RU2171706C1 - Способ очистки промышленных газовых выбросов - Google Patents

Способ очистки промышленных газовых выбросов Download PDF

Info

Publication number
RU2171706C1
RU2171706C1 RU2000126922/12A RU2000126922A RU2171706C1 RU 2171706 C1 RU2171706 C1 RU 2171706C1 RU 2000126922/12 A RU2000126922/12 A RU 2000126922/12A RU 2000126922 A RU2000126922 A RU 2000126922A RU 2171706 C1 RU2171706 C1 RU 2171706C1
Authority
RU
Russia
Prior art keywords
catalyst
oxide
temperature
cleaning
palladium
Prior art date
Application number
RU2000126922/12A
Other languages
English (en)
Inventor
А.С. Дыкман
В.Е. Пастор
А.В. Зиненков
В. Фулмер Джон
Д. Кайт Вильям
Н. Гейер Бредли
Original Assignee
Дыкман Аркадий Самуилович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дыкман Аркадий Самуилович filed Critical Дыкман Аркадий Самуилович
Priority to RU2000126922/12A priority Critical patent/RU2171706C1/ru
Application granted granted Critical
Publication of RU2171706C1 publication Critical patent/RU2171706C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области охраны окружающей среды и может быть использовано для очистки газов. Способ очистки промышленных газовых выбросов, содержащих наряду с ароматическими углеводородами (в том числе гидроперекиси) более 1 об.% алифатических соединений (в том числе, метанола) путем пропускания выбросов при температуре 240-290oС в присутствии кислорода через каталитическую композицию, состоящую из твердого контакта с удельной поверхностью 0,2-1,0 м2/г, предварительно прокаленного при температуре 800-1350oС, и катализатора, содержащего 0,1-3,0% палладия на оксидно-алюминиевом носителе, например на активной окиси алюминия. Используют твердый контакт, включающий оксиды алюминия, железа, магния, кальция, калия, натрия, титана (IV) и кремния. Предлагаемый способ позволяет проводить высокоэффективную очистку газовых выбросов (с конверсией органических соединений 99% и выше) в течение длительного времени без смолообразования на катализаторе. 2 з.п.ф-лы, 1 табл.

