RU2134889C1 - Устройство контроля цепи аккумуляторной батареи установки постоянного тока - Google Patents

Устройство контроля цепи аккумуляторной батареи установки постоянного тока Download PDF

Info

Publication number
RU2134889C1
RU2134889C1 RU97111144A RU97111144A RU2134889C1 RU 2134889 C1 RU2134889 C1 RU 2134889C1 RU 97111144 A RU97111144 A RU 97111144A RU 97111144 A RU97111144 A RU 97111144A RU 2134889 C1 RU2134889 C1 RU 2134889C1
Authority
RU
Russia
Prior art keywords
circuit
voltage
capacitor
installation
relay
Prior art date
Application number
RU97111144A
Other languages
English (en)
Other versions
RU97111144A (ru
Inventor
Н.В. Мухин
Original Assignee
Мухин Николай Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мухин Николай Васильевич filed Critical Мухин Николай Васильевич
Priority to RU97111144A priority Critical patent/RU2134889C1/ru
Publication of RU97111144A publication Critical patent/RU97111144A/ru
Application granted granted Critical
Publication of RU2134889C1 publication Critical patent/RU2134889C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

Сущность изобретения: устройство контроля цепи аккумуляторной батареи установки постояного тока с выпрямительным зарядным агрегатом, работающим в режиме стабилизации напряжения по схеме постоянного подзаряда, подключенным к сборным шинам, содержит исполнительное реле с обмоткой управления, замыкающий контакт реле включен в схему сигнализации установки, конденсатор, резистор и стабилитрон. Устройство снабжено включенным на напряжение сборных шин n-р-n-транзистором, в цепь базы которого последовательно включены резистор, стабилитрон и конденсатор. В цепь коллектора параллельно включены обмотка исполнительного реле и цепь из последовательно соединенных резисторов и конденсатора, а эмиттер подключен к отрицательной шине. Переход эмиттер - база шунтирован диодом в непроводящем направлении. Технический результат - повышение чувствительности устройства контроля. 4 ил.

