RU2158011C2 - Детектор для регистрации нейтронов и гамма-излучения - Google Patents

Детектор для регистрации нейтронов и гамма-излучения Download PDF

Info

Publication number
RU2158011C2
RU2158011C2 RU98110624/28A RU98110624A RU2158011C2 RU 2158011 C2 RU2158011 C2 RU 2158011C2 RU 98110624/28 A RU98110624/28 A RU 98110624/28A RU 98110624 A RU98110624 A RU 98110624A RU 2158011 C2 RU2158011 C2 RU 2158011C2
Authority
RU
Russia
Prior art keywords
neutron
crystal
neutrons
collimator
scintillation
Prior art date
Application number
RU98110624/28A
Other languages
English (en)
Other versions
RU98110624A (ru
Inventor
Б.В. Шульгин
В.Л. Петров
Д.Б. Шульгин
Е.Г. Ситников
Д.В. Райков
Ф.Г. Плаксин
Original Assignee
Уральский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уральский государственный технический университет filed Critical Уральский государственный технический университет
Priority to RU98110624/28A priority Critical patent/RU2158011C2/ru
Publication of RU98110624A publication Critical patent/RU98110624A/ru
Application granted granted Critical
Publication of RU2158011C2 publication Critical patent/RU2158011C2/ru

Links

Abstract

Использование: для радиационного мониторинга. Сущность: сцинтилляционный датчик, помещенный в дополнительный коллиматор, содержит сцинтилляционный чувствительный к гамма-излучению кристалл Bi4Ge3O12 (BGO), выполненный в виде кристалла с колодцем, в который помещено в виде вставки чувствительное к нейтронам сцинтиллирующее вещество на основе стильбена или пластмассы, и фотоэлектронный умножитель, причем в блоке электронной обработки сигналов на выходе схемы временной селекции дополнительно размещен амплитудный анализатор сцинтиимпульсов. Коллиматор выполнен двуслойным из водородосодержащего замедлителя нейтронов - полиэтилена (внешний слой) и кадмиевого поглотителя нейтронов (внутренний слой). Технический результат - обеспечение направленной регистрации нейтронов (телескопический режим работы детектора), повышенное отношение сигнал/шум нейтронно-чувствительной вставки датчика. 1 з.п. ф-лы, 1 ил.

