RU2166529C1 - Способ получения моторных топлив - Google Patents

Способ получения моторных топлив Download PDF

Info

Publication number
RU2166529C1
RU2166529C1 RU99119161/04A RU99119161A RU2166529C1 RU 2166529 C1 RU2166529 C1 RU 2166529C1 RU 99119161/04 A RU99119161/04 A RU 99119161/04A RU 99119161 A RU99119161 A RU 99119161A RU 2166529 C1 RU2166529 C1 RU 2166529C1
Authority
RU
Russia
Prior art keywords
catalyst
oxide
platinum
zeolite
silica
Prior art date
Application number
RU99119161/04A
Other languages
English (en)
Other versions
RU99119161A (ru
Inventor
В.Г. Крикоров
Ю.П. Суворов
В.Б. Мельников
М.И. Левинбук
В.А. Патрикеев
Н.Д. Костина
М.Л. Павлов
Original Assignee
Левинбук Михаил Исаакович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Левинбук Михаил Исаакович filed Critical Левинбук Михаил Исаакович
Priority to RU99119161/04A priority Critical patent/RU2166529C1/ru
Application granted granted Critical
Publication of RU2166529C1 publication Critical patent/RU2166529C1/ru
Publication of RU99119161A publication Critical patent/RU99119161A/ru

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Использование: нефтехимия. Каталитический крекинг нефтяных фракций осуществляют в присутствии катализатора, состоящего из 5-20% цеолита Y с мольным отношением оксид кремния: оксид алюминия, равным 4,5-9,5 и 80-95 мас.%, и алюмосиликатной основы и имеющего следующий химический состав, мас.%: оксид алюминия 5,5-9,5, оксиды редкоземельных элементов 0,5-3,0, платина 0,0001-0,01, оксид железа 0,01-0,4, оксид кальция 0,01-0,5, оксид натрия 0,01-0,5, оксид кремния - остальное. Способ позволяет увеличить выход бензина, повысить октановое число бензина и снизить выброс оксидов серы при регенерации катализатора в окружающую среду. 2 табл.