Description

Изобретение относится к производству, распределению и потреблению электроэнергии и предназначено для установок постоянного тока (далее - установка) электрических станций и подстанций промышленных предприятий, состоящих из подключенных к сборным шинам аккумуляторной батареи и выпрямительных зарядных агрегатов, работающих в режиме стабилизации выпрямленного напряжения по схеме постоянного подзаряда батареи [1], стр. 353].
Известно устройство, состоящее из двух шунтов, блока сравнения, двух счетчиков, двух дифференцирующих цепей, генератора и RS-триггера, предназначенное для контроля цепи аккумуляторной батареи, работающей в буфере с автоматизированным выпрямителем, имеющим на выходе малую переменную составляющую [2].
Наиболее близким по принципу действия является устройство, состоящее из нелинейного элемента, конденсатора, выпрямительного моста, переменного резистора, стабилитрона, двухобмоточного реле, вольтдобавочного устройства, подключенного к входным клеммам выпрямителя и выполненного в виде выпрямительного моста с потенциометрическим выходом, причем начало первой обмотки реле через стабилитрон и нелинейный элемент присоединено к плюсовому выводу батареи, вторая обмотка реле через переменный резистор подключена к постоянным выводам выпрямительного моста и встречно относительно первой обмотки, один переменный вывод моста через конденсатор и нелинейный элемент соединен с плюсом контролируемой батареи, а второй переменный вывод этого моста связан с ее минусовым выводом [3]. Устройство фиксирует нарушение цепи аккумуляторной батареи, реагируя на переменную составляющую выпрямленного напряжения зарядного устройства.
Однако в этом устройстве переменная составляющая зарядного устройства используется без усиления ее мощности, что вызывает необходимость применения в нем специальных реле с высокой чувствительностью.
Целью изобретения является разработка устройства контроля цепи аккумуляторной батареи с повышенной путем увеличения выходной мощности чувствительностью, что позволяет использовать в нем исполнительное реле, рассчитанное на номинальное напряжение установки.
Поставленная цель достигается устранением влияния на устройство переменной составляющей напряжения на сборных шинах при нормальном состоянии цепи аккумуляторной батареи с помощью стабилитрона, усилением переменной составляющей при нарушении цепи батареи с помощью транзистора и преобразованием ее после усиления в постоянную составляющую с помощью конденсатора.
Предлагаемое устройство контроля цепи аккумуляторной батареи установки постоянного тока, состоящей из подключенных к сборным шинам аккумуляторной батареи и выпрямительного зарядного агрегата, работающего в режиме стабилизации выпрямленного напряжения по схеме постоянного подзаряда, содержит следующие элементы:
n-p-n-транзистор, включенный на напряжение сборных шин установки;
последовательно включенные в цепь базы резистор, стабилитрон и конденсатор;
параллельно включенные в цепь коллектора обмотку управления исполнительного реле и цепь из последовательно соединенных резистора и конденсатора;
соединенный с отрицательной шиной эмиттер транзистора;
диод, шунтирующий переход эмиттер - база в непроводящем направлении;
замыкающий контакт исполнительного реле, включенный в схему сигнализации установки.
Напряжения транзистора, конденсатора и диода выбирают по амплитудному значению линейного напряжения вторичной обмотки согласующего трансформатора зарядного агрегата. Резисторы в цепях базы и коллектора ограничивают токи через p-n-переходы транзистора при заряде и разряде конденсаторов. Мощность резисторов должна соответствовать номинальному напряжению установки, под которым они могут оказаться в случае пробоя конденсаторов. Исполнительное реле имеет обмотку управления на постоянное напряжение, равное номинальному напряжению установки. В устройстве используют электромагнитные реле, промежуточные, указательные или электронные реле времени.
Принцип действия устройства заключается в следующем. Напряжение на шинах установки в режиме постоянного подзаряда с подключенной аккумуляторной батареей имеет форму, близкую к прямой линии, содержащую переменную составляющую от напряжения зарядного агрегата. Напряжение на обмотке исполнительного реле в этом режиме отсутствует, так как прохождению тока через переход база - эмиттер транзистора препятствуют от постоянной составляющей напряжения конденсатор в цепи базы, а от переменной стабилитрон. Стабилитрон обеспечивает заряд конденсатора до амплитудного напряжения подзаряда. Напряжение на конденсаторе превышает действующее значение напряжения на шинах установки в пределах напряжения стабилизации и не допускает прохождение тока через переход база - эмиттер транзистора.
При нарушении цепи аккумуляторной батареи на сборных шинах устанавливается стабилизированное выпрямленное напряжение зарядного агрегата, содержащее значительную переменную составляющую. Напряжение переменной составляющей превышает напряжение стабилизации стабилитрона, и через конденсатор в цепи базы проходит переменный ток. При повышении напряжения на шинах ток заряда конденсатора проходит по переходу база - эмиттер, а при снижении напряжения ток разряда конденсатора проходит по диоду, шунтирующему переход эмиттер - база в непроводящем направлении.
Под воздействием тока базы в цепи коллектора устанавливается напряжение. Наблюдения по осциллографу показали, что при разомкнутой цепи конденсатора в цепи коллектора кривая напряжения между выводами обмотки реле расположена симметрично относительно оси абсцисс и постоянная составляющая этого напряжения близка к нулю. С замыканием цепи конденсатора кривая напряжения поступательно перемещается вверх и при достаточной емкости конденсатора полностью располагается над осью абсцисс. Исполнительное реле при этом срабатывает и замыкает контакт в цепи сигнализации установки.
Уровень переменной составляющей напряжения на шинах установки при нарушении цепи аккумуляторной батареи с увеличением тока зарядного агрегата (нагрузки установки) снижается, что связано с автоматическим изменением угла открывания тиристоров и степени сглаживания тока зарядного агрегата в его дросселе. Чувствительность устройства должна быть достаточной для срабатывания при номинальном токе агрегата. Чувствительность повышают увеличением емкости конденсаторов или подбором транзистора с большим коэффициентом усиления по току.
