссылку на вышеупомянутое описание патента РСТ WO-94/25410 и на описание французского патента FR-94/13911, соответствующего европейскому патенту ЕР-0712815.
Функциональная пленка в соответствии с изобретением представляет собой, например, пленку типа тех, которые описаны в вышеупомянутых описаниях патентных публикаций. Таким образом, она в основном имеет показатель преломления приблизительно от 1,8 до 2, и, чтобы гарантировать достаточный уровень исполнения относительно тепловых и электрических параметров, геометрическая толщина должна составлять по крайней мере 300 нм, и, главным образом, между 350 и 550 нм. Она может быть основана на оксидах, легированных металлами, например, типа: окиси индия, легированной оловом ITO, или окиси олова, легированной фтором F: SnO2, окиси цинка, легированной индием In: ZnO, окиси цинка, легированной фтором F: ZnO, окиси цинка, легированной алюминием А1: ZnO, или окиси цинка, легированной оловом Sn: ZnO.
Такая пленка может быть изготовлена, используя технику вакуумного осаждения типа химически активного или неактивного напыления или посредством технологии пиролиза, главным образом пиролиза мелкодисперсных соединений, в частности, когда пленка сделана из F: SnO2 или из ITO, предпочтительно осуществлять это непрерывно, непосредственно на ленте листового стекла.
При использовании пиролиза порошка можно изготовить пленки F:SnO2, используя дибутилоксид олова (DBTO) в виде порошка и газообразную безводную фтористоводородную (плавиковую) кислоту, как описано в патенте FR-2380997, используя дибутилдифтор олова (DBTF), возможно как смесь с дибутилоксидом олова DBTO, как описано в документе ЕР-А-178,95 или ЕР-А-039,256.
Что касается пленок ITO, они могут быть получены, например, при использовании формиата индия и соединения олова, такого как DBTO, описанное в документе ЕР-А-192009.
Также можно получить пленки F: SnO2 осаждением из газовой фазы или CVD, главным образом, используя смесь соединений олова, таких как ((СН)3)2 SnCl2, (C4H9)2SnCl2, Sn(С2Н5)4 и фторорганические соединения, такие как CCl2F2, CHClF2 и СН3СНF2, как изложено в описании патента ЕР-А-027403, или еще используя монобутилтрихлор олова и соединение такое, как хлоридфторметан, упомянутое в описании патента ЕР-А-121459, или тетрахлорид олова SnCl4.
Пленки F: SnO2 можно также получать в жидкой фазе, используя ацетилацетонат олова или диметил-2-пропионат олова в подходящем органическом растворителе, как в общем описано во французском патенте FR-2211411.
Пленки окиси цинка, легированной индием или алюминием, можно также получать осаждением из газовой фазы, используя диэтилцинк или ацетат цинка, и триэтилиндий, хлорид индия или триэтилалюминий, хлорид алюминия, как описано в патентной публикации ЕР-А-385769.
С промежуточной пленкой, в соответствии с изобретением возможно объединенной с внешней пленкой, многослойные блоки тонких пленок в соответствии с изобретением, следовательно, проявляют очень высокое качество с тепловой, эстетической и оптической точки зрения. Полученные стеклопанели проявляют высокое пропускание (коэффициент пропускания), например, хотя бы 75%, и главным образом по крайней мере от 80 до 85%; низкое отражение (коэффициент отражения); остаточное окрашивание в отраженном свете "со стороны пленки" в голубых тонах; цветонасыщенность С* остаточного окрашивания в колориметрической системе (L*, а*, b*) в большинстве случаев равна 5. И наконец, эмиссионная способность стеклопанели значительно снижается, и ее значения ε в большинстве случаев равны 0,18.
Когда они устанавливаются в качестве двойного застекления, тогда они достигают значений прозрачности по крайней мере 70%.
Монолитные подложки, если они покрыты в соответствии с изобретением, могут с успехом внедряться в многослойные стеклопанели или в изолирующее многократное остекление типа двойного застекления. В последнем случае подложка с ее пленками помещается в двойные рамы так, что когда они устанавливаются в качестве витрины здания, пленки находятся на поверхности 3 (поверхности подложек во всех типах многократного застекления традиционно обозначаются, считая снаружи внутрь).
Как уже упоминалось, любой тип технологии осаждения может использоваться для нанесения функциональной пленки, промежуточной пленки и, возможно, внешней пленки. В частности, по крайней мере одна из пленок, когда она основана на металлической окиси(ях), может быть нанесена с помощью вакуумной техники, главным образом напылением, возможно химически активным напылением в присутствии кислорода, используя мишени, сделанные из металлического сплава или из керамики подходящих составов.
Однако, как уже упоминалось, для нанесения по крайней мере одной из пленок предпочитается использовать технологию пиролиза твердой, жидкой или газовой фазы, поскольку этот тип технологии позволяет производить непрерывное осаждение на ленте стекла.
Таким образом, предпочтительный вариант воплощения для получения многослойного блока в соответствии с изобретением состоит в том, что: первое осаждение промежуточной пленки осуществляется с помощью CVD (осаждения из газовой фазы) на ленте стекла в камере для вытягивания стекла; затем наносится функциональная пленка с помощью CVD, главным образом также в камере для вытягивания стекла, или с помощью пиролиза мелкодисперсных соединений между камерой для вытягивания стекла и отжигающим лером; и наконец наносится внешний слой либо с помощью CVD до отжигающего лера или в отжигающем лере, либо с помощью пиролиза порошка(-ов) сразу же после осаждения функциональной пленки.
В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения, не ограничивающих изобретение, со ссылками на сопроводительные чертежи, на которых:
- фиг.1 изображает поперечное сечение стеклянной подложки с покрытием в соответствии с изобретением,
- фиг. 2 изображает поперечное сечение сопла CVD, приспособленного для осаждения промежуточной пленки с меняющимся показателем преломления в соответствии с изобретением,
- фиг. от 3 до 5 изображают спектры SIMS (масс-спектроскопия вторичных ионов) промежуточных пленок в соответствии с изобретением,
- фиг. 6 и 7 изображают графики градиентов показателя преломления и химических составов промежуточных пленок в соответствии с изобретением.
Следует отметить, что и фиг.1, и фиг.2 представляют собой схематические изображения и соответственно не соблюдают абсолютно точно относительные пропорции между различными иллюстрируемыми материалами/элементами, чтобы сделать их более простыми для восприятия.
Примеры от 1 до 7
Примеры от 1 до 7 представлены в соответствии с изобретением и являются результатом математического моделирования. Они моделируют в соответствии с фиг. 1 абсолютно точно подложку, сделанную из прозрачного известково-натриевого силикатного стекла толщиной 4 мм. Она покрыта пленкой 3 на основе F: SnО2, с низкой эмиссионной способностью, полученной известным способом с помощью пиролиза порошка, используя DBTF (дибутилдифтор олова), как описано в вышеупомянутых патентах, и затем внешней пленкой 4, основанной на смешанной окиси кремния и алюминия, также с фтором, эта пленка также получается известным способом CVD с использованием (TEOS) тетраэтилортосиликата, гексафторацетилацетоната алюминия и кислорода в соответствии с изложением французского описания FR-94/13911, опубликованного под номером FR-2 727107, соответствующего патенту ЕР-0712815. Между подложкой 1 и функциональной пленкой 3 помещается промежуточная пленка 2, имеющая убывающий градиент показателя преломления, то есть показатель преломления которой прогрессивно убывает по толщине в направлении от поверхности раздела со стеклом 1 к поверхности раздела с пленкой F: SnО23. Чтобы получить такой градиент, химический состав пленки постепенно изменяется по толщине, эта пленка, состоящая из смеси окисей, у которой пропорция компонентов, имеющих самый высокий показатель преломления (или показатели), прогрессивно убывает. Чтобы это сделать, выбрана технология осаждения из газовой фазы (CVD), применяющая сопло подачи, которое иллюстрируется на фиг.2 и подробно описывается впоследствии, с использованием подходящих кремниевых и металлорганических полупродуктов (промежуточных соединений). Компонентом с низким показателем преломления промежуточной пленки 2 в этом случае является окись кремния, и ее газообразный полупродукт может быть выбран главным образом из тетраэтилортосиликата (TEOS), силана Si N4 или тетраметилсилана Si (СН3)4, который (которые) соединяется с окислительным полупродуктом типа О2, N2 или Н2О.