Description

Изобретение относится к получению моторных топлив и может быть использовано в процессе каталитического крекинга в нефтеперерабатывающей промышленности.
Известен способ получения моторных топлив путем крекинга нефтяных фракций с использованием цеолитсодержащего алюмосиликатного катализатора в шариковой и микросферической формах. В шариковой форме катализатор содержит 10 - 12 мас.% цеолита Y и имеет химический состав, мас.%:
Оксид алюминия - 9 - 10
Оксиды редкоземельных элементов - 2,0 - 2,5
Оксид натрия - 0,2 - 0,6
Оксид кремния - Остальное
(Крекинг нефтяных фракций на цеолитсодержащих катализаторах. Под ред. С. Н. Хаджиева. М.: Химия. 1982 г.)
В микросферической форме катализатор содержит 16 - 18 мас.% цеолита Y и имеет следующий химический состав, мас.%:
Оксид алюминия - 10 - 12
Оксиды редкоземельных элементов - 2,5 - 3,0
Оксид натрия - 0,2 - 0,6
Оксид кремния - Остальное
Известен также способ крекинга нефтяных фракций в присутствии цеолитсодержащих алюмосиликатных катализаторов с добавкой микроколичеств платины 0,0001 - 0,1 мас. % (патент США 4429053, кл.B01J 29/12; патент Франции 2500326, кл. B01J 29/12; Яндиева Л.А,, Закарина Н.А. Катализаторы крекинга и цеолиты. Сборник научных трудов ГрозНИИ, М., ЦНИИТЭНЕФТЕХИМ, 1984 г., 38, с. 76 - 80).
Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения моторных топлив путем крекинга нефтяных фракций в присутствии платиноцеолитсодержащего редкоземельного алюмосиликатного катализатора с содержанием платины 0,00001 - 0,002% (патент FR 2407745, 1979 г.). Содержание цеолита обработанного солью металла II-VIII гр. составляет 12 - 60%; катализатор содержит также возможно ≅ 75% глины 20-50% тригидрата α-Al2O3 и неорганическое связующее типа окисла.
Недостатком способа получения моторных топлив путем крекинга нефтяных фракций является недостаточно высокий выход бензиновой фракции.
Задачей настоящего изобретения является повышение выхода бензиновой фракции за счет повышения активности и селективности алюмосиликатного катализатора.
Поставленная задача решается предлагаемым способом получения моторных топлив путем каталитического крекинга нефтяных фракций в присутствии платиноцеолитсодержащего редкоземельного алюмосиликатного катализатора, в котором используют катализатор, состоящий из 5 - 20 мас.% цеолита Y с мольным отношением оксид кремния: оксид алюминия, равным 4,5 - 9,5 и 80 - 95 мас.% алюмосиликатной основы, и имеющий химический состав, мас.%:
Оксид алюминия - 5,5 - 9,5
Оксиды редкоземельных элементов - 0,5 - 3,0
Платина - 0,0001 - 0,1
Оксид железа - 0,01-0,4
Оксид кальция - 0,01 - 0,5
Оксид натрия - 0,01 - 0,5
Оксид кремния - Остальное
Процесс получения моторных топлив путем крекинга нефтяных фракций осуществляют следующим образом: на шариковых катализаторах крекинг вакуумного газойля проводят при температуре 450 - 480oС, объемной скорости подачи сырья 1,0 - 2,5 ч-1, кратности циркуляции катализатора 1,5 - 2,5 кг/кг; на микросферических катализаторах крекинг проводят при 470 - 510oС, объемной скорости подачи сырья 4,8 ч-1, кратности циркуляции 6,9 кг/кг.
Катализатор готовят по следующей методике.
Водные растворы сульфата алюминия, подкисленного серной кислотой, содержащего 15 - 25 кг/м3 оксида алюминия и 50 - 80 кг/м3 серной кислоты, силиката натрия (жидкого стекла) концентрации по NaOH 1,4 - 1,8 кг-экв./м3 и суспензию цеолита NaY, содержащую 30 - 110 кг/с3 цеолита, смешивают в смесителе с образованием алюмосиликатного цеолитсодержащего гидрозоля, который далее коагулируют при 5 - 20oС и рН 7,5 - 8,5 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель можно подвергать синерезису при 35 - 60oС в течение 6 - 24 ч. Далее гидрогель обрабатывают водным раствором нитрата или сульфата аммония концентрации 5 - 20 кг/м3 при 35-60oС в течение 12-36 ч и водным раствором нитратов редкоземельных элементов концентрации 1-5 кг/м3(в расчете на оксиды редкоземельных элементов) в течение 24 - 36 ч или их смесью, промывают конденсатной водой, содержащей катионы железа 0,01 - 0,4 кг/м3, кальция 0,01 - 0,5 кг/м3 (в расчете на оксиды металлов) при 35 - 60oС в течение 8 - 24 ч, промывают конденсатной водой при 35 - 60oС в течение 8 - 24 ч, сушат при 110 - 190oС и прокаливают при 650 - 750oС в течение 12 - 24 ч в токе паровоздушной смеси.
Платину выводят в катализатор путем добавления платинохлористоводородной кислоты, Н2PtCl6 6H2О, в раствор сульфата алюминия в количестве 0,0002 - 0,04 кг/м3 (в расчете на платину) или в количестве 0,0006 - 0,085 кг/м3 (в расчете на платину) в водную суспензию цеолита.
При получении катализатора в микросферической форме шарики гидрогеля после промывки подвергают диспергированию в воде при 20 - 60oС, распылительной сушке при температуре входа дымовых газов 400 - 650oС и выхода 160 - 190oС в течение 12 - 24 ч в токе паровоздушной смеси.