Description

Изобретение предназначено для целей радиационного мониторинга, для регистрации (обнаружения) и определения местоположения источников нейтронного излучения на фоне сопутствующего, требующего учета и спектрометрического анализа гамма-излучения в системах технического радиационного контроля наземного, морского и космического базирования, в частности для обнаружения и идентификации источников нейтронного и гамма-излучения, в подразделениях министерства по чрезвычайным ситуациям, в системах таможенного контроля, в пунктах контроля за провозом делящихся материалов (урана, плутония) и в астрофизических системах контроля (за потоками высокоэнергетических нейтронов).
Известные детекторы ядерных излучений содержат, как правило, датчик и блок электронного обработки сигналов [1-5]. Например, селективный детектор по патенту [2] содержит два датчика, один из которых чувствителен к заряженным частицам и нейтронам, в то время как другой чувствителен только к заряженным частицам; число регистрируемых нейтронов определяется разностным сигналом с этих датчиков, выделяемым с помощью разностной схемы электронного блока. Однако возможность применимости такового детектора для регистрации незаряженных частиц, в частности гамма-излучения, в патенте [2] не оговорена. Кроме того, детектор, описанный в патенте [2], не может быть использован для работы в телескопическом режиме, т.е. для определения местоположения быстрых нейтронов, поскольку он с одинаковой эффективностью регистрирует нейтроны, поступающие как через торец, так и через боковую поверхность датчика, т. е. он не обладает геометрической избирательностью при регистрации нейтронов.
Известный детектор [3] нескольких видов излучений включает два сцинтилляционных кристалла с зеленым и красным свечением, один из которых чувствителен к высокоэнергетическому излучению, а другой - к низкоэнергетическому, и электронно-оптический блок регистрации, выделяющий сигналы от разных кристаллов-датчиков с помощью светофильтров (зеленого и красного) и регистрирующий их с помощью фотодиодов. Такой детектор имеет, однако, ограниченные области применения. По данным [3] он пригоден для регистрации рентгеновского излучения с двумя различными энергиями. Такой детектор не обладает геометрической избирательностью при регистрации излучения, т.е. не имеет выделенного телескопического направления регистрации излучения и не может определять местонахождения источника быстрых нейтронов и не обеспечивает проведения спектрометрического анализа гамма-излучения.
Известно устройство, описанное в [4], содержащее датчик, в частности, сцинтилляционный однокристальный датчик, чувствительный одновременно к нейтронам и гамма-лучам, и электронную схему селекции (разделения) сигналов (импульсов), создаваемых нейтронами и гамма-лучами. Однако такое устройство имеет весьма ограниченные области применения: любой однокристальный датчик не является оптимальным для одновременной регистрации нейтронов и гамма-лучей в диапазоне энергий до 10 МэВ и выше. Если сцинтилляционный датчик выполнен из водородосодержащего, чувствительного к быстрым нейтронам материала, т.е. из материала с низким эффективным атомным номером, то такой датчик практически не чувствителен к высокоэнергетическому гамма-излучению в диапазоне 1-10 МэВ и выше и тем более не пригоден для спектрометрии жесткого гамма-излучения. Если сцинтилляционный датчик выполнен из материала с высоким эффективным атомным номером, то будучи чувствительным к высокоэнергетическому гамма-излучению, он не будет регистрировать быстрые нейтроны. Таким образом, известное устройство [4] непригодно для одновременной регистрации высокоэнергетического (1-10 МэВ и выше) гамма-излучения и быстрых нейтронов, оно также непригодно для определения местоположения источника нейтронов, поскольку не может работать в телескопическом режиме (не обладает геометрической избирательностью).
Наиболее близким к заявляемому является устройство, описанное в [5], которое содержит датчик и блок электронной обработки сигналов. Датчик выполнен в виде последовательно соединенных сцинтилляционного кристалла на основе ортогерманата висмута Bi4Ge3O12 (BGO), чувствительного к протонному, рентгеновскому, а также альфа-, бета-, гамма-излучениям, и световода, выполненного из органического водородосодержащего вещества-сцинтиллятора на основе стильбена или пластмассы (CH)n, чувствительного к быстрым нейтронам, и фотоэлектрического умножителя, а блок электронной обработки сигналов включает схему временной селекции сцинтиимпульсов от сцинтиллятора и световода. Однако такое устройство имеет достаточно ограниченные области применения: оно непригодно для спектрометрии гамма-излучения и нейтронов и, соответственно, непригодно для идентификации гамма-радионуклидов и идентификации делящихся материалов (урана, плутония и других). Поскольку чувствительный к нейтронам компонент-сцинтиллирующий световод в устройстве [5] не имеет боковой защиты, он оказывается одинаково чувствительным к быстрым нейтронам, попадающим в него как через торец, так и через боковую поверхность. Таким образом, известное устройство [5] не обладает геометрической избирательностью при регистрации быстрых нейтронов и, соответственно, непригодно для определения местоположения источников быстрых нейтронов. Кроме того, поскольку сцинтиллирующий нейтронно-чувствительный световод не имеет боковой защиты от гамма-лучей, он оказывается под воздействием сопутствующего гамма-излучения, вызывающего дополнительные сигналы, накладывающиеся на сигналы от нейтронного излучения, что снижает отношение сигнал/шум и снижает чувствительность датчика к нейтронному излучению.