Description

Изобретение относится к области охраны окружающей среды и может быть использовано для очистки промышленных газовых выбросов, включающих ароматические и кислородсодержащие продукты, обуславливающие смолообразование.
При содержании в газовых выбросах органических примесей в малых количествах (менее 0,5 об.%) используют изотермический режим, для реализации которого к реакционной массе подводят тепло в значительных количествах. При содержании органических соединений в газовом потоке 1,0 об.% и выше процесс проводится в адиабатическом режиме, сопровождающемся выделением тепла, количество которого зависит от концентрации органических компонентов. В качестве промышленных контактов используют различные каталитические системы. Одни содержат окислы неблагородных металлов, например, хрома, кобальта, циркония (патент России N 2050976, кл. B 01 J 23/86, 21/06, опубл. 27.12.1995), магния (Пат. США N 4673558, кл. B 01 D 053/34, опубл. 16.06.1987), марганца, меди (заявка на патент России N 95102026, кл. B 01 D 053/86, опубл. 27.05.1996). Другие катализаторы содержат благородные металлы, например платину (Пат. США N 5702836, кл. H 01 М 4/88, опубл. 30.12.1997), палладий и серебро (Пат. США N 4673556, кл B 01 D 53/36, опубл. 16.06.1987). В последнее время большое распространение получают каталитические системы, представляющие благородные металлы на сложных оксидных носителях (Пат. США N 5585083, кл. C 07 C 11/24, опубл. 17.12.1996), в частности металлы VIII группы на окислах титана и церия (Пат. США N 4716859, кл. F 02 B 43/08, опубл. 5.01.1988) или, например, палладий и родий на окиси церия (Пат. США N 4919903, кл. B 01 D 53/36, опубл. 24.04.1990).
Наиболее универсальный способ очистки газовых выбросов от углеводородов C3 и кислородсодержащих соединений (в том числе, и неорганических) описан в патенте (Пат. США N 5292991, кл. C 07 C 7/152, опубл. 08.03.1994) по которому процесс проводят при температуре 600oC в присутствии платины и палладия, нанесенных совместно на цеолит типа ZSM, модифицированный окислами циркония и титана; конверсия углеводородов при этом составляет 98,1%. Недостатком этого способа является необходимость нагрева парогазовых потоков, обогащенных, как правило, азотом и парами воды, до высокой температуры, а также возможность очистки только от легких углеводородов, не вызывающих осмоления катализатора.
С целью снижения затрат на нагрев парогазовых потоков, как правило, стремятся использовать менее унифицированные системы, разрабатывая каталитические композиции, содержащие благородные металлы, для обезвреживания конкретных органических соединений. Например, известен способ низкотемпературной очистки газовых выбросов от броморганических соединений, в котором используется катализатор, содержащий металлы платиновой группы на окислах циркония, марганца, церия и кобальта (Пат. США N 5653949, кл. C 01 В 007/00, опубл. 5.08.1997). Для снижения температуры нагрева газового потока при очистке его от метанола и формальдегида рекомендуется использовать палладий-родиевый катализатор на окиси церия (Пат. США N 4950476, кл. B 01 D 053/36, опубл. 21.08.1990). Этот способ позволяет снизить температуру реакции до 150oC. С целью дальнейшего снижения температуры процесса очистки газов от метанола до 85-120oC предлагается использование катализатора, содержащего платину в количестве 0,05-0,5% на носителе - высококремнистом цеолите HZSM-5 со связующим оксидом кремния (Пат. России N 2155093, кл. B 01 D 53/86, опубл. 10.02.1999). Недостатком обоих указанных способов является возможность очистки газовых выбросов только от конкретных соединений: от метанола и формальдегида в первом случае и от метанола - во втором. При наличии в газовом потоке ароматических гидроперекисей, обуславливающих осмоление катализатора, эти способы не эффективны.
Известен способ очистки промышленных газовых выбросов, содержащих альдегиды, спирты и кетоны с числом атомов углерода до 5, при пониженной температуре (не выше 150oC) на каталитической системе, включающей не менее двух благородных металлов в количестве до 22% на специальном гидрофобном носителе (Пат. США N 5009872, кл. B 01 D 53/56, опубл. 23.04.1999). Этот способ обеспечивает очистку потока от этанола на 90% и от формальдегида на 93%. Недостатком этого способа является ограниченная возможность очистки газовых выбросов только от органических соединений (метанол, этанол, ацетон, формальдегид), не обуславливающих осмоление катализатора.
Наиболее близким способом очистки газовых выбросов от кислородсодержащих органических соединений к предлагаемому, является способ, по которому газовые выбросы пропускают над катализатором, представляющим 0,003 - 3,0% палладия, нанесенного на носитель, включающий окись алюминия (Пат. США N 4450244, кл. B 01 J 023/04, 021/04, 023/10, опубл. 22.05.1984 - прототип).
По прототипу процесс проводят в присутствии кислорода при температуре 350-400oC, что обеспечивает очистку от различных органических кислородсодержащих соединений на уровне 88 - 96% при 350oC и на уровне 98-100% при 400oC. Достоинством этого способа является пониженное содержание благородных металлов по сравнению с предыдущим патентом и более высокая степень очистки от органических кислородсодержащих соединений.
