RU2115696C1 - Способ переработки твердого углеродсодержащего топлива - Google Patents

Способ переработки твердого углеродсодержащего топлива Download PDF

Info

Publication number
RU2115696C1
RU2115696C1 RU97104670A RU97104670A RU2115696C1 RU 2115696 C1 RU2115696 C1 RU 2115696C1 RU 97104670 A RU97104670 A RU 97104670A RU 97104670 A RU97104670 A RU 97104670A RU 2115696 C1 RU2115696 C1 RU 2115696C1
Authority
RU
Russia
Prior art keywords
fuel
stage
gasification
oxygen
carbon
Prior art date
Application number
RU97104670A
Other languages
English (en)
Other versions
RU97104670A (ru
Inventor
Антон Анатольевич Кобяков
Анатолий Иванович Кобяков
Original Assignee
Антон Анатольевич Кобяков
Анатолий Иванович Кобяков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Антон Анатольевич Кобяков, Анатолий Иванович Кобяков filed Critical Антон Анатольевич Кобяков
Priority to RU97104670A priority Critical patent/RU2115696C1/ru
Application granted granted Critical
Publication of RU2115696C1 publication Critical patent/RU2115696C1/ru
Publication of RU97104670A publication Critical patent/RU97104670A/ru

Links

Images

Abstract

Изобретение относится к комплексной переработке твердого углеродсодержащего топлива и может быть использовано в энергетике и химической промышленности. Настоящий способ переработки твердого углеродсодержащего топлива включает термоочистку исходного топлива от соединений серы и азота путем подачи кислорода и горючего газа со стадии газификации топлива дымовыми газами в количествах, необходимых для полного окисления соединений серы и азота и стабилизации заданного температурного режима очистки, с последующим отводом отходящего газа со стадии термоочистки на переработку в серную и азотную кислоты, распределение очищенного топлива на три потока х, у и z и подачу его соответственно: х - на стадию газификации, которую осуществляют с использованием в качестве газифицирующего агента дымовых газов α, отводимых со стадии сжигания топлива, и кислорода, подаваемого для стабилизации заданного температурного режима газификации, у - на стадию сжигания с использованием в качестве окислителя кислорода и Z - дополнительно на стадию парокислородной газификации, причем соотношением вырабатываемых количеств тепла на стадии сжигания, горючего газа на стадии газификации дымовыми газами и синтез-газа на стадии парокислородной газификации управляют путем распределения топлива между стадиями переработки и отводом дымовых газов согласно следующим формулам: x = α•K•y и z = 1-(1+α•K)•y, где α - дымовые газы, отводимые со стадии сжигания топлива и подаваемые на стадию газификации: К = (4 • q1 + 3 • q2)/(3 • q2) - константа; q1 и q2 - тепловые эффекты реакций соответственно конверсии диоксида углерода и окисления углерода до оксида углерода, кДж/кмоль, при этом: 0 < y < 1/(1+α•K) и 0 < α ≤ 1. Стадии газификации топлива осуществляют при соблюдении определенных условий подачи топлива и кислорода на массовую единицу перерабатываемых дымовых газов и массового соотношения водяного пара, кислорода и топлива на стадии парокислородной газификации. Способ предусматривает сжигание остатков топлива со стадий газификации, переработку отходящих газов со стадии термоочистки, предпочтительно контактно-нитрозным методом. Усовершенствованный способ позволяет осуществлять комплексную переработку твердого углеродсодержащего топлива с получением одновременно не только тепла, но и химической продукции - горючего газа, синтез-газа, отходящих газов, пригодных для выработки серной и азотной кислот. 4 з.п.ф-лы, 1 ил., 4 табл.