Заявляемое устройство, фиг. 1, содержит датчик и блок электронной обработки сигналов. Датчик состоит из чувствительного к гамма-излучению кристалла BGO (1) с колодцем и чувствительного к нейтронам сцинтиллирующего вещества (2) на основе стильбена или пластмассы, выполненного в виде сцинтилляционной вставки, размещенной в колодце в кристалле (1), причем сам кристалл BGO размещен в дополнительном двуслойном коллиматоре, внешний слой которого выполнен из водородосодержащего замедлителя нейтронов полиэтилена (3), а внутренний (4) из кадмия. В состав датчика входит также фотоумножитель (5), находящийся в оптическом контакте как с кристаллом BGO (1), так и со сцинтилляционной вставкой (2). Блок электронной обработки сигналов (6) содержит схему временной селекции, выход которой подключен ко входу дополнительного амплитудного анализатора сцинтиимпульсов.
Сущность изобретения заключается в том, что сцинтилляционный датчик помещается для защиты от нейтронов, поступающих сбоку, в дополнительный двухслойный коллиматор для обеспечения телескопического режима работы и повышения чувствительности и содержит сцинтилляционный чувствительный к гамма-излучению кристалл Bi4Ge3O12 (BGO), выполненный в виде кристалла с колодцем, в который помещено в виде вставки чувствительное к нейтронам сцинтиллирующее вещество на основе стильбена или пластмассы, и фотоэлектронный умножитель, причем в блоке электронной обработки сигналов на выходе схемы временной селекции дополнительно размещен амплитудный анализатор сцинтиимпульсов. Стенки кристалла BGO играют роль дополнительной защиты от гамма-излучения для центральной нейтронно-чувствительной сцинтилляционной вставки.
Устройство работает в полях нейтронного и гамма-излучения следующим образом. Под действием быстрых нейтронов от делящихся материалов или других источников, попадающих через незащищенный наружным коллиматором торец датчика на чувствительную к ним пластмассовую (CH)n или стильбеновую сцинтилляционную вставку, в ней возникают световые вспышки с длиной волны излучения 400-420 нм с длительностью 2-3 нс и с амплитудой, зависящей от энергии регистрируемого нейтрона. Эти короткие вспышки, создаваемые быстрыми нейтронами, поступают на фотокатод ФЭУ, создавая на его выходе электрические импульсы длительностью 2-3 нс, которые поступают на вход схемы временной селекции сцинтиимпульсов, которая подсчитывает число импульсов от нейтронов.
Под действием гамма-излучения в сцинтилляционном кристалле BGO возникают световые вспышки с длиной волны излучения 480-505 нм и длительностью 300 нс и амплитудой, зависящей от энергии регистрируемых гамма-квантов. Эти вспышки поступают на фотоэлектронный умножитель, создавая электрические импульсы, которые после схемы временной селекции обрабатываются амплитудным анализатором работающим в спектрометрическом режиме, который позволяет, выделять сигналы от гамма-квантов от различных нейтронных источников: от U-235 с энергией гамма-квантов 143 и 185 кэВ и сигналы от гамма-квантов Pu-239 с широким спектром излучения 20-500 кэВ с основным максимумом при 393 кэВ, позволяет выделять и различать эти сигналы, т.е. идентифицировать делящиеся материалы. Амплитудный анализатор предназначен также для выделения и идентификации сигналов от других радионуклидов (если они имеются) с энергией до 1-3 МэВ и выше. Толщина стенки и дна кристалла BGO с колодцем выбирается такой (15-30 мм и более), чтобы регистрируемое им гамма-излучение поглощалось в нем полностью, не достигало центральной сцинтилляционной вставки и не вызывало в ней шумовых импульсов, обусловленных гамма-излучением радионуклидов или гамма-фоном, что обеспечивает повышенное отношение сигнал/шум нейтронно-чувствительной вставки датчика.
Таким образом, схема временной селекции сцинтиимпульсов обеспечивает раздельный и общий учет импульсов от гамма-излучения и нейтронов, а амплитудный анализатор на выходе схемы временной селекции обеспечивает спектрометрическую обработку сигналов от гамма-квантов.
Полиэтиленовый внешний слой двухслойного коллиматора замедляет быстрые нейтроны до тепловых энергий, если эти нейтроны поступают в датчик из боковых направлений, отличных от осевого, а кадмиевый внутренний слой двусложного коллиматора поглощает тепловые нейтроны, не допуская их до центрального сцинтиллятора - вставки. Конверсионные гамма-кванты, возникающие при взаимодействии тепловых нейтронов с кадмием, реакция (n,γ) задерживаются и регистрируются кристаллом BGO, их вклад легко корректируется с помощью амплитудного анализатора, не уменьшая отношения сигнал/шум нейтронно-чувствительной сцинтилляционной вставки датчика. Таким образом, дополнительный двухслойный коллиматор обеспечивает направленную регистрацию нейтронов, поступающих в детектор в осевом направлении, т.е. обеспечивает телескопический режим работы детектора.
Дополнительным преимуществом предлагаемого устройства является то обстоятельство, что стенки сцинтилляционного кристалла BGO играют роль дополнительной защиты от гамма-излучения для центральной нейтронно-чувствительной сцинтилляционной вставки.
Литература
1. Акимов Ю.К. Сцинтилляционные методы регистрации частиц больших энергий. - М.: Изд-во МГУ, 1963.
2. US, патент, 3688118, кл. G 01 T 1/00, 1972.
3. ЕР, заявка, 0311503, кл. G 01 T 1/00, 1989.
4. US, патент, 4482808, кл. G 01 T 3/06, 1984.
5. RU, патент, 2088952, кл. G 01 N 1/20, 1997.

