RU2169857C1 - Windmill plant - Google Patents

Windmill plant Download PDF

Info

Publication number
RU2169857C1
RU2169857C1 RU2000107217A RU2000107217A RU2169857C1 RU 2169857 C1 RU2169857 C1 RU 2169857C1 RU 2000107217 A RU2000107217 A RU 2000107217A RU 2000107217 A RU2000107217 A RU 2000107217A RU 2169857 C1 RU2169857 C1 RU 2169857C1
Authority
RU
Russia
Prior art keywords
gear
reduction gear
wind
windmill
working blade
Prior art date
Application number
RU2000107217A
Other languages
Russian (ru)
Inventor
М.И. Новиков
А.И. Сурский
Original Assignee
Новиков Михаил Иванович
Сурский Александр Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Новиков Михаил Иванович, Сурский Александр Иванович filed Critical Новиков Михаил Иванович
Priority to RU2000107217A priority Critical patent/RU2169857C1/en
Application granted granted Critical
Publication of RU2169857C1 publication Critical patent/RU2169857C1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

FIELD: wind-power engineering. SUBSTANCE: invention relates to windmill electric plants designed for producing compressed air or generating electric energy. In proposed windmill plant wind vane is installed through planetary reduction gear over each working blade. Housing of reduction gear is rigidly coupled with movable framework. Axle of wind vane is installed for turning in reduction gear housing and is rigidly coupled with smaller gear of reduction gear whose larger gear is rigidly secured on axle of working blade. Gear ratio of reduction gear is 1:2. Invention on provides simplified design, improved reliability and efficiency of windmill plants owing to installation of separate wind vanes over each working blade and use of central shaft as receiver for driven compressor. EFFECT: improved reliability of operation. 2 cl, 4 dwg

Description

Предлагаемое изобретение относится к области ветроэнергетики, например к ветряным агрегатам для получения сжатого воздуха, выработки электроэнергии и т.д. The present invention relates to the field of wind energy, for example, wind turbines for compressed air, power generation, etc.

Известен горизонтальный ветряной двигатель с принудительно поворачиваемыми бесконечной цепью лопастями с целью надлежащей установки их по отношению к ветру (авторское свидетельство СССР N 1174, кл F 03 D 7/06, 1926 г.). Known horizontal wind turbine with forcibly rotated endless chain of blades for the purpose of proper installation in relation to the wind (USSR copyright certificate N 1174, class F 03 D 7/06, 1926).

Известен ветродвигатель Будревича, содержащий вертикальный вал, каркас с принудительно поворачиваемыми лопастями, флюгер, управляемый флюгером и поворачивающий лопасти в оптимальное по отношению к ветру положение с помощью механизма поворота электродвигатель с пускателем и зубчатой передачей (авторское свидетельство СССР N 1250699, кл F 03 D 7/06, 1987 г.). A known Budrevich wind turbine comprising a vertical shaft, a frame with forcibly rotated blades, a weather vane driven by a wind vane and turning the blades in an optimal position with respect to the wind using a turning mechanism, an electric motor with a starter and gear transmission (USSR author's certificate N 1250699, class F 03 D 7 / 06, 1987).

Известен ветряной агрегат с центральным валом, подвижным каркасом с лопастями, имеющими возможность поворота, встроенным электрическим генератором и флюгером, установленным на центральном вале и управляющим посредством зубчатых передач положением лопастей относительно ветра (патент РФ N 2070659, кл F 03 D 3/02, 7/06, 1996 г.) - прототип. A known wind turbine with a central shaft, a movable frame with rotatable blades, an integrated electric generator and a weather vane mounted on a central shaft and controlling by means of gears the position of the blades relative to the wind (RF patent N 2070659, class F 03 D 3/02, 7 / 06, 1996) - a prototype.

Задачей предлагаемого изобретения является упрощение конструкции и повышение надежности и эффективности в эксплуатации. The task of the invention is to simplify the design and increase the reliability and efficiency in operation.