Микросферический катализатор также получают путем ситового разделения катализатора в шариковой форме после стадии сушки и/или прокаливания с отбором фракции шариков с диаметром менее 2 мм и последующего помола до фракции 20 - 140 микрон.
Ниже приведены примеры получения катализатора и способа получения моторных топлив путем крекинга нефтяных фракций в присутствии данного катализатора.
Пример 1. Водный раствор сульфата алюминия, содержащий 20 кг/м3 Al2O3 и 70 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,6 кг-экв/м3 и суспензию цеолита, содержащую 80 кг/м3NaY с мольным отношением оксид кремния: оксид алюминия, равным 4,5, и платинохлористоводородную кислоту концентрации 0,008 кг/м3 (в расчете на платину), смешивают в смесителе с образованием гидрозоля, коагулируют при 5oС и рН 8,3 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель обрабатывают водным раствором сульфата аммония концентрации 10 кг/м3 при 50oC в течение 12 ч и водным раствором нитратов редкоземельных элементов концентрации 1,5 кг/м3(в расчете на оксиды редкоземельных элементов - ОРЗЭ) при 50oC в течение 36 ч, промывают конденсатной водой, содержащей катионы железа 0,01 кг/м3, катионы кальция 0,001 кг/м3, при 50oС в течение 24 ч, сушат при 150oС и прокаливают при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный шариковый катализатор содержит 10 мас. % цеолита и имеет состав, мас.%:
Оксид алюминия - 8,5
Оксиды редкоземельных элементов - 2,5
Платина - 0,0001
Оксид железа - 0,01
Оксид кальция - 0,01
Оксид натрия - 0,2
Оксид кремния - Остальное
Пример 2. Водный раствор сульфата алюминия, содержащий 25 кг/м3 Al2O3 и 80 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,8 кг-экв/м3 и суспензию цеолита, содержащую 30 кг/м3 NaY с мольным отношением оксид кремния: оксид алюминия, равным 9,5, и платинохлористоводородную кислоту концентрации 0,015 кг/м3 (в расчете на платину), смешивают в смесителе с образованием гидрозоля, коагулируют при 5oС и рН 8,5 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель обрабатывают водным раствором сульфата аммония концентрации 5 кг/м3 при 35oC в течение 36 ч и водным раствором нитратов редкоземельных элементов концентрации 5 кг/м3 (в расчете на оксиды редкоземельных элементов - ОРЗЭ) при 35oС в течение 24 ч, промывают конденсатной водой, содержащей катионы железа 0,4 кг/м3, катионы кальция 0,5 кг/м3, при 35oС в течение 24 ч, сушат при 110oС и прокаливают при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный шариковый катализатор содержит 20 мас.% цеолита и имеет состав, мас.%:
Оксид алюминия - 9,5
Оксиды редкоземельных элементов - 3,0
Платина - 0,01
Оксид железа - 0,4
Оксид кальция - 0,5
Оксид натрия - 0,5
Оксид кремния - Остальное
Пример 3. Водный раствор сульфата алюминия, содержащий 15 кг/м3 Al2O3 и 50 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,4 кг-экв/м3 и суспензию цеолита, содержащую 110 кг/м3 NaY с мольным отношением оксид кремния: оксид алюминия, равным 6,2, и платинохлористоводородную кислоту концентрации 0,085 кг/м3 (в расчете на платину), смешивают в смесителе с образованием гидрозоля, коагулируют при 20oС и рН 7,5 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель обрабатывают водным раствором сульфата аммония концентрации 20 кг/м3 при 60oC в течение 18 ч и водным раствором нитратов редкоземельных элементов концентрации 1 кг/м3 (в расчете на оксиды редкоземельных элементов - ОРЗЭ) при 60oС в течение 36 ч, промывают конденсатной водой, содержащей катионы железа 0,1 кг/м3, катионы кальция 0,15 кг/м3, при 60oС в течение 24 ч, сушат при 150oС и прокаливают при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный шариковый катализатор содержит 5 мас.% цеолита и имеет состав, мас.%:
Оксид алюминия - 5,5
Оксиды редкоземельных элементов - 0,5
Платина - 0,004
Оксид железа - 0,1
Оксид кальция - 0,15
Оксид натрия - 0,01
Оксид кремния - Остальное
Пример 4. Водный раствор сульфата алюминия, содержащий 20 кг/м3 Al2O3 и 70 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,6 кг-экв/м3 и суспензию цеолита, содержащую 80 кг/м3 NaY, с мольным отношением оксид кремния: оксид алюминия, равным 5,8, и платинохлористоводородную кислоту концентрации 0,0002 кг/м3 (в расчете на платину), смешивают в смесителе с образованием гидрозоля, коагулируют при 10oС и рН 8,3 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель обрабатывают водным раствором сульфата аммония концентрации 10 кг/м3 при 50oC в течение 12 ч и водным раствором нитратов редкоземельных элементов концентрации 1,5 кг/м3 (в расчете на оксиды редкоземельных элементов - ОРЗЭ) при 50oС в течение 36 ч, промывают конденсатной водой, содержащей катионы железа 0,02 кг/м3, катионы кальция 0,02 кг/м3, при 50oС в течение 24 ч, сушат при 150oС и прокаливают при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный шариковый катализатор содержит 10 мас.%: цеолита и имеет состав, мас.%:
Оксид алюминия - 8,5
Оксиды редкоземельных элементов - 1,5
Платина - 0,0001
Оксид железа - 0,2
Оксид кальция - 0,2