Компоненты с более высоким показателем могут быть сделаны из окиси олова, используя монобутил трихлорид олова или дибутил диацетат олова в качестве газообразных полупродуктов; из окиси титана, используя алкоксид титана типа тетраизопропилата титана в качестве полупродуктов; из окиси циркония, используя ацетилацетонат циркония типа гексафторацетилацетоната циркония, или тетрабутоксида циркония в качестве газообразных полупродуктов; или наконец окиси алюминия, используя ацетилацетонат алюминия или гексафторацетилацетонат алюминия в качестве газообразных полупродуктов. Окись магния MgO может также использоваться, в этом случае применяется газообразный полупродукт типа ацетилацетоната магния, этилата магния, гексафторацетоната магния или трифторацетилацетоната магния. Также возможно выбрать окись ванадия V2O5, которая может быть получена из алкоксида ванадия, такого как тетраэтилат ванадия, или из галогенида, такого как VCl5, или оксихлорида, такого как VOCl3. Также может использоваться оксикарбид кремния SiOxCy, показатель преломления которого корректируется путем изменения содержания углерода.
В частности, когда молярное отношение C/Si больше чем 0,5, оксикарбид кремния имеет высокий показатель преломления, и когда молярное отношение C/Si ниже чем 0,5, это же соединение обладает низким показателем преломления.
Полупродуктами могут быть главным образом смесь силана, этилена и окислительного агента типа О2, Н2О или N2O. Наконец, также может быть выбран нитрид кремния Si3N4, который может быть получен из газообразной смеси силана и аммиака и/или амина.
Вариант воплощения, использованный для этих примеров, представляет собой двухкомпонентную систему, в которой состав промежуточной пленки изменяется от состава, близкого к окиси олова, до состава, близкого к окиси кремния.
Однако другая двухкомпонентная система типа SiO2/MgO, SiO2/V2O5, SiO2/TiO2, SiO2/ZrO2, SiO2/SiOхСу или SiO2/SiC также пригодна, как и трехкомпонентная система, которая начинается, например, со смеси Аl2О3/TiO2, близкой к стеклу, чтобы закончить составом типа SiO2.
Во всех этих примерах функциональная пленка 2 имеет геометрическую толщину 410 нм, и внешняя пленка 4 имеет геометрическую толщину приблизительно 93 нм.
Нижеследующая табл. 1 резюмирует для каждого из этих примеров геометрическую толщину t промежуточной пленки, полную вариацию показателя преломления по толщине, обозначенную Δri, а также ее самый низкий показатель, близкий к функциональной пленке 3, обозначенный ri (мин), и ее самый высокий показатель со стороны, смежной с подложкой, обозначенный ri (макс).
Данные, объединенные (сравниваемые) в нижележащей табл. 2, представляют собой спектрофотометрические данные, измеренные с использованием источника света D65, в отношении ко всем покрытым подложкам в соответствии с этими примерами. Используемые сокращения, которые резюмируют колориметрические свойства подложек в отраженном свете со "стороны пленок", имеют следующие значения:
- а*, b* являются коэффициентами в колориметрической системе (L*, а*, b*);
- С*, в этой же системе, значение цветонасыщенности, равное (а*2+b*2)1/2;
- •ΔC* является наблюдаемой вариацией цветонасыщенности при варьировании толщины функциональной пленки 2 на ±50 нм относительно среднего значения 410 нм.
Все покрытые подложки в соответствии с примерами, кроме того, имеют высокий коэффициент пропускания TL - приблизительно 86% и низкий коэффициент отражения света со "стороны пленок" - приблизительно от 4 до 5%.
Сравнительные примеры 8 и 9
Эти два сравнительных примера моделируют подложку 1, функциональную пленку 3 и внешнюю пленку 4, имеющую те же самые характеристики, как в предыдущих примерах.
С другой стороны, в случае примера 8 промежуточная пленка 2 состоит из материала SiOxCy, полученного, как описано в вышеупомянутом описании патента ЕР-0573325, и имеет показатель преломления, постоянный по толщине, приблизительно равный 1,75, и геометрическую толщину, равную 60 нм.
В случае примера 9 промежуточная пленка 2 основана на смеси SiO2/SnO2, но она имеет растущий, а не убывающий градиент показателя преломления - показатель изменяется приблизительно от значения 1,45, близкого к стеклу (чистому SiO2), до значения приблизительно 1,85 (в основном SnO2), близкого к пленке F: SnO2, - и имеет геометрическую толщину 60 нм.
Нижележащая табл. 3 показывает для этих двух сравнительных примеров фотометрические данные, такие же, что и ранее в табл. 2.
По этим результатам могут быть сделаны различные комментарии.
Табл. 2 показывает, что все покрытые подложки в соответствии с изобретением имеют в отраженном свете, "со стороны пленки", голубой цвет (небольшое положительное а* и отрицательное b*), значение которого определяется, когда эти покрытые подложки устанавливаются как двойные стекла так, чтобы иметь тонкие пленки в качестве поверхности 3.
Следовательно, это привлекательный и не очень интенсивный цвет, постольку связанное с ним значение цветонасыщенности остается в основном приблизительно 5.
Хотя, как следует из табл. 3, покрытые подложки в соответствии со сравнительными примерами также имеют цвет в области от голубого до фиолетового, с другой стороны, оттенок более интенсивен, поскольку их цветонасыщенность очевидно превышает это значение 5.
Но что главным образом становится ясным из сравнения этих двух таблиц, так это то, что вариации цветонасыщенности ΔC* примеров в соответствии с изобретением намного меньше, чем ΔC* сравнительных примеров, поскольку они остаются в основном вблизи 3 для вариаций толщины функциональной пленки, далеких от того, чтобы ими можно было пренебречь. Фактически само собой разумеется, что в производственном процессе толщина осаждения может регулироваться с вариациями, намного меньшими, чем ±50 нм, что означает, что в целом при реальных условиях промышленного производства покрытые подложки в соответствии с изобретением дают зрительное впечатление очень высокой однородности, различия остаются ниже порога зрительного восприятия. Иначе дело обстоит для сравнительных примеров.
Можно также отметить, что комбинация промежуточной пленки 2 с внешней пленкой 4 позволяет получить очень выразительный эффект антиотражения (просветления) с очень низкими значениями RL "со стороны пленок".
Давайте теперь вернемся к соплу в соответствии с фиг. 2, которое позволяет осаждаться постепенно изменяющейся промежуточной пленке.
Эта фигура изображает ленту стекла 5, движущуюся в заданном направлении через камеру лодочки для вытягивания стекла. Над этой лентой, в той зоне лодочки, в которой требуется стабильность размеров, установлено сопло 6 для подачи газообразных полупродуктов на поверхность горячего стекла так, чтобы они реагировали и разлагались на окиси, контактируя со стеклом. Сопло размещается перпендикулярно к ленте стекла и простирается над всей его шириной. Здесь изображены и будут описаны только элементы сопла, важные для выполнения изобретения. (Для больших подробностей относительно общей операции, можно сослаться, например, на описание патента ЕР-А-499523 или, главным образом, на описание патента ЕР-А-518755). Эта фигура изображает центральный профилированный блок 7, первую входную "лапку" 8, вторую входную "лапку" 9 и выходную "лапку" 10. Эти термины "входная" и "выходная" выбраны для удобства, они определены с точки зрения направления, в котором движется стекло. Первая щель подачи рабочего газа 11 создана между первой входной "лапкой" 8 и второй 9, а вторая щель подачи рабочего газа 12 создана между второй входной "лапкой" и центральным профилированным блоком 7. Щель откачки 13 расположена между центральным блоком 7 и выходной "лапкой" 10, соединенная в верхней части к всасывающей системе, так чтобы захватывать не прореагировавший поток газа. Все эти щели и нижние поверхности второй входной "лапки" и центрального профилированного блока 7 позволяют заставлять газ течь по поверхности ленты стекла над участком длинной L, соответствующим зоне осаждения 15. Чтобы иметь возможность получить градиент показателя, следует одновременно выполнить несколько условий.