Недостатками способа-прототипа являются: 1) Необходимость нагрева газового потока до повышенной температуры и 2) Ограниченная возможность очистки газового потока только от органических соединений, не приводящих к осмолению катализатора. При очистке газов от ароматических гидроперекисей в указанных условиях происходит осмоление катализатора.
Задачей являлась разработка способа очистки промышленных газовых выбросов, включающих различные кислородсодержащие органические соединения, в том числе ароматические гидроперекиси, без смолообразования на катализаторе.
С целью упрощения технологии процесса за счет снижения температуры очистки газовых выбросов, включающих ароматические гидроперекиси, кумол, а также муравьиную кислоту, предложено процесс осуществлять следующим образом.
Исходный газовый поток, включающий ароматические и алифатические кислородсодержащие и некислородсодержащие соединения, например кумол, гидроперекись кумола, метанол, муравьиную кислоту, в присутствии кислорода пропускают через каталитическую систему, состоящую из: I - твердого контакта с удельной поверхностью 0,2 - 1,0 м2/г, предварительно прокаленного при 800-1350oC и II - палладиевого катализатора, содержащего 0,1-3% палладия на активной окиси алюминия. Соотношение катализаторов I:II равно 0,5:1 - 2:1. После инициирования реакции на обоих катализаторах поддерживают температуру процесса 240 - 290oC.
Твердый контакт после прокаливания содержит оксиды алюминия, железа (II), магния, кальция, калия, натрия, титана (IV), кремния при следующем соотношении их, мас.%:
Оксид алюминия - 5,0-30
Оксид железа (II) - 0,1-5,0
Оксид магния - 0,1-5,0
Оксид кальция - 0,1-5,0
Оксид калия - 0,1-3,0
Оксид натрия - 0,1-3,0
Оксид титана IV - 0,1-3,0
Оксид кремния - Остальное
Существенными отличительными признаками предлагаемого способа очистки газовых выбросов от ароматических и алифатических углеводородов (в том числе содержащих метанола более 1 об.%) являются: использование каталитической композиции указанных составов I и II и проведение процесса при температуре 240 - 290oC
При проведении процесса при температуре выше 290oC на указанной каталитической композиции происходит быстрая дезактивация палладиевого катализатора, т. к. при температуре более 300oC палладий теряет каталитическую активность. При температуре менее 240oC конверсия углеводородов не обеспечивает достаточную степень очистки газов.
Предлагаемый способ позволяет проводить очистку промышленных газовых выбросов от вредных веществ (например, метанола, кумола) со степенью деструкции их не менее 97-98% в присутствии соединений (например, ароматических гидроперекисей), обуславливающих смолообразование на других каталитических композициях.
Неочевидность предложенного способа следует из того, что твердый контакт, предлагаемый в качестве катализатора I в составе каталитической композиции, использовался ранее для термического разложения: 1) побочных продуктов, образующихся при синтезе 4,4-диметилдиоксана-1,3 (ДМД), и 2) пирановой фракции, полученной при разложении ДМД в процессе синтеза изопрена из формальдегида и изобутилена (Пат. России N 1695631, кл. С 07 С 11/18, 11/096, опубл. 20.12.1996). Подвергающиеся термическому разложению продукты состоят из соединений пиранового и диоксанового типа, свойства которых резко отличаются от ароматических гидроперекисей, содержащихся в газовых выбросах. Применение аналогичного твердого контакта, предварительно прокаленного при температуре 800-1000oC, для указанных выше целей нам не известно. Промышленная применимость предлагаемого способа иллюстрируется следующими примерами:
Пример 1.
В стеклянный реактор сечением 2,26 см загружают последовательно 12 мл палладиевого катализатора, содержащего 0,1% металла на оксиде алюминия, и 6 мл твердого контакта, состоящего из (мас.%): оксида алюминия 22,4, оксида железа (II) 0,42, оксида магния 0,43, оксида кальция 0,67, оксида калия 2,4, оксида натрия 1,2, оксида титана (IV) 0,47, остальное - оксид кремния. Твердый контакт предварительно прокаливают при температуре 800oC; при этом удельная поверхность его составляет 1 м2/г. В реактор подают парогазовый поток со скоростью 63,0 л/ч. Состав потока (об.%): азот 89,5, кислород 6,0, водяной пар 3,0, метанол 1,5, муравьиная кислота 0,002, кумол 0002, гидроперекись кумола 0,002. Объемная скорость подачи очищаемого потока составляет 3500 ч-1. Реактор обогревают электропечью, обеспечивающей температуру инициирования реакции окисления ~100o. Дополнительно к исходному парогазовому потоку подают воздух в количестве, необходимом для поддержания температуры реакции на уровне 240oC. Во время процесса окисления электропечь реактора отключается, так как реакция реализуется в адиабатическом режиме с выделением значительного количества тепла. Опыт проводят через 150 часов работы катализатора в течение 4 часов. За это время в составе парогазового потока подают (г): метанола 5,040, муравьиной кислоты 0,00966, кумола 0,02520, гидроперекиси кумола 0,0319. Продукты реакции направляют в систему, состоящую из четырех последовательно соединенных ловушек (поглотителей), охлаждаемых смесью углекислоты и ацетона (температура -70 - -80oC). Первая и последняя ловушки пустые, а вторая и третья заполнены н-бутиловым спиртом. После завершения опыта содержание продуктов реакции определяют методом ГЖХ. Суммарное количество продуктов в поглотителях в этом опыте составляет (г): метанола 0,0353, муравьиной кислоты 0,00000, кумола 0,00015, гидроперекиси кумола 0,00510, что соответствует следующим значениям конверсии веществ (%): метанола 99,3, муравьиной кислоты 100, кумола 99,4, гидроперекиси кумола 84,0. При выгрузке катализатора осмоление не обнаружено,