Claims (2)

1. Детектор для регистрации нейтронов и гамма-излучения, содержащий в качестве датчика сцинтилляционный кристалл Bi4Ge3O12 (BGO), сцинтиллирующее вещество на основе стильбена или пластмассы (CH)n, фотоэлектронный умножитель, а также блок электронной обработки сигналов со схемой временной селекции сцинтиимпульсов, поступающих в нее от BGO, стильбена или пластмассы, отличающийся тем, что дополнительно содержит коллиматор, в котором размещен сцинтилляционный чувствительный к гамма-излучению кристалл Bi4Ge3O12 (BGO), выполненный в виде кристалла с колодцем, а чувствительное к нейтронам сцинтиллирующее вещество на основе стильбена или пластмассы выполнено в виде сцинтилляционной вставки, размещенной в колодце кристалла BGO, причем в блоке электронной обработки сигналов на выходе схемы временной селекции сцинтиимпульсов дополнительно размещен амплитудный анализатор сцинтиимпульсов.
2. Детектор по п.1, отличающийся тем, что коллиматор выполнен двуслойным из водородосодержащего замедлителя нейтронов полиэтилена - внешний слой коллиматора, и кадмиевого поглотителя тепловых нейтронов - внутренний слой коллиматора.
RU98110624/28A 1998-06-04 1998-06-04 Детектор для регистрации нейтронов и гамма-излучения RU2158011C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98110624/28A RU2158011C2 (ru) 1998-06-04 1998-06-04 Детектор для регистрации нейтронов и гамма-излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98110624/28A RU2158011C2 (ru) 1998-06-04 1998-06-04 Детектор для регистрации нейтронов и гамма-излучения

Publications (2)

Publication Number Publication Date
RU98110624A RU98110624A (ru) 2000-03-10
RU2158011C2 true RU2158011C2 (ru) 2000-10-20

Family

ID=20206835

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98110624/28A RU2158011C2 (ru) 1998-06-04 1998-06-04 Детектор для регистрации нейтронов и гамма-излучения

Country Status (1)