Во-первых, для каждой из щелей должно быть обеспечено подведение "полной" смеси газов полупродуктов, то есть газов, обладающих всеми компонентами, необходимыми для получения желаемого оксида.
Таким образом, в первую щель 11 подается химически активная смесь, подходящая для нанесения SnO2, т. е. либо монобутил трихлорид олова, объединенный со слабым окислительным агентом типа Н2O или N2O, либо дибутил диацетат олова, вносимый посредством инертного рабочего газа типа азота. Во вторую щель 12 подается химически активная смесь, подходящая для нанесения окиси с самым низким показателем, в данном случае SiO2, то есть TEOS, также объединенный со слабым окислительным агентом типа Н2O или N2O.
Однако следует отметить, что для этого принципа устройства допускаются модификации. Так, например, если выбрана система SiOxCy/SiO2, а не система SnO2/SiO2, то чтобы создать постепенно меняющуюся промежуточную пленку, возможно выбрать для подведения к одной из двух инжекционных щелей "полную" смесь полупродуктов для создания SiO2, главным образом, смесь TEOS и окислительного агента в инертном газе, а к другой инжекционной щели - либо "полную" смесь полупродуктов для создания SiOxCy, главным образом смесь SiH4 + этилен в инертном газе, либо просто этилен в качестве источника углерода (причем вариация содержания углерода в пленке определяет вариацию ее показателя преломления).
Затем необходимо активировать парциальное и регулируемое смешивание двух газовых потоков, исходящих из каждой из этих щелей и текущих по стеклу. Для выполнения этого должны быть установлены различные геометрические параметры.
С одной стороны, это расстояние 1 между двумя щелями подачи 11 и 12, измеряемое параллельно направлению, в котором подается стекло. Здесь оно выбрано таким, чтобы иметь значение приблизительно I/L = 0,27.
С другой стороны, важна относительная конфигурация различных лапок и центрального блока: сначала сопло размещается так, чтобы нижние поверхности первой входной лапки 8 и выходной лапки 10 были очень близки к поверхности стекла, например, на расстоянии от 2 до 5 мм, чтобы гарантировать ограничение газов в зоне осаждения. Таким образом, нижние поверхности входной лапки и центрального блока тоже конфигурированы так, чтобы вторая входная "лапка" 9 была поднята над первой входной лапкой 8 на величину Δh1 и так, чтобы центральный блок 7 был поднят над второй входной лапкой 9 на величину Δh2 (например, выбирается Δh1≈Δh2≈4 мм).
Затем "носок" второй входной лапки 9 конфигурируется соответственно (под "носком" лапки 9 подразумевается та область лапки, которая находится ближе всего к поверхности стекла 5 и которая разграничивает отметку, в которой инжекционная щель 12 переходит в зону осаждения 15).
Фактически способ действия сопла для получения градиента является следующим: первый поток газа полупродукта исходит из первой инжекционной щели 11, которая имеет сечение h1. Второй поток газа полупродукта исходит из второй инжекционной щели 12, которая имеет сечение h2, и высота зоны осаждения 15, измеряемая между плоскостью, определенной нижними поверхностями первой входной лапки 8 и выходной лапки 10 и центрального блока 7, имеет значение h3.
Чтобы гарантировать безвихревое течение газовых потоков по стеклу в зоне осаждения 15, должны удовлетворяться следующие соотношения:
(1) h1+h2=h3
(или Δh1+Δh2 = h3, выбирая здесь h1 = Δh1 и h2 = Δh2).
В этом случае, если выбирать h1≈h2, и обе эти высоты, лежащие в пределах между 2 мм и 8 мм, главным образом приблизительно 4 мм, то тогда h3 приблизительно равна 8 мм.
Однако если соотношение (1) удовлетворяется по всей зоне осаждения, то два наложенных слоя, один из SnO2 и другой SiO2, будут фактически получены без действительного получения желаемого градиента. Чтобы получать градиент, фактически необходимо создать локальную область возмущения в зоне осаждения 15, особенно в той области, в которой вторая инжекционная щель 12 переходит в эту зону 15. Чтобы сделать это, форма носка лапки 9 принимается такой, чтобы сечение щели h2' в этой отметке локально расширялось.
Подходящие формы "носка" могут быть, например, как показано в фигуре, со снятой фаской, со срезанными углами или более или менее скругленных форм (пунктирные линии на фиг.2 показывают другой тип возможного профиля).
Фактически в этой отметке высота зоны осаждения становится равной h1+h2', которая больше чем h3.
Поэтому газовые потоки смешиваются парциально, создавая, следовательно, градиент. Фактически, чем больше локальное расширение h2', тем больше будет смешивание между двумя газовыми потоками, и тем больше будет взаимная диффузия между различными полупродуктами.
Поэтому в области 1 в зоне осаждения только полупродукты окиси олова находятся в контакте со стеклом и, следовательно, сначала осаждается тонкая пленка практически чистого SnО2. Затем, начиная с конца этой области 1, когда две химически активные смеси реагируют друг с другом, осаждение быстро исчерпывается в отношении SnO2, так чтобы обогащаться в отношении SiO2.
Следовательно, сопло, в соответствии с изобретением позволяет получить пленки, имеющие градиент показателя преломления и/или градиент химического состава. Выбирая порядок, в котором полупродукты вводятся в последовательные инжекционные щели, становится возможным получать пленки, имеющие возрастающий или убывающий по толщине показатель преломления.
Примеры от 10 до 12
Эти примеры выполнялись, используя сопло, описанное выше, путем осаждения на подложки известково-натриевого силикатного стекла толщиной 4 мм пленок на основе SnO2/SiO2, показатель преломления которых прогрессивно убывает по мере отдаления от стекла.
В первую щель 11 подается DBTA, а во вторую щель 12 подается TEOS.
Нижеследующая табл. 4 показывает для этих трех примеров отношение R объемных расходов TEOS и DBTA, толщины пленок t в нм и значений ri (мин) и ri (макс) в соответствии с обозначениями, принятыми в табл. 1.
Эти три подложки, покрытые таким образом, анализировались с помощью SIMS (масс-спектроскопии вторичных ионов): фиг. 3, 4 и 5 относятся к соответствующим пленкам в соответствии с примерами 10, 11 и 12. Графики представляют по оси абсцисс глубину анализа в микронах, а по оси ординат - число отсчетов в секунду в логарифмическом масштабе.
На этих трех графиках изображены только те элементы, которые являются главным образом осуществленными для изобретения.
Рассматривая их, можно заметить, что отличаются две области: область А, которая соответствует стеклу, и область В, которая соответствует пленке. Внутри области В область B1 является той частью пленки, которая содержит больше всего окиси олова, и область В2 - та часть пленки, которая содержит больше всего окиси кремния.
Рассматривая вариации содержания натрия, можно заметить, что пленка в соответствии с изобретением, главным образом в области В2, позволяет формировать барьер для диффузионного распространения этого элемента.
Содержание алюминия позволяет выявлять поверхность раздела стекло/пленка.
Фиг. 6 и 7 получены расчетами на основе данных этого спектроскопического анализа. В этих двух фигурах кривые, обозначенные темными ромбиками, соответствуют примеру 10, те которые обозначены не закрашенными квадратами - соответствуют примеру 11, и те, которые обозначены сплошными квадратами, соответствуют примеру 12. На фиг. 6 по оси абсцисс представлены толщина пленки в нанометрах, а по оси ординат - ее показатель преломления. На фиг. 7 опять по оси абсцисс представлены толщина слоя в нанометрах, а по оси ординат - весовой процент содержания SnO2 в пленке.
Эти две группы графиков ясно показывают влияние градиента показателя преломления и химического состава, желательного в настоящем изобретении.
Изобретение само по себе подходит для всех вариантов воплощения. Фактически можно подбирать толщину пленки, показатель преломления или вариацию состава, регулируя, например, параметры осаждения, такие как отношение расходов полупродуктов, скорость, с которой стекло двигается под соплом, конструкция сопла и т. д.
В случае примера 11 наблюдается самый высокий градиент показателя преломления и состава с содержанием SnO2 более чем 90% вблизи поверхности раздела со стеклом.
В примере 12 можно видеть, что даже вблизи стекла пленка также содержит SiO2 меньше чем 80%.