По принципу действия устройство не реагирует на набросы и сбросы нагрузки, подключенной к сборным шинам, на отклонение от номинального напряжения на шинах и на замыкания на землю в сети постоянного тока, то есть не обладает ложным действием и правильно ориентирует обслуживающий персонал.
Принцип действия устройства и особенности его наладки поясняют следующие графические материалы. На фигуре 1 изображена принципиальная схема установки постоянного тока и устройства контроля цепи аккумуляторной батареи. Результаты наладки устройства в реальных установках приведены в таблицах фигур 2, 3, 4. В таблице фигуры 2 приведены данные по изменению уровня переменной составляющей напряжения на шинах в зависимости от тока зарядного агрегата. В таблицах фигур 3, 4 показано влияние емкости конденсаторов на чувствительность устройства.
На схеме фигуры 1 изображена принципиальная схема установки, состоящей из аккумуляторной батареи GB, зарядных агрегатов VS с симметричной и несимметричной схемами выпрямления и устройства контроля цепи аккумуляторной батареи, подключенных к сборным шинам.
Разработанное устройство испытано в установках напряжением 220 В с тремя типами агрегатов:
1. агрегат типа ВАЗП 380/260 - 40/80 с симметричной схемой выпрямления и автоматикой на интегральных микросхемах (далее VS1);
2. агрегат ВАЗП 380/260 - 40/80 с несимметричной схемой выпрямления и автоматикой на магнитных усилителях (далее VS2);
3. агрегат японского производства с несимметричной схемой выпрямления и автоматикой на магнитных усилителях (далее VS3). Характеристики агрегатов типа ВАЗП 380/260 - 40/80 приведены в [1], ст. 334.
Все перечисленные агрегаты работают в режиме стабилизации напряжения и их ток в любой момент времени равен сумме токов нагрузки и подзаряда батареи с точностью ±2%.
Указанные выше агрегаты имеют различные характеристики изменения уровня переменной составляющей выпрямленного напряжения в зависимости от тока нагрузки без связи с аккумуляторной батареей. В таблице фигуры 2 приведены значения переменного тока через конденсатор емкостью 1 мкФ, подключенный на выпрямленное напряжение 220 В при холостом ходе и граничных значениях тока относительно номинального зарядных агрегатов.
Условные обозначения в таблице фигуры 2:
XX - холостой ход агрегата;
Iн - номинальный ток агрегата;
Iс - переменный ток через конденсатор.
В схему устройства контроля цепи аккумуляторной батареи входят следующие элементы:
VT - транзистор, включенный на напряжение сборных шин;
R1, VD1, C1 - резистор, стабилитрон и конденсатор в цепи базы;
K, R2, C2 - исполнительное реле, резистор и конденсатор в цепи коллектора;
VD - диод, шунтирующий переход эмиттер - база.
Для установки напряжением 220 В используют следующие элементы устройства:
транзисторы КТ846А, КТ838А или их зарубежные аналоги;
реле промежуточное РП-23, 220 В;
конденсаторы МБГО, 630 В, 0,5 мкФ (1 мкФ);
резисторы ПЭВ-50, 1 кОм;
стабилитроны Д816А (до трех последовательно);
диод КД105Г.
Наладку устройства производят в следующей последовательности. Устройство с соблюдением полярности подключают на выпрямленное напряжение зарядного агрегата установки. К выводам обмотки исполнительного реле подключают вольтметр для измерения постоянного напряжения. В режиме постоянного подзаряда установки нагружают до номинального тока зарядный агрегат и контролируют по вольтметру напряжение на обмотке реле. Определяют количество стабилитронов в цепи базы транзистора, необходимое для получения нулевого показания вольтметра, начиная с полного шунтирования стабилитронной цепи и далее добавляя по одному стабилитрону. Определенное таким образом количество стабилитронов включают постоянно в цепь базы транзистора. После этого зарядный агрегат с устройством отключают от установки и нагружают агрегат до номинального тока. Напряжение на обмотке исполнительного реле при этом должно быть не менее 200 В. Чувствительность устройства повышают увеличением емкости конденсаторов или подбором транзистора с большим коэффициентом усиления по току. После повышения чувствительности вновь проверяют отсутствие напряжения на обмотке исполнительного реле в режиме постоянного подзаряда.
Влияние стабилитрона VD1 на работу устройства с использованием перечисленных выше элементов показано в таблице фигуры 3, составленной по результатам измерений на агрегате VS2.
Условные обозначения в таблице фигуры 3:
UС1 - напряжение на конденсаторе C1;
Uк - напряжение на обмотке реле K;
Uш - напряжение на шинах установки или на выходе агрегата, отключенного от установки.
Ввиду различия характеристик изменения уровня переменной составляющей и степени сглаживания выпрямленного тока в дросселе при наладке в цепи базы транзистора устройства для агрегата VS1 включали один стабилитрон, для агрегата VS2 - два стабилитрона, для агрегата VS3 стабилитронную цепь шунтировали.
Для достижения достаточной чувствительности для агрегатов VS1 и VS2 использовали конденсаторы емкостью 0,5 мкФ, а для агрегата VS3 - конденсаторы емкостью 1 мкФ. Результаты измерений приведены в таблице фигуры 4.
Измерение токов в цепях устройства и проверку термической устойчивости элементов производили при подключении устройства с конденсаторами емкостью 1 мкФ и двумя стабилитронами к агрегату VS2, работающему в режиме ХХ. Токи в цепях устройства имели следующие значения:
ток конденсатора C1 - ≈ 50 мА;
ток конденсатора C2 - ≈ 50 мА;
ток базы транзистора VT - 15 мА;
ток диода VD - 15 мА;
ток в обмотке реле K - 23 мА;
ток эмиттера - 39 мА.
После ста часов непрерывной работы нагрев элементов устройства был неощутимым. Все элементы работали без охладителей.
Устройство не действовало при одновременном включении группы высоковольтных выключателей с суммарным током включения 200 А в установке с агрегатом VS1 и 400 А с агрегатом VS2.
Проверена работа устройства с электронным реле времени типа ВЛ - 66 и указательным реле типа РУ - 21/220. Использование этих реле при неизменной емкости конденсаторов позволит с увеличением сопротивления резисторов уменьшить их мощность.
Источники информации
1. Справочник по проектированию электроснабжения под редакцией В.И. Круповича, Ю.Г. Барыбина, М.Л. Самовера. Москва, "Энергия", 1980 г.
2. SU, авторское свидетельство N 1831736 A, кл. H 01 M 10/42, 1993 (3с).
3. SU, авторское свидетельство N 1065934 A, кл. H 01 M 10/42, 1984 (3с).