Country Link
RU (1) RU2158011C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425269A (zh) * 2015-12-09 2016-03-23 西北核技术研究所 X射线能注量测量装置
RU2591207C1 (ru) * 2015-05-29 2016-07-20 Общество с ограниченной ответственностью "РатэкЛаб" Защитный материал от нейтронного излучения и сцинтилляционный детектор гамма-излучения
CN106324658A (zh) * 2015-06-30 2017-01-11 中国辐射防护研究院 掺杂中子灵敏物质镉的塑料闪烁体及其测量热中子的方法
WO2020014765A1 (en) * 2018-07-17 2020-01-23 Polimaster Ltd. Gamma and neutron radiation detection unit
CN111856603A (zh) * 2020-07-23 2020-10-30 北京永新医疗设备有限公司 闸机设备及其控制方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2591207C1 (ru) * 2015-05-29 2016-07-20 Общество с ограниченной ответственностью "РатэкЛаб" Защитный материал от нейтронного излучения и сцинтилляционный детектор гамма-излучения
WO2016195544A3 (ru) * 2015-05-29 2017-01-26 Общество с ограниченной ответственностью "РатэкЛаб" Защитный материал от нейтронного излучения и сцинтилляционный детектор гамма-излучения
CN106324658A (zh) * 2015-06-30 2017-01-11 中国辐射防护研究院 掺杂中子灵敏物质镉的塑料闪烁体及其测量热中子的方法
CN106324658B (zh) * 2015-06-30 2019-04-23 中国辐射防护研究院 掺杂中子灵敏物质镉的塑料闪烁体及其测量热中子的方法
CN105425269A (zh) * 2015-12-09 2016-03-23 西北核技术研究所 X射线能注量测量装置
CN105425269B (zh) * 2015-12-09 2018-02-09 西北核技术研究所 X射线能注量测量装置
WO2020014765A1 (en) * 2018-07-17 2020-01-23 Polimaster Ltd. Gamma and neutron radiation detection unit
US10670739B2 (en) 2018-07-17 2020-06-02 Polimaster Holdings Corporation Gamma radiation and neutron radiation detector
EA038969B1 (ru) * 2018-07-17 2021-11-16 Общество с ограниченной ответственностью "Полимастер" Устройство для детектирования гамма- и нейтронного излучения
CN111856603A (zh) * 2020-07-23 2020-10-30 北京永新医疗设备有限公司 闸机设备及其控制方法

Similar Documents

Publication Publication Date Title
US5481114A (en) Process and apparatus for the simultaneous selective detection of neutrons and X or gamma photons
US7626178B2 (en) Integrated neutron-gamma radiation detector with adaptively selected gamma threshold
US6876711B2 (en) Neutron detector utilizing sol-gel absorber and activation disk
RU2501040C2 (ru) Устройство и способ для детектирования нейтронов с помощью поглощающих нейтроны калориметрических гамма-детекторов
RU2502088C2 (ru) Устройство и способ для детектирования нейтронов посредством калориметрии на основе гамма-захвата
EP0667539B1 (en) Method for measuring gamma-rays of radionuclides, particularly in primary water of nuclear reactor
US10670739B2 (en) Gamma radiation and neutron radiation detector
JPH05341047A (ja) 効果的なα及びβ(γ)線同時測定法及びその検出器
RU2158011C2 (ru) Детектор для регистрации нейтронов и гамма-излучения
RU2189057C2 (ru) Сцинтилляционный детектор нейтронного и гамма-излучения
US10191161B1 (en) Device and method for the location and identification of a radiation source
JP2871523B2 (ja) 放射線検出装置
RU2377598C2 (ru) Сцинтилляционный детектор
RU2259573C1 (ru) Сцинтилляционный детектор быстрых и тепловых нейтронов
RU189817U1 (ru) Парный гамма-спектрометр для регистрации высокоэнергетического гамма-излучения
JP2012242369A (ja) 放射線検出器
RU2143711C1 (ru) Детектор для регистрации ионизирующих излучений
RU2102775C1 (ru) Устройство для регистрации потоков нейтронов
RU2272301C1 (ru) Сцинтилляционный детектор нейтронов
RU2088952C1 (ru) Детектор для регистрации ионизирующего излучения
RU2347241C1 (ru) Детектор для регистрации ионизирующих излучений
WO2021136562A1 (en) Device for measuring the mixed radiation field of photons and neutrons
Ryzhikov et al. The highly efficient gamma-neutron detector for control of fissionable radioactive materials
RU2231809C2 (ru) Детектор нейтронного и гамма-излучений
Paulus et al. Enhancement of peak-to-total ratio in gamma-ray spectroscopy

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050605