Claims (18)

1. Стеклопанель, содержащая прозрачную подложку, преимущественно выполненную из стекла, снабженную по меньшей мере одной функциональной проводящей и/или с низкой эмиссионной способностью прозрачной тонкой пленкой, между которыми помещена по меньшей мере одна промежуточная пленка, имеющая убывающий по ее толщине показатель преломления от значения, близкого к показателю преломления функциональной пленки до значения, близкого к показателю преломления подложки с обеспечением улучшения оптической и, преимущественно, колориметрической характеристик стеклопанели, отличающаяся тем, что промежуточная пленка включает по меньшей мере два компонента с различными показателями преломления, из которых по меньшей мере один компонент с высоким показателем преломления основан на окиси олова, окиси титана, окиси циркония, окиси алюминия, окиси магния, окиси ванадия, нитриде кремния или оксикарбиде кремния.
2. Стеклопанель по п. 1, отличающаяся тем, что полная вариация показателя преломления по толщине промежуточной пленки составляет по меньшей мере 0,2, преимущественно между 0,25 и 0,80.
3. Стеклопанель по п. 1 или 2, отличающаяся тем, что самый низкий показатель преломления в градиенте показателя промежуточной пленки находится между 1,45 или 1,60.
4. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что самый высокий показатель преломления в градиенте показателя промежуточной пленки находится между 1,7 и 2,35.
5. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что геометрическая толщина промежуточной пленки с изменяющимся показателем находится между 30 и 120 нм, преимущественно между 45 и 90 нм.
6. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что градиент показателя преломления промежуточной пленки получен путем прогрессивного изменения ее химического состава, преимущественно, смешиванием по меньшей мере двух компонентов, имеющих различные показатели преломления, при этом количество компонента или смеси компонентов, имеющих наиболее высокий показатель (показатели) преломления, постепенно убывает по толщине слоя.
7. Стеклопанель по п. 6, отличающаяся тем, что смесь содержит по меньшей мере один компонент с низким показателем преломления, основанный на окиси кремния, оксинитриде кремния или оксикарбиде кремния.
8. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что функциональная пленка покрыта по меньшей мере одной внешней тонкой пленкой, имеющей показатель преломления между 1,4 и 1,7 и геометрическую толщину между 70 и 120 нм.
9. Стеклопанель по п. 8, отличающаяся тем, что внешняя пленка выполнена из диэлектрического материала, основанного по меньшей мере на одном из соединений группы, содержащей окись кремния, оксикарбид кремния, оксинитрид кремния, окись алюминия или смесь смешанной окиси кремния и алюминия и содержащей фтор.
10. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что функциональная пленка имеет показатель преломления приблизительно от 1,8 до 2 и геометрическую толщину по меньшей мере 300 нм, преимущественно, между 350 и 550 нм.
11. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что функциональная пленка основана на легированной металлической окиси(ях), принадлежащей группе, содержащей: окись индия, легированную оловом ITO, окись олова, легированную фтором F: SnO2, окись цинка, легированную индием In: ZnO, окись цинка, легированную фтором F: ZnO, окись цинка, легированную алюминием AL: ZnO, или окись цинка, легированную оловом Sn: ZnO.
12. Стеклопанель по одному из предшествующих пунктов, отличающаяся тем, что она имеет в отраженном свете, со стороны пленок, остаточный цвет, который находится в голубых тонах, цветонасыщенность С* в колориметрической системе (L*, a*, b*) этого остаточного цвета в основном равна 5, высокое пропускание ТL хотя бы 75%, преимущественно, по меньшей мере от 80 до 85%, и эмиссионную способность по существу 0,18.
13. Сопло для формирования осаждением из газовой фазы пленки, имеющей такой градиент показателя преломления, как у промежуточной пленки по одному из предшествующих пунктов, на стекле, перемещающемся в одном направлении, в таком, как лента стекла, движущаяся через камеру лодочки для вытягивания стекла, сопло, простирающееся перпендикулярно к направлению подачи стекла, включающее в себя первую входную "лапку", вторую входную "лапку", центральный профилированный блок и выходную "лапку", первую щель для инжекции газа(-ов) полупродукта, заданную между двумя входными "лапками", и вторую щель для инжекции газа(-ов) полупродукта, имеющего различный состав, заданную между входной лапкой и центральным профилированным блоком, щель для откачки вытекающего потока газа, заданную между центральным профилированным блоком и выходной лапкой, все щели и нижние поверхности лапок и центрального блока, направляющие потоки газа, поступающие из инжекционных щелей, по стеклу в зоне осаждения с траекторией потока, имеющей по существу U-образную форму, расстояние 1 между двумя инжекционными щелями, и относительная конфигурация первой входной лапки, второй входной лапки и центрального блока выбраны так, чтобы вызвать парциальное и прогрессивное смешивание между двумя газовыми потоками в упомянутой зоне осаждения, отличающееся тем, что нижняя поверхность центрального блока находится на более высоком уровне, чем нижняя поверхность второй входной лапки, которая сама по себе находится на более высоком уровне, чем нижняя поверхность первой входной лапки.
14. Сопло по п. 13, отличающееся тем, что расстояние l между двумя инжекционными щелями по существу равно 3/4 от полной длины зоны осаждения L, и преимущественно приблизительно от 1/4 до 2/3 от упомянутой длины L.
15. Сопло по п. 13 или 14, отличающееся тем, что вторая входная "лапка" имеет конфигурацию, выбранную с учетом обеспечения ограниченного расширения второй инжекционной щели вблизи зоны осаждения.
16. Сопло по п. 15, отличающееся тем, что "носок" второй входной "лапки" имеет профиль со снятой фаской или скругленными углами, чтобы расширить инжекционную щель в области, где эта щель выходит в зону осаждения.
17. Способ формирования пленки с помощью сопла, при котором газообразную смесь подают в первую инжекционную щель, дополнительно подают вторую газообразную смесь через вторую инжекционную щель, так что газовые потоки, исходящие из этих первой и второй щелей, текут по стеклу в зону осаждения в виде безвихревого потока, за исключением того места на выходе второй инжекционной щели, в котором создают область возмущения, чтобы активировать взаимную диффузию двух газовых потоков, отличающийся тем, что применяют сопло по одному из пп. 13-16.
18. Способ по п. 17, отличающийся тем, что в первую инжекционную щель подают газообразную химически активную смесь, разлагаемую на оксид с заданным показателем преломления, а во вторую инжекционную щель подают вторую газообразную химически активную смесь, разлагаемую на оксид, с показателем преломления, отличным от, а по существу меньшим, предыдущего.
RU97105847/03A 1995-07-12 1996-07-10 Стеклопанель, содержащая прозрачную функциональную пленку, сопло для осаждения пленки из газовой фазы и способ формирования пленки с помощью этого сопла RU2179537C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/08421 1995-07-12
FR9508421A FR2736632B1 (fr) 1995-07-12 1995-07-12 Vitrage muni d'une couche conductrice et/ou bas-emissive