Claims (1)

  1. Устройство контроля цепи аккумуляторной батареи установки постоянного тока с выпрямительным зарядным агрегатом, работающим в режиме стабилизации напряжения по схеме постоянного подзаряда, подключенным к сборным шинам, содержащее исполнительное реле с обмоткой управления, замыкающий контакт которого включен в схему сигнализации установки, конденсатор, резистор и стабилитрон, отличающееся тем, что оно снабжено включенным на напряжение сборных шин n-p-n-транзистором, в цепь базы которого последовательно включены резистор, стабилитрон и конденсатор, в цепь коллектора параллельно включены обмотка исполнительного реле и цепь из последовательно соединенных резистора и конденсатора, а эмиттер подключен к отрицательной шине, и диодом, шунтирующим переход эмиттер - база в непроводящем направлении.
RU97111144A 1997-07-01 1997-07-01 Устройство контроля цепи аккумуляторной батареи установки постоянного тока RU2134889C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97111144A RU2134889C1 (ru) 1997-07-01 1997-07-01 Устройство контроля цепи аккумуляторной батареи установки постоянного тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97111144A RU2134889C1 (ru) 1997-07-01 1997-07-01 Устройство контроля цепи аккумуляторной батареи установки постоянного тока

Publications (2)

Publication Number Publication Date
RU97111144A RU97111144A (ru) 1999-06-20
RU2134889C1 true RU2134889C1 (ru) 1999-08-20

Family

ID=20194831

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97111144A RU2134889C1 (ru) 1997-07-01 1997-07-01 Устройство контроля цепи аккумуляторной батареи установки постоянного тока

Country Status (1)

Country Link
RU (1) RU2134889C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522913C1 (ru) * 2013-06-04 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для гальванического разделения сигналов
RU2705796C1 (ru) * 2019-05-21 2019-11-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный аграрный университет" Электромагнитное реле для переключения аккумуляторных батарей с параллельной на попарно-параллельную зарядку
RU2805270C1 (ru) * 2023-02-16 2023-10-13 Общество с ограниченной ответственностью "Тюльганский электро механический завод" Ветро-гелиоэнергетическая установка с аккумулированием энергии

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522913C1 (ru) * 2013-06-04 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для гальванического разделения сигналов
RU2705796C1 (ru) * 2019-05-21 2019-11-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный аграрный университет" Электромагнитное реле для переключения аккумуляторных батарей с параллельной на попарно-параллельную зарядку
RU2805270C1 (ru) * 2023-02-16 2023-10-13 Общество с ограниченной ответственностью "Тюльганский электро механический завод" Ветро-гелиоэнергетическая установка с аккумулированием энергии

Similar Documents

Publication Publication Date Title
Mu et al. Power flow control devices in DC grids
CN104638616A (zh) 变频空调器及变频空调器的防电压冲击保护方法、装置
US7772812B2 (en) System and method for providing a DC voltage source within a power meter
CN111060864A (zh) 电流互感器二次侧状态检测电路、火警报警装置、电能表
US4629964A (en) Battery power source
CN208939568U (zh) 一种伺服驱动器刹车晶体管及桥臂失效短路的保护电路
RU2134889C1 (ru) Устройство контроля цепи аккумуляторной батареи установки постоянного тока
CN2798109Y (zh) 直流电源自动检测装置
CN209765012U (zh) 断路器检测电路
CN104410103A (zh) 船用柴油发电机组保护与并车控制装置
US4105496A (en) Method and device for electronic control with positive safety
CN112649661A (zh) 基于霍尔传感器的电流检测电路
CN207531143U (zh) 一种灯具控制器
US3648189A (en) Automatic battery charger circuit
CN211741546U (zh) 电流互感器二次侧状态检测电路、火警报警装置、电能表
CN209087566U (zh) 一种二次电压信号可调的多防护电子式电流互感装置
CN220137321U (zh) 一种逆变器的输出继电器故障检测电路
US20200186029A1 (en) Arrangement and method for current measurement
CN111398673A (zh) 一种用于低压水电阻的功率预测装置
CN110673030A (zh) 一种低压断路器三相触头寿命检测***和方法
CN104620455A (zh) 用于智能电子设备的电源和测量设备
US4083039A (en) Voltage enhancement circuit for central station monitored alarm systems
US11740265B1 (en) Signal conditioning circuit
CN212723090U (zh) 绝缘电阻测试仪用保护电路
CN211785953U (zh) 一种低压断路器三相触头寿命检测***