Оксид натрия - 0,15
Оксид кремния - Остальное
Пример 5. Водный раствор сульфата алюминия, содержащий 20 кг/м3 Al2O3, 0,04 кг/м3 платинохлористоводородной кислоты (в расчете на платину) и 70 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,6 кг-экв/м3 и суспензию цеолита, содержащую 80 кг/м3 NaY, с мольным отношением оксид кремния: оксид алюминия, равным 5,8, смешивают в смесителе с образованием гидрозоля, коагулируют при 10oС и рН 8,3 в гидрогель шариковой формы в слое минерального масла. Затем гидрогель обрабатывают водным раствором сульфата аммония концентрации 10 кг/м3 при 50oC в течение 12 ч и водным раствором нитратов редкоземельных элементов концентрации 1,5 кг/м3 (в расчете на оксиды редкоземельных элементов - ОРЗЭ) при 50oС в течение 36 ч, промывают конденсатной водой, содержащей катионы железа 0,01 кг/м3, катионы кальция 0,01 кг/м3, при 50oС в течение 24 ч, промывают конденсатной водой при 50oC в течение 24 ч, сушат при 150oС и прокаливают при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный шариковый катализатор содержит 12 мас.% цеолита и имеет состав, мас.%:
Оксид алюминия - 8,5
Оксиды редкоземельных элементов - 1,5
Платина - 0,01
Оксид железа - 0,01
Оксид кальция - 0,01
Оксид натрия - 0,2
Оксид кремния - Остальное
Пример 6. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 50oС, распылительной сушке при температуре входа дымовых газов 650oС и выхода дымовых газов 190oС и прокаливанию в кипящем слое при 750oС в течение 12 ч в токе паровоздушной смеси.
Полученный катализатор имеет состав как в примере 5.
Пример 7. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 35oС, распылительной сушке при температуре входа дымовых газов 400oС и выхода дымовых газов 160oС и прокаливанию в кипящем слое при 600oС в течение 24 ч в токе паровоздушной смеси.
Полученный катализатор имеет состав как в примере 5.
Пример 8. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 60oС, распылительной сушке при температуре входа дымовых газов 500oС и выхода дымовых газов 175oС и прокаливанию в кипящем слое при 750oС в течение 24 ч в токе паровоздушной смеси.
Полученный катализатор имеет состав как в примере 5.
Пример 9. Катализатор готовят аналогично примеру 5. Далее после прокаливания катализатора его подвергают ситовому разделению и фракцию шариков с диаметром менее 2 мм подвергают помолу с получением микросферического катализатора.
Полученный катализатор имеет состав как в примере 5.
Пример 10. Катализатор, полученный по примеру 4, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с движущимся слоем катализатора при температуре реакции крекинга 450oC, объемной скорости подачи сырья 1,0 ч-1 и кратности циркуляции катализатора 1,5 кг/кг.
Пример 11. Катализатор, полученный по примеру 4, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с движущимся слоем катализатора при температуре реакции крекинга 480oС, объемной скорости подачи сырья 2,5 ч-1 и кратности циркуляции катализатора 2,5 кг/кг.
Пример 12. Микросферический катализатор, полученный по примеру 6, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с "кипящим" слоем катализатора при температуре реакции крекинга 470oС, объемной скорости подачи сырья 4,0 ч-1 и кратности циркуляции катализатора 6,0 кг/кг.
Пример 13. Микросферический катализатор, полученный по примеру 6, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с "кипящим" слоем катализатора при температуре реакции крекинга 510oС, объемной скорости подачи сырья 8,0 ч-1 и кратности циркуляции катализатора 9,0 кг/кг.
Полученные катализаторы перед лабораторными испытаниями обрабатывают 100%-ным водяным паром при 750oC в течение 6 ч. Испытания шариковых катализаторов проводят согласно ОСТ 38.01176-79 при температуре 460oС и объемной скорости подачи сырья 1,5 ч-1. В качестве сырья используют стандартное сырье: керосино-газойлевую фракцию краснодарских нефтей (плотность при 20oС 862 кг/м3, температура начала кипения 203oС, температура конца кипения 360oС). Микросферические катализаторы испытывают согласно ОСТ 38.01161-78 при 480oС и весовой скорости подачи сырья 7,0 ч-1. Результаты лабораторных испытаний представлены в табл. 1.
Шариковые катализаторы, полученные по примерам 1-5, используют в процессе крекинга вакуумного газойля западно-сибирской нефти (плотность 916 кг/м3, температура начала кипения 512oС, содержание серы 1,6 мас.%). Процесс проводят на пилотной установке с движущимся слоем катализатора при температуре 460oC, объемной скорости подачи сырья 1,5 ч-1, кратности циркуляции катализатора 2 кг/кг.
Микросферические катализаторы, полученные по примерам 6 - 9, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс проводят на пилотной установке с "кипящим" слоем катализатора при температуре 480oС, массовой скорости подачи сырья 5 ч-1, кратности циркуляции катализатора 7 кг/кг.
Результаты пилотных испытаний шариковых и микросферических катализаторов представлены в табл. 2.