Существенными признаками изобретения являются неподвижный центральный вал, подвижный каркас с рабочими лопастями с возможностью поворота каждой лопасти вокруг собственной оси и приводимый механизм, при этом над каждой рабочей лопастью при посредстве планетарного зубчатого редуктора, корпус которого жестко связан с подвижным каркасом, установлен флюгер, ось которого укреплена с возможностью поворота в корпусе редуктора и жестко связана с малой шестерней редуктора, большая шестерня которого жестко закреплена на оси рабочей лопасти, а отношение передачи между шестернями редуктора составляет 1:2, возможно также, что неподвижный центральный вал выполнен в виде ресивера для закачки в него сжатого воздуха от установленного на агрегате в качестве приводимого механизма компрессора. The essential features of the invention are a fixed central shaft, a movable frame with working blades with the possibility of rotation of each blade around its own axis and a driven mechanism, while above each working blade by means of a planetary gear reducer, the casing of which is rigidly connected to the movable frame, a weather vane is installed, the axis of which reinforced with the possibility of rotation in the gear housing and is rigidly connected to the small gear of the gear, the large gear of which is rigidly fixed to the axis of the working blade, and the transmission ratio between the gears of the gearbox is 1: 2, it is also possible that the stationary central shaft is made in the form of a receiver for pumping compressed air into it from the compressor installed on the unit as a driven mechanism.

Отличительными признаками изобретения является то, что над каждой рабочей лопастью при посредстве планетарного зубчатого редуктора, корпус которого жестко связан с подвижным каркасом, установлен флюгер, ось которого укреплена с возможностью поворота в корпусе редуктора и жестко связана с малой шестерней редуктора, большая шестерня которого жестко закреплена на оси рабочей лопасти, а отношение передачи между шестернями редуктора составляет 1: 2, возможно также, что неподвижный центральный вал выполнен в виде ресивера для закачки в него сжатого воздуха от установленного на агрегате в качестве приводимого механизма компрессора. Distinctive features of the invention is that over each working blade by means of a planetary gear reducer, the body of which is rigidly connected to the movable frame, a weather vane is installed, the axis of which is mounted with the possibility of rotation in the gear case and is rigidly connected to the small gear of the gearbox, the large gear of which is rigidly fixed on the axis of the working blade, and the transmission ratio between the gears of the gearbox is 1: 2, it is also possible that the stationary central shaft is made in the form of a receiver for pumping into it zhatogo air from the set on the machine as a compressor driven mechanism.

На фиг. 1 схематично представлен один из вариантов конструкции ветряного агрегата. На фиг. 2 схематично представлен вариант с установленным в качестве приводимого механизма поршневым компрессором. На фиг. 3, 4 - схемы положения рабочих лопастей и флюгеров (флюгерных лопастей) относительно направления ветра. In FIG. 1 schematically shows one of the design options of the wind turbine. In FIG. 2 schematically shows an embodiment with a reciprocating compressor installed as a driven mechanism. In FIG. 3, 4 - diagrams of the position of the working blades and weathervanes (vane blades) relative to the direction of the wind.