Пример 2.
В реактор, описанный в примере 1, загружают 3 мл палладиевого катализатора, содержащего 3,0% металла на оксиде алюминия, и сверху 6 мл твердого контакта, описанного в примере 1, но прокаленного при температуре 1350oC. При этом его удельная поверхность составляет 0,2 м2/г. В реактор подают парогазовый поток со скоростью 90 л/ч. Состав потока (об.%): азот 88.5, кислород 6,0, водяной пар 3,0, метанол 2,5, муравьиная кислота 0,002, кумол 0,01, гидроперекись кумола 0,01. Объемная скорость подачи очищаемого потока 10000 ч-1. Электропечь реактора обеспечивает предварительную температуру разогрева катализатора на уровне ~100oC. Дополнительно к исходному парогазовому потоку подают воздух в количестве, необходимом для поддержания температуры реакции на уровне 290oC. Во время процесса окисления электропечь реактора отключается, так как реакция реализуется в адиабатическом режиме с выделением значительного количества тепла. За время четырехчасового балансового опыта, проведенного через 150 часов работы катализатора, подают (г): метанола 12,05, муравьиной кислоты 0,0138, кумола 0,1803, гидроперекиси кумола 0,2283. Суммарное содержание продуктов в поглотителях в этом опыте составляет (г): метанола 0,06, муравьиной кислоты 0,0000, кумола 0,0005, гидроперекиси кумола 0,00365, что соответствует следующим значениям конверсии веществ (%): метанола 99,5, муравьиной кислоты 100, кумола 99,7, гидроперекиси кумола 98,4. При выгрузке катализатора осмоление не обнаружено.
Пример 3 (для сравнения)
В реактор, описанный в примере 1, загружают 12 мл палладиевого катализатора, содержащего 3,0% металла на оксиде алюминия; твердый контакт не загружают. В реактор подают парогазовый поток состава, приведенного в примере 1, со скоростью 24 л/ч. Объемная скорость подачи очищаемого потока 2000 ч-1. Дополнительно к исходному потоку подается воздух в количестве, обеспечивающем температуру реакции 290oC за счет саморазогрева катализатора. За время четырехчасового балансового опыта, проведенного через 75 часов работы катализатора, подают (г): метанола 1,9200, муравьиной кислоты 0,00368, кумола 0,009616, гидроперекиси кумола 0,01218. Суммарное содержание продуктов в поглотителях в этом опыте составляет (г): метанола 0,7430, муравьиной кислоты 0,0000, кумола 0,00285, гидроперекиси кумола 0,00569, что соответствует следующим значениям конверсии веществ (%): метанола 61,3, муравьиной кислоты 100, кумола 70,4, гидроперекиси кумола 53,3 При выгрузке оказалось, что палладиевый катализатор более чем на половину покрыт смолообразными продуктами.
Пример 4 (для сравнения)
В реактор, описанный в примере 1, загружают 12 мл твердого контакта, подготовленного согласно примеру 2; палладий-содержащий катализатор не загружают. В реактор подают парогазовый поток состава, приведенного в примере 1, со скоростью 90 л/ч. Объемная скорость подачи очищаемого потока 7500 ч-1. Температура реакции, обеспечиваемая подачей дополнительного количества воздуха (при отключенном электрообогреве печи реактора), составляет 290oC. За время четырехчасового балансового опыта, проведенного через 150 часов работы катализатора, подают (г): метанола 7,200, муравьиной кислоты 0,0138, кумола 0,1803, гидроперекиси кумола 0,2283. Суммарное содержание продуктов в поглотителях в этом опыте составляет (г): метанола 6,547, муравьиной кислоты 0,0000, кумола 0,1554, гидроперекиси кумола 0,2011, что соответствует следующим значениям конверсии веществ (%): метанола 9,07, муравьиной кислоты 100, кумола 13,8, гидроперекиси кумола 11,9. При выгрузке твердого контакта осмоление не обнаружено.
Данные примеров 1-4 сведены в таблицу.
Анализ данных таблицы свидетельствует о том, что использование каталитической композиции с применением твердого контакта с удельной поверхностью 0,2 - 1,0 м/г, прокаленного при температуре 800 - 1350oC, и палладиевого катализатора с содержанием металла 0,1 - 3% обеспечивает эффективную очистку парогазового потока, содержащего органические примеси в количестве более 1,0 об. %, в присутствии кислорода при объемной скорости 3500 - 10000 ч-1 и температуре реакции 240 - 290oC, обусловленной подачей дополнительного количества воздуха (в адиабатическом режиме, без подвода тепла извне) в течение более 150 часов; осмоления катализатора при этом не наблюдается. В отсутствие твердого контакта даже при повышенном содержании палладия (3%) при пониженной объемной скорости (2000 ч-1) и повышенной температуре реакции (290oC) уже через 75 часов работы катализатор осмоляется и эффективность очистки потока от органических соединений значительно снижается. В отсутствие палладиевого контакта даже после длительного пробега (150 часов) осмоления твердого контакта не происходит. Однако конверсия вредных органических веществ незначительна и очистка газового потока практически не происходит.