Publications (2)

Publication Number Publication Date
RU97105847A RU97105847A (ru) 1999-06-10
RU2179537C2 true RU2179537C2 (ru) 2002-02-20

Family

ID=9480918

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97105847/03A RU2179537C2 (ru) 1995-07-12 1996-07-10 Стеклопанель, содержащая прозрачную функциональную пленку, сопло для осаждения пленки из газовой фазы и способ формирования пленки с помощью этого сопла

Country Status (13)

Country Link
US (2) US6174599B1 (ru)
EP (1) EP0781257B1 (ru)
JP (1) JPH10507994A (ru)
CN (2) CN1230255C (ru)
AT (1) ATE201864T1 (ru)
CA (1) CA2199622A1 (ru)
CZ (1) CZ295140B6 (ru)
DE (1) DE69613204T2 (ru)
DK (1) DK0781257T3 (ru)
FR (1) FR2736632B1 (ru)
PL (1) PL185279B1 (ru)
RU (1) RU2179537C2 (ru)
WO (1) WO1997003029A1 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462424C2 (ru) * 2007-01-15 2012-09-27 Сэн-Гобэн Гласс Франс Фотогальваническая ячейка и способ изготовления фотогальванической ячейки
RU2471732C2 (ru) * 2007-11-19 2013-01-10 Гардиан Индастриз Корп. Способ изготовления изделия с покрытием, включающий ионно-лучевую обработку металлоксидной защитной пленки
TWI386382B (zh) * 2007-03-26 2013-02-21 Hon Hai Prec Ind Co Ltd 低輻射玻璃
US9573845B2 (en) 2010-02-26 2017-02-21 Guardian Industries Corp. Articles including anticondensation and/or low-E coatings and/or methods of making the same
RU2613236C2 (ru) * 2010-12-06 2017-03-15 Гардиан Индастриз Корп. Изделия, включающие противоконденсатные и/или энергосберегающие покрытия, и/или способы их изготовления
RU2613652C2 (ru) * 2010-02-26 2017-03-21 Гардиан Индастриз Корп. Изделия, включающие противоконденсатные и/или низкоэмиссионные покрытия, и/или способы их изготовления
US9695085B2 (en) 2010-02-26 2017-07-04 Guardian Industries Corp. Articles including anticondensation coatings and/or methods of making the same
US10201040B2 (en) 2010-08-31 2019-02-05 Guardian Glass, LLC System and/or method for heat treating conductive coatings using wavelength-tuned infrared radiation
US10226986B2 (en) 2010-02-26 2019-03-12 Guardian Glass, LLC Articles including ITO inclusive coatings for vehicle windshields and/or methods of making the same
RU2707829C2 (ru) * 2015-07-08 2019-11-29 Сэн-Гобэн Гласс Франс Материал, снабженный системой тонких слоев с термическими свойствами
RU2708304C2 (ru) * 2015-07-08 2019-12-05 Сэн-Гобэн Гласс Франс Подложка, снабженная системой тонких слоев с термическими свойствами
RU2715504C1 (ru) * 2016-05-17 2020-02-28 Сэн-Гобэн Гласс Франс Прозрачное оконное стекло
RU2728399C2 (ru) * 2015-09-08 2020-07-29 Сэн-Гобэн Гласс Франс Остекление, включающее в себя пакет тонких слоев
US10914946B2 (en) 2016-05-17 2021-02-09 Saint-Gobain Glass France Head-up display system