На неподвижном центральном вале 1, опирающемся на опоры 2, установлен с помощью подшипников 3 подвижный каркас 4 со штангами 5 и 6 и рабочими лопастями 7 (например, тремя). На концах штанг 5 закреплены подшипники 8, а на концах штанг 6 закреплены планетарные зубчатые редукторы 9, в корпуса которых встроены подшипники 10 и 11. В подшипниках 8 и 10 размещены с возможностью поворота оси 12 рабочих лопастей 7. В редукторах 9 на концах осей 12 лопастей 7 жестко закреплены большие шестерни 13, а в подшипниках 11, встроенных в корпуса редукторов 9, укреплены с возможностью поворота флюгеры 14 с осями 15, на которых жестко закреплены малые шестерни 16 редукторов 9. На кронштейне 17, укрепленном на вале 1, размещены передаточное устройство 18 и приводимый механизм 19 (например, генератор электрического тока, насос). Возможна установка в качестве приводимого механизма компрессора, например поршневого (см. фиг. 2). В этом случае неподвижный центральный вал 1 выполнен в виде ресивера, к которому из нагнетания компрессора 19 после обратного клапана 20 подведен трубопровод 21. На вале 1, выполненном как ресивер, установлены предохранительный клапан 22, манометр 23, продувочный вентиль 24. Для отбора сжатого воздуха к потребителю предусмотрен вентиль 25. On a fixed central shaft 1, supported by bearings 2, a movable frame 4 with rods 5 and 6 and working blades 7 (for example, three) is mounted using bearings 3. Bearings 8 are fixed at the ends of the rods 5, and planetary gear reducers 9 are fixed at the ends of the rods 6, the bearings 10 and 11 are integrated into their housings. The bearings 12 are mounted with the possibility of rotation of the axis 12 of the working blades 7. In the gearboxes 9 at the ends of the axles 12 the blades 7 are rigidly fixed to the large gears 13, and in the bearings 11, which are built into the gear cases 9, the weathercocks 14 with the axles 15, on which the small gears 16 of the gears 9 are rigidly fixed, are fixed with a possibility of rotation. On the bracket 17 mounted on the shaft 1, there is a gear devices 18 and the driven gear 19 (for example, an electric current generator, a pump). It is possible to install as a driven mechanism a compressor, for example a piston (see Fig. 2). In this case, the fixed central shaft 1 is made in the form of a receiver, to which a pipeline 21 is connected from the compressor 19 after the check valve 20. A safety valve 22, a pressure gauge 23, and a purge valve 24 are installed on the shaft 1, which is configured as a receiver. a valve 25 is provided to the consumer.

Работает ветряной агрегат следующим образом. Первоначально при сборке устанавливают рабочие лопасти и флюгеры (флюгерные лопасти) по отношению друг к другу так, как показано на фиг. 3. Под действием ветрового потока каркас 4 с лопастями 7 вращается. Флюгеры 14 устанавливают рабочие лопасти 7 по отношению к ветровому потоку таким образом, что момент силы на них, вызывающий вращение каркаса 4, все время положительный. Предлагаемая схема управления рабочими лопастями 7 индивидуальными флюгерами 14 позволяет каркасу 4 на осях 12 рабочих лопастей 7 достигать окружных скоростей, превышающих скорость набегающего ветрового потока. Схема взаимного положения рабочих лопастей 7 и флюгеров 14 в какой-то момент времени при этом изображена на фиг. 4. Это имеет существенное значение для повышения эффективности агрегата при установке ветряного агрегата в местностях с постоянными ветрами с небольшими скоростями. Момент вращения с каркаса 4 передается с помощью передаточного устройства 18 на приводимый механизм 19. В случае установки в качестве приводимого механизма 19 компрессора, например поршневого, сжатый воздух после него через обратный клапан 20 закачивается внутрь вала (ресивера) 1, а затем отбирается к потребителю. Использоваться сжатый воздух может в турбодетандере, служащем приводом для генератора электрического тока, а воздух после расширения в турбодетандере может быть использован для охлаждения. Также сжатый воздух может быть использован для обогрева, так как имеет довольно высокую температуру после компрессора. The wind turbine operates as follows. Initially, during assembly, rotor blades and weathervanes (weathervane blades) are installed with respect to each other as shown in FIG. 3. Under the influence of the wind flow, the frame 4 with blades 7 rotates. Weathercocks 14 set the working blades 7 in relation to the wind flow so that the moment of force on them, causing the rotation of the frame 4, is always positive. The proposed control circuit of the working blades 7 by individual weather vanes 14 allows the frame 4 on the axes 12 of the working blades 7 to reach peripheral speeds exceeding the speed of the incident wind flow. A diagram of the relative position of the working blades 7 and weathervanes 14 at some point in time is shown in FIG. 4. This is essential for increasing the efficiency of the unit when installing the wind unit in areas with constant winds at low speeds. The moment of rotation from the frame 4 is transmitted using the transmission device 18 to the driven mechanism 19. If a compressor, for example a piston, is installed as the driven mechanism 19, compressed air is then pumped through the check valve 20 into the shaft (receiver) 1 and then taken to the consumer . Compressed air can be used in a turboexpander, which serves as a drive for an electric current generator, and air after expansion in a turboexpander can be used for cooling. Also, compressed air can be used for heating, as it has a rather high temperature after the compressor.