Claims (2)

1. Способ очистки промышленных газовых выбросов от ароматических соединений, в том числе от гидроперекисей, и алифатических соединений, в том числе от метанола, при содержании последнего более 1,0 об.%, заключающийся в том, что осуществляют пропускание газовых выбросов в присутствии кислорода через каталитическую систему при 240°С - 290°С, причем каталитическая система состоит из твердого контакта с удельной поверхностью 0,2 - 1,0 м2/г, предварительно прокаленного при 800 - 1350°С, и катализатора, содержащего 0,1 - 3,0% палладия на оксидно-алюминиевом носителе.
2. Способ по п. 1, заключающийся в том, что используют твердый контакт состава, мас.%:
Оксид алюминия - 5,0 - 30,0
Оксид железа (II) - 0,1 - 5,0
Оксид магния - 0,1 - 5,0
Оксид кальция - 0,1 - 5,0
Оксид калия - 0,1 - 3,0
Оксид натрия - 0,1 - 3,0
Оксид титана (IV) - 0,1 - 3,0
Оксид кремния - Остальное
3. Способ по п. 1, заключающийся в том, что процесс проводят в присутствии палладия, нанесенного на активную окись алюминия.
RU2000126922/12A 2000-10-26 2000-10-26 Способ очистки промышленных газовых выбросов RU2171706C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000126922/12A RU2171706C1 (ru) 2000-10-26 2000-10-26 Способ очистки промышленных газовых выбросов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000126922/12A RU2171706C1 (ru) 2000-10-26 2000-10-26 Способ очистки промышленных газовых выбросов

Publications (1)

Publication Number Publication Date
RU2171706C1 true RU2171706C1 (ru) 2001-08-10

Family

ID=48231154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000126922/12A RU2171706C1 (ru) 2000-10-26 2000-10-26 Способ очистки промышленных газовых выбросов

Country Status (1)

Country Link
RU (1) RU2171706C1 (ru)

Similar Documents

Publication Publication Date Title
RU2347612C2 (ru) Катализатор производства акрилонитрила
ES2436038T3 (es) Composición catalítica para la deshidrogenación de hidrocarburos alquilaromáticos
SA93140424B1 (ar) عملية لتحضير اوليفينات خفيفة بإزالة هيدروجين البارافينات المتناظرة
KR101301805B1 (ko) 가스로부터 불순물을 제거하는 방법
JP3434512B2 (ja) 脱水素方法
BRPI0512020A (pt) processo de regeneração de catalisador
RO119864B1 (ro) Catalizator pentru reducerea conţinutului de protoxid de azot, din gaze conţinând n2o, procedeu de obţinere şi de utilizare a acestuia
US6328941B1 (en) Thermal decomposition of N2O
NL7908369A (nl) Koperoxyde, zinkoxyde en een zeldzaam aardmetaal bevat- tende katalysator, zijn bereiding en toepassing bij omzettingsreakties van koolmonoxyde.
JP2007260667A (ja) 光触媒活性化システム及び光触媒の活性化方法
ATE74109T1 (de) Katalysatoren zum abtrennen von sauerstoff aus luft durch absorption.
US7033547B1 (en) Exhaust gas treating apparatus and vehicle equipped with the apparatus
WO1997004855A1 (fr) Catalyseur antipollution et son procede d'utilisation
RU2171706C1 (ru) Способ очистки промышленных газовых выбросов
Ivanova et al. New and Future Developments in Catalysis: Chapter 9. Structured Catalysts for Volatile Organic Compound Removal
RU2159666C1 (ru) Способ очистки промышленных газовых выбросов
TW381977B (en) Process for removing nitrogen oxides from gases
JP5483723B2 (ja) 亜酸化窒素分解触媒およびこれを用いた亜酸化窒素を含むガスの浄化方法
Hung Synthesis, reactivity, and cytotoxicity effect of Pt-Pd-Rh nanocomposite cordierite catalyst during oxidation of ammonia processes
CN100450581C (zh) 用于去除羰基的改进的配置和方法
JP4512748B2 (ja) 水性ガス転化反応用触媒
WO1999003806A1 (fr) Procede de production de styrene
JP2007313487A (ja) 水性ガス転化反応用触媒及びそれを用いた水性ガス転化反応方法。
RU2140811C1 (ru) Способ очистки промышленных газовых выбросов от органических кислородосодержащих соединений
EP1237644B1 (en) Method of cleaning industrial waste gases

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091027