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759362B1 (fr) * 1997-02-10 1999-03-12 Saint Gobain Vitrage Substrat transparent muni d'au moins une couche mince a base de nitrure ou d'oxynitrure de silicium et son procede d'obtention
US6436541B1 (en) 1998-04-07 2002-08-20 Ppg Industries Ohio, Inc. Conductive antireflective coatings and methods of producing same
FR2780054B1 (fr) * 1998-06-19 2000-07-21 Saint Gobain Vitrage Procede de depot d'une couche a base d'oxyde metallique sur un substrat verrier, substrat verrier ainsi revetu
FR2787440B1 (fr) * 1998-12-21 2001-12-07 Saint Gobain Vitrage Substrat transparent comportant un revetement antireflet
FR2809388B1 (fr) * 2000-05-23 2002-12-20 Saint Gobain Vitrage Vitrage comprenant au moins une couche a proprietes thermochromes
US6576349B2 (en) 2000-07-10 2003-06-10 Guardian Industries Corp. Heat treatable low-E coated articles and methods of making same
US20020090521A1 (en) * 2000-09-29 2002-07-11 Tatsuji Nakajima Silica layers and antireflection film using same
US6936347B2 (en) * 2001-10-17 2005-08-30 Guardian Industries Corp. Coated article with high visible transmission and low emissivity
CN1620336A (zh) * 2001-12-21 2005-05-25 日本板硝子株式会社 具有光催化功能的部件及其制造方法
FR2836912B1 (fr) * 2002-03-06 2004-11-26 Saint Gobain Susbstrat transparent a revetement antireflets avec proprietes de resistance a l'abrasion
US20030170605A1 (en) * 2002-03-11 2003-09-11 Egan Visual Inc. Vapor deposited writing surfaces
US7063893B2 (en) * 2002-04-29 2006-06-20 Cardinal Cg Company Low-emissivity coating having low solar reflectance
US7122252B2 (en) * 2002-05-16 2006-10-17 Cardinal Cg Company High shading performance coatings
EP1527028B1 (en) * 2002-07-31 2018-09-12 Cardinal CG Company Temperable high shading performance coatings
SE523348C2 (sv) * 2002-08-15 2004-04-13 Totalfoersvarets Forskningsins Genomsynlig ruta med radarreflekterande egenskaper
US7005190B2 (en) * 2002-12-20 2006-02-28 Guardian Industries Corp. Heat treatable coated article with reduced color shift at high viewing angles
FR2852553B1 (fr) * 2003-03-21 2005-06-17 Saint Gobain Procede pour deposer des films fonctionnels sur des substrats tels que des plaques de verres, et machine de pelliculage pour la mise en oeuvre de ce procede
US7192647B2 (en) * 2003-06-24 2007-03-20 Cardinal Cg Company Concentration-modulated coatings
US7294404B2 (en) * 2003-12-22 2007-11-13 Cardinal Cg Company Graded photocatalytic coatings
JP4182236B2 (ja) * 2004-02-23 2008-11-19 キヤノン株式会社 光学部材および光学部材の製造方法
US7901870B1 (en) 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
US7713632B2 (en) 2004-07-12 2010-05-11 Cardinal Cg Company Low-maintenance coatings
US7565084B1 (en) 2004-09-15 2009-07-21 Wach Michael L Robustly stabilizing laser systems
DE602005024993D1 (de) * 2004-10-04 2011-01-05 Cardinal Cg Co Dünnfilmbeschichtung und technologie zum zeitweiligen schutz, isolierverglasungseinheiten und dazugehörige verfahren
US8092660B2 (en) * 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
US7923114B2 (en) * 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
CN101072735B (zh) * 2004-12-06 2011-08-10 日本板硝子株式会社 具有光催化剂功能和红外线反射功能的玻璃构件以及使用该玻璃构件的多层玻璃
US8501270B2 (en) * 2005-02-18 2013-08-06 Canon Kabushiki Kaisha Optical transparent member and optical system using the same
JP4520418B2 (ja) * 2005-02-18 2010-08-04 キヤノン株式会社 光学用透明部材及びそれを用いた光学系
FR2903399B1 (fr) * 2006-07-07 2010-10-01 Saint Gobain Materiau anti-salissures et son procede d'obtention
US8153282B2 (en) * 2005-11-22 2012-04-10 Guardian Industries Corp. Solar cell with antireflective coating with graded layer including mixture of titanium oxide and silicon oxide
WO2007124291A2 (en) 2006-04-19 2007-11-01 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
FI20060924A0 (fi) * 2006-10-20 2006-10-20 Beneq Oy Lasinvärjäämislaite ja menetelmä lasin värjäämiseksi
FR2913973B1 (fr) * 2007-03-21 2011-02-18 Saint Gobain Substrat verrier revetu de couches a tenue mecanique amelioree
KR101563197B1 (ko) * 2007-09-14 2015-10-26 카디날 씨지 컴퍼니 관리 용이한 코팅 및 이의 제조방법
US20100037820A1 (en) * 2008-08-13 2010-02-18 Synos Technology, Inc. Vapor Deposition Reactor
US20100037824A1 (en) * 2008-08-13 2010-02-18 Synos Technology, Inc. Plasma Reactor Having Injector
US8470718B2 (en) 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
US8851012B2 (en) 2008-09-17 2014-10-07 Veeco Ald Inc. Vapor deposition reactor using plasma and method for forming thin film using the same
US8770142B2 (en) 2008-09-17 2014-07-08 Veeco Ald Inc. Electrode for generating plasma and plasma generator
CN101713062B (zh) * 2008-10-08 2012-03-14 鸿富锦精密工业(深圳)有限公司 遮光元件及其镀膜方法
US8871628B2 (en) 2009-01-21 2014-10-28 Veeco Ald Inc. Electrode structure, device comprising the same and method for forming electrode structure
KR101172147B1 (ko) 2009-02-23 2012-08-07 시너스 테크놀리지, 인코포레이티드 플라즈마에 의한 라디칼을 이용한 박막 형성 방법
JP2010258368A (ja) * 2009-04-28 2010-11-11 Tohoku Univ 電子装置及びその製造方法
US8758512B2 (en) * 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
CN101618952B (zh) * 2009-07-30 2011-08-17 杭州蓝星新材料技术有限公司 浮法在线生产透明导电膜玻璃的方法
US20110076421A1 (en) * 2009-09-30 2011-03-31 Synos Technology, Inc. Vapor deposition reactor for forming thin film on curved surface
US20110146768A1 (en) * 2009-12-21 2011-06-23 Ppg Industries Ohio, Inc. Silicon thin film solar cell having improved underlayer coating
FR2956659B1 (fr) * 2010-02-22 2014-10-10 Saint Gobain Substrat verrier revetu de couches a tenue mecanique amelioree
FR2962852A1 (fr) 2010-07-19 2012-01-20 Saint Gobain Electrode transparente pour cellule photovoltaique a haut rendement
US8771791B2 (en) 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor
EP2481833A1 (en) * 2011-01-31 2012-08-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus for atomic layer deposition
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
US8877300B2 (en) 2011-02-16 2014-11-04 Veeco Ald Inc. Atomic layer deposition using radicals of gas mixture
US9163310B2 (en) 2011-02-18 2015-10-20 Veeco Ald Inc. Enhanced deposition of layer on substrate using radicals
FR2973023B1 (fr) 2011-03-25 2019-08-02 Saint-Gobain Glass France Vitrage multiple isolant comprenant deux empilements bas emissifs
BE1019988A3 (fr) * 2011-05-24 2013-03-05 Agc Glass Europe Substrat verrier transparent portant un revetement de couches successives.
CN102249551A (zh) * 2011-06-15 2011-11-23 蚌埠玻璃工业设计研究院 氟掺杂氧化锌透明导电膜玻璃的生产方法
FR2982608B1 (fr) 2011-11-16 2013-11-22 Saint Gobain Couche barriere aux metaux alcalins a base de sioc
FR2983350A1 (fr) * 2011-11-30 2013-05-31 Saint Gobain Electrode transparente pour cellule photovoltaique cdte
FR2987618B1 (fr) * 2012-03-05 2014-02-28 Saint Gobain Vitrage anticondensation
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) * 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
WO2015038835A1 (en) * 2013-09-13 2015-03-19 Corning Incorporated Scratch-resistant articles with retained optical properties
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
EP3300520B1 (en) 2015-09-14 2020-11-25 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
WO2017100607A1 (en) * 2015-12-11 2017-06-15 Vitro, S.A.B. De C.V. Coating system and articles made thereby
US11014118B2 (en) 2015-12-11 2021-05-25 Vitro Flat Glass Llc Float bath coating system
CN105734513B (zh) * 2016-03-23 2018-08-24 苏州东山精密制造股份有限公司 透明导电膜的制备工艺
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
CN107253826B (zh) * 2017-05-22 2020-08-04 美的集团股份有限公司 隔热玻璃及其制备方法和电器
WO2020037042A1 (en) 2018-08-17 2020-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
CN109851231A (zh) * 2019-01-24 2019-06-07 福建工程学院 一种减反射、抗激光损伤玻璃及其制备方法
JP7020458B2 (ja) * 2019-07-12 2022-02-16 Agc株式会社 膜付きガラス基板及びその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1282866A (en) * 1968-08-16 1972-07-26 Pilkington Brothers Ltd Improvements in or relating to the production of glass having desired surface characteristics
JPS4980119A (ru) 1972-12-06 1974-08-02
GB1524326A (en) * 1976-04-13 1978-09-13 Bfg Glassgroup Coating of glass
GB1516032A (en) * 1976-04-13 1978-06-28 Bfg Glassgroup Coating of glass
FR2380997A1 (fr) 1977-02-16 1978-09-15 Saint Gobain Procede de fabrication de vitrages protegeant de la chaleur
US4187336A (en) * 1977-04-04 1980-02-05 Gordon Roy G Non-iridescent glass structures
CA1134214A (en) 1978-03-08 1982-10-26 Roy G. Gordon Deposition method
CA1138725A (en) * 1978-07-20 1983-01-04 Robert Terneu Glass coating
BE879189A (fr) * 1978-10-19 1980-04-04 Bfg Glassgroup Procede de formation d'un revetement d'oxyde d'etain sur un support de verre chaud et produits ainsi obtenus
JPS6018090B2 (ja) 1979-10-03 1985-05-08 日本板硝子株式会社 導電薄膜の形成方法
DE3010077C2 (de) 1980-03-15 1981-07-30 Vereinigte Glaswerke Gmbh, 5100 Aachen Verfahren zum Aufbringen von mit einem Halogen, vorzugsweise mit Fluor dotierten Zinnoxidschichten auf Glasoberflächen durch Pyrolyse
JPS59162269A (ja) 1983-03-07 1984-09-13 Nippon Sheet Glass Co Ltd 基体に酸化錫膜を形成する方法
DK160745C (da) 1983-03-14 1991-09-30 Saint Gobain Vitrage Fremgangsmaade ved og dyse til fordeling af et pulverformet materiale paa et underlag
US4595634A (en) * 1983-08-01 1986-06-17 Gordon Roy G Coating process for making non-iridescent glass
FR2570379B1 (fr) 1984-08-22 1986-11-21 Saint Gobain Vitrage Preparation d'une poudre de difluorure de dibutyl etain destinee a la formation d'un revetement sur un substrat, notamment en verre
EP0397292B1 (fr) 1985-01-22 1993-04-21 Saint-Gobain Vitrage International Procédé pour la formation d'une couche mince d'oxydes métalliques sur un substrat, notamment en verre, et son utilisation comme vitrage
US4793282A (en) * 1987-05-18 1988-12-27 Libbey-Owens-Ford Co. Distributor beam for chemical vapor deposition on glass
GB8824104D0 (en) * 1988-10-14 1988-11-23 Pilkington Plc Process for coating glass
GB8824102D0 (en) * 1988-10-14 1988-11-23 Pilkington Plc Apparatus for coating glass
CA2011249A1 (en) 1989-03-03 1990-09-03 Thomas C. Hodgson Bonding sheet materials together
FR2672519B1 (fr) * 1991-02-13 1995-04-28 Saint Gobain Vitrage Int Buse a talon aval sureleve, pour deposer une couche de revetement sur un ruban de verre, par pyrolyse d'un melange gazeux.
FR2672518B1 (fr) * 1991-02-13 1995-05-05 Saint Gobain Vitrage Int Buse a alimentation dissymetrique pour la formation d'une couche de revetement sur un ruban de verre, par pyrolyse d'un melange gazeux.
FR2677639B1 (fr) * 1991-06-14 1994-02-25 Saint Gobain Vitrage Internal Technique de formation par pyrolyse en voie gazeuse d'un revetement essentiellement a base d'oxygene et de silicium.
US5248545A (en) * 1991-06-24 1993-09-28 Ford Motor Company Anti-iridescent coatings with gradient refractive index
NO931606L (no) * 1992-05-26 1993-11-29 Saint Gobain Vitrage Vindusplate med en funksjonell film
FR2704545B1 (fr) * 1993-04-29 1995-06-09 Saint Gobain Vitrage Int Vitrage muni d'une couche fonctionnelle conductrice et/ou basse-émissive.
FR2727107B1 (fr) 1994-11-21 1996-12-27 Saint Gobain Vitrage Vitrage muni d'au moins une couche mince et son procede d'obtention