Возможно также применение для установки индивидуальных флюгеров обычных двухступенчатых зубчатых редукторов с сохранением передаточного отношения 1: 2. It is also possible to use ordinary two-stage gear reducers for the installation of individual weathercocks while maintaining a gear ratio of 1: 2.

Claims (2)

1. Ветряной агрегат, содержащий неподвижный центральный вал, подвижный каркас с рабочими лопастями с возможностью поворота каждой лопасти вокруг собственной оси и приводимый механизм, отличающийся тем, что над каждой рабочей лопастью при посредстве планетарного зубчатого редуктора, корпус которого жестко связан с подвижным каркасом, установлен флюгер, ось которого укреплена с возможностью поворота в корпусе редуктора и жестко связана с малой шестерней редуктора, большая шестерня которого жестко закреплена на оси рабочей лопасти, а отношение передачи между шестернями редуктора составляет 1: 2. 1. A wind unit comprising a fixed central shaft, a movable frame with working blades with the possibility of rotation of each blade around its own axis and a driven mechanism, characterized in that above each working blade by means of a planetary gear reducer, the housing of which is rigidly connected to the movable frame, is installed weather vane, the axis of which is fixed with the possibility of rotation in the gear housing and is rigidly connected to the small gear of the gear, the large gear of which is rigidly fixed to the axis of the working blade, and shenie transmission gear between the gears is 1: 2. 2. Ветряной агрегат по п. 1, отличающийся тем, что неподвижный центральный вал выполнен в виде ресивера для закачки в него сжатого воздуха от установленного на агрегате в качестве приводимого механизма компрессора. 2. The wind unit according to claim 1, characterized in that the stationary central shaft is made in the form of a receiver for pumping compressed air into it from that installed on the unit as a driven compressor mechanism.
RU2000107217A 2000-03-21 2000-03-21 Windmill plant RU2169857C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000107217A RU2169857C1 (en) 2000-03-21 2000-03-21 Windmill plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000107217A RU2169857C1 (en) 2000-03-21 2000-03-21 Windmill plant

Publications (1)

Publication Number Publication Date
RU2169857C1 true RU2169857C1 (en) 2001-06-27

Family

ID=20232273

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000107217A RU2169857C1 (en) 2000-03-21 2000-03-21 Windmill plant

Country Status (1)

Country Link
RU (1) RU2169857C1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Similar Documents

Publication Publication Date Title
RU2169857C1 (en) Windmill plant
US8106527B1 (en) Hydraulic power generator
KR100754790B1 (en) Wind powered generator
EP1783364A2 (en) Wind power generation systems and method of operating same
RU2101562C1 (en) Wind-electric storage plant
EP0104034A1 (en) Wind turbines
CA2486181A1 (en) Wind turbine with hydraulic transmission
WO2008051455A3 (en) Submersible turbine-generator unit for ocean and tidal currents
JP2000337246A (en) Power transmission used for wind power generating device
WO2008022209A3 (en) Wind driven power generator
GB2471272A (en) Vertical axis magnus effect wind turbine
US6155047A (en) Apparatus and method for generating energy
JP2007051584A (en) Wind power generation device
GB2449436A (en) Fluid driven generator
WO2013185216A1 (en) Turbine driven by wind or motor and method for generating electricity
RU2383775C1 (en) Rotor-type windmill
EP2434103A1 (en) High speed turbine arrangement
JP2005180237A (en) Wind power generation device
EP3480508B1 (en) Lubrication system for a main bearing of a wind turbine
RU2210000C1 (en) Rotary windmill
CN101696673A (en) Coaxial-direction wind-driven generator with double fan blade
WO2003098036A1 (en) Orbital-rotating turbine and propeller
RU2070659C1 (en) Wind-electric set
RU2420670C1 (en) Counter-rotary wind-driven power plant (versions)
RU2116504C1 (en) Windmill power plant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160322