Claims (1)

  1. Способ получения моторных топлив путем каталитического крекинга нефтяных фракций в присутствии платиноцеолитсодержащего редкоземельного алюмосиликатного катализатора, отличающийся тем, что используют катализатор, состоящий из 5 - 20 мас.% цеолита Y c мольным отношением оксид кремния: оксид алюминия, равным 4,5 - 9,5 и 80 - 95 мас.% алюмосиликатной основы, и имеющий химический состав, мас.%:
    Оксид алюминия - 5,5 - 9,5
    Оксиды редкоземельных элементов - 0,5 - 3,0
    Платина - 0,0001 - 0,01
    Оксид железа - 0,01 - 0,4
    Оксид кальция - 0,01 - 0,5
    Оксид натрия - 0,01 - 0,5
    Оксид кремния - Остальное
RU99119161/04A 1999-09-01 1999-09-01 Способ получения моторных топлив RU2166529C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99119161/04A RU2166529C1 (ru) 1999-09-01 1999-09-01 Способ получения моторных топлив

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99119161/04A RU2166529C1 (ru) 1999-09-01 1999-09-01 Способ получения моторных топлив

Publications (2)

Publication Number Publication Date
RU2166529C1 true RU2166529C1 (ru) 2001-05-10
RU99119161A RU99119161A (ru) 2001-05-27

Family

ID=20224671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99119161/04A RU2166529C1 (ru) 1999-09-01 1999-09-01 Способ получения моторных топлив

Country Status (1)

Country Link
RU (1) RU2166529C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526987C2 (ru) * 2009-01-12 2014-08-27 Ифп Энержи Нувелль Получение твердого материала на основе диоксида цинка, подходящего для очистки газа или жидкости

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526987C2 (ru) * 2009-01-12 2014-08-27 Ифп Энержи Нувелль Получение твердого материала на основе диоксида цинка, подходящего для очистки газа или жидкости

Similar Documents

Publication Publication Date Title
US4499197A (en) Co-gel catalyst manufacture
CA2216155C (en) Mesoporous fcc catalyst formulated with gibbsite and rare earth oxide
CA1038364A (en) Process for preparing a petroleum cracking catalyst
US4973399A (en) Catalytic cracking of hydrocarbons
US4022714A (en) Silica hydrosol bound cracking catalysts
CA1058140A (en) Fluid cracking catalysts
US4125591A (en) Process for producing rare earth exchanged crystalline aluminosilicate
CN112371167B (zh) 一种生产高辛烷值组分汽油的催化剂及其制备方法和应用
US3276993A (en) Compositions and methods for the conversion of hydrocarbons employing a crystalline alumina-silicate catalyst composite
JPH06191834A (ja) 変性アルミナ調製法及び変性アルミナを使用した流動接触クラッキング触媒
CA1267128A (en) Catalyst for reducing the nitrogen oxide content of flue gases
CN105728014B (zh) 一种催化裂化催化剂的制备方法
CA1161818A (en) Catalytic cracking catalyst
RU2166529C1 (ru) Способ получения моторных топлив
RU2167908C2 (ru) Способ получения моторных топлив
CA2084929C (en) Catalyst and process for cracking hydrocarbons with highly attrition resistant mesoporous catalytic cracking catalysts
JPS6190743A (ja) 炭化水素接触分解触媒組成物
TW201138966A (en) Process for making improved catalysts from clay-derived zeolites
JPS61204042A (ja) 耐バナジウム性ゼオライト流動クラツキング触媒
RU2233309C1 (ru) Способ получения моторных топлив
JPH0516906B2 (ru)
RU2252242C1 (ru) Способ получения моторных топлив
JPH0475783B2 (ru)
RU2677870C1 (ru) Гранулированный катализатор крекинга и способ его приготовления
EP0189267A2 (en) Fluidizable composition for catalytic cracking

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030902