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462424C2 (ru) * 2007-01-15 2012-09-27 Сэн-Гобэн Гласс Франс Фотогальваническая ячейка и способ изготовления фотогальванической ячейки
TWI386382B (zh) * 2007-03-26 2013-02-21 Hon Hai Prec Ind Co Ltd 低輻射玻璃
RU2471732C2 (ru) * 2007-11-19 2013-01-10 Гардиан Индастриз Корп. Способ изготовления изделия с покрытием, включающий ионно-лучевую обработку металлоксидной защитной пленки
US9670092B2 (en) 2010-02-26 2017-06-06 Guardian Industries Corp. Articles including anticondensation and/or low-E coatings and/or methods of making the same
RU2725452C2 (ru) * 2010-02-26 2020-07-02 Гардиан Индастриз Корп. Покрытое изделие
RU2613652C2 (ru) * 2010-02-26 2017-03-21 Гардиан Индастриз Корп. Изделия, включающие противоконденсатные и/или низкоэмиссионные покрытия, и/или способы их изготовления
US10226986B2 (en) 2010-02-26 2019-03-12 Guardian Glass, LLC Articles including ITO inclusive coatings for vehicle windshields and/or methods of making the same
US9695085B2 (en) 2010-02-26 2017-07-04 Guardian Industries Corp. Articles including anticondensation coatings and/or methods of making the same
US10358865B2 (en) 2010-02-26 2019-07-23 Guardian Glass, LLC Articles including anticondensation and/or low-E coatings and/or methods of making the same
US9863182B2 (en) 2010-02-26 2018-01-09 Guardian Glass, LLC Articles including anticondensation and/or low-E coatings and/or methods of making the same
US9873632B2 (en) 2010-02-26 2018-01-23 Guardian Glass, LLC Articles including anticondensation coatings and/or methods of making the same
US10072456B2 (en) 2010-02-26 2018-09-11 Guardian Glass, LLC Articles including anticondensation and/or low-E coatings and/or methods of making the same
US9573845B2 (en) 2010-02-26 2017-02-21 Guardian Industries Corp. Articles including anticondensation and/or low-E coatings and/or methods of making the same
US10221091B2 (en) 2010-02-26 2019-03-05 Guardian Glass, LLC Articles including ITO inclusive coatings and/or methods of making the same
US10201040B2 (en) 2010-08-31 2019-02-05 Guardian Glass, LLC System and/or method for heat treating conductive coatings using wavelength-tuned infrared radiation
RU2613236C2 (ru) * 2010-12-06 2017-03-15 Гардиан Индастриз Корп. Изделия, включающие противоконденсатные и/или энергосберегающие покрытия, и/или способы их изготовления
RU2739909C2 (ru) * 2010-12-06 2020-12-29 ГАРДИАН ГЛАСС, ЭлЭлСи Покрытое изделие
RU2639765C2 (ru) * 2011-12-21 2017-12-22 Гардиан Индастриз Корп. Изделия, включающие антиконденсатные и/или низкоэмиссионные покрытия, и/или способы их изготовления
RU2707829C2 (ru) * 2015-07-08 2019-11-29 Сэн-Гобэн Гласс Франс Материал, снабженный системой тонких слоев с термическими свойствами
RU2708304C2 (ru) * 2015-07-08 2019-12-05 Сэн-Гобэн Гласс Франс Подложка, снабженная системой тонких слоев с термическими свойствами
RU2728399C2 (ru) * 2015-09-08 2020-07-29 Сэн-Гобэн Гласс Франс Остекление, включающее в себя пакет тонких слоев
RU2715504C1 (ru) * 2016-05-17 2020-02-28 Сэн-Гобэн Гласс Франс Прозрачное оконное стекло
US10773997B2 (en) 2016-05-17 2020-09-15 Saint-Gobain Glass France Transparent pane
US10914946B2 (en) 2016-05-17 2021-02-09 Saint-Gobain Glass France Head-up display system

Also Published As

Publication number Publication date
US6354109B1 (en) 2002-03-12
PL185279B1 (pl) 2003-04-30
CA2199622A1 (fr) 1997-01-30
ATE201864T1 (de) 2001-06-15
CN1230255C (zh) 2005-12-07
PL319097A1 (en) 1997-07-21
US6174599B1 (en) 2001-01-16
DK0781257T3 (da) 2001-09-24
JPH10507994A (ja) 1998-08-04
DE69613204T2 (de) 2002-03-21
FR2736632A1 (fr) 1997-01-17
EP0781257A1 (fr) 1997-07-02
WO1997003029A1 (fr) 1997-01-30
EP0781257B1 (fr) 2001-06-06
CN1102542C (zh) 2003-03-05
CN1164848A (zh) 1997-11-12
CN1436602A (zh) 2003-08-20
CZ295140B6 (cs) 2005-05-18
CZ76197A3 (en) 1997-08-13
FR2736632B1 (fr) 1997-10-24
DE69613204D1 (de) 2001-07-12

Similar Documents

Publication Publication Date Title
RU2179537C2 (ru) Стеклопанель, содержащая прозрачную функциональную пленку, сопло для осаждения пленки из газовой фазы и способ формирования пленки с помощью этого сопла
RU2127231C1 (ru) Остекление и способ его получения
CN1131145C (zh) 防反射薄膜
EP0721112B1 (en) Multilayer antireflective coating with a graded base layer
KR100238740B1 (ko) 유리 기판의 피복법
EP0611733B1 (en) Coating apparatus, method of coating glass, compounds and compositions for coating glass and coated glass substrates
US6416890B1 (en) Solar control coated glass
KR100237950B1 (ko) 복사율이 낮은 필름이 제공된 유리 기판을 포함하는 제품 및 이의 제조방법
US5599387A (en) Compounds and compositions for coating glass with silicon oxide
EP0627391B1 (en) Neutral, low emissivity coated glass articles and method for making
USRE40315E1 (en) Coated substrate with high reflectance
US5635287A (en) Pane provided with a functional film
US7195821B2 (en) Coated substrate with high reflectance
US5256485A (en) Coated glass and method of manufacturing same
GB2248243A (en) Glass coated with mixed oxide of aluminium and vanadium prior to coating with tin oxide
CA1147139A (en) Deposition method
UA65556C2 (en) A coated glass (variants), a method for making the same and coating absorbing radiation of the spectral region adjacent to that infrared

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070711