Description

Изобретение относится к комплексной переработке твердого углеродсодержащего топлива и может быть использовано в энергетике и химической промышленности.
Известен способ переработки углеродсодержащего топлива путем его частичного сжигания в псевдоожиженном или стационарном слое в потоке окислителя - кислорода, воздуха или иного кислородсодержащего агента при температуре 700oC и давлении 1-120 бар с последующим охлаждением неочищенного газа до 100 - 150oC в охладителе с псевдоожиженным слоем с помощью добавочного твердого топлива, за счет чего достигается уменьшение загрязнения и шлаковования аппаратуры [1].
По такому способу получают тепловую энергию. Однако твердое топливо может быть источником не только тепла, но также окиси углерода, синтез-газа и другой химической продукции.
Известен способ переработки твердого топлива, предусматривающий сероочистку горючих газов, выводимых из устройства для газификации топлива - угля, путем их контакта со слоем зернистого адсорбента, состоящего из феррита цинка и/или оксида железа, с последующей регенерацией адсорбента [2].
Известен также способ переработки твердого топлива путем введения на стадии сжигания серусодержащего топлива мелкодисперсной извести, которая нейтрализует образующиеся в процессе горения топлива серную, соляную и азотную кислоты. В атмосферу отходящие газы поступают после обработки их при температуре ниже точки росы для этих кислот [3].
К недостаткам известных способов следует отнести необходимость использования адсорбентов, дополнительные стадии их регенерации.
Наиболее близким техническим решением рассматриваемой задачи является способ переработки твердого углеродсодержащего топлива, включающий двухстадийную переработку - стадию газификации твердого топлива в присутствии газифицирующего агента - воздуха с получением горючего газа и в присутствии газифицирующего агента - воздуха с получением горючего газа и твердых остатков топлива и стадию сжигания последних в котельном агрегате в потоке окислителя, в качестве которого используют воздух, причем горючий газ смешивают с теплоносителем на выходе из поверхностей нагрева, сжигают полученную смесь и направляют полученные продукты сгорания потребителю [4].
Однако область применения данного способа ограничена переработкой топлив с низким содержанием серы и азота либо вовсе свободных от них.
Общий недостаток известных способов заключается в том, что они не обеспечивают комплексной переработки твердого углеродсодержащего топлива и получения одновременно не только тепла, но также химической продукции - окиси углерода (горючего газа), синтез-газа, а также отходящих газов, пригодных для выработки серной и азотной кислот.
Задачей предлагаемого технического решения является комплексная переработки твердого углеродсодержащего топлива, в том числе серу- и азотсодержащего топлива.
Для достижения поставленной задачи предложен настоящий способ переработки твердого углеродсодержащего топлива, включающий стадию термоочистки топлива от соединений серы и азота с последующей переработкой отходящего газа, стадию газификации очищенного топлива газифицирующим агентом - дымовыми газами и кислородом для получения горючего газа, стадию парокислородной газификации очищенного топлива для получения синтез-газа и стадию сжигания очищенного топлива и твердых остатков топлива со стадий газификации в потоке окислителя в котельном агрегате для выработки тепла. Твердое топливо вначале подвергают термоочистке от соединений серы и азота путем подачи кислорода и горючего газа, подаваемого со стадии газификации топлива дымовыми газами, в количествах, необходимых для полного окисления соединений серы и азота и стабилизации заданного температурного режима очистки, отходящий газ со стадии термоочистки направляют на дальнейшую переработку в серную и азотную кислоты, затем очищенное твердое топливо распределяют на три потока x, y и z и подают соответственно: x - на стадию газификации, которую осуществляют с использованием в качестве газифицирующего агента дымовых газов α, отводимых со стадии сжигания топлива, и кислорода, подаваемого для стабилизации заданного температурного режима газификации, y - на стадию сжигания с использованием в качестве окислителя кислорода и z - дополнительно на стадию парокислородной газификации, причем соотношением вырабатываемых количеств тепла на стадии сжигания, горючего газа на стадии газификации дымовыми газами и синтез-газа на стадии парокислородной газификации управляют путем распределения топлива между стадиями переработки и отводом дымовых газов согласно следующим формулам:
x = α•K•y и z = 1-(1+α•K)•y,
где
α - дымовые газы, отводимые со стадии сжигания топлива и подаваемые на стадию газификации; K = (4•q1+3•q2)/(3•q2) - константа, q1 и q2 -тепловые эффекты реакций соответственно конверсии диоксида углерода и окисления углерода до оксида углерода, кДж/кмоль, при этом:
0 < y < 1/(1+α•K) и 0 < α ≤ 1.
На стадии газификации топлива дымовыми газами подачу топлива
Figure 00000002
и кислорода
Figure 00000003
т на массовую единицу перерабатываемых дымовых газов осуществляют согласно следующим формулам:
Figure 00000004

где
Figure 00000005
- удельный расход соответственно топлива и кислорода на массовую единицу перерабатываемых дымовых газов; q1, q2 - тепловые эффекты реакций соответственно конверсии диоксида углерода и окисления углерода до оксида углерода, кДж/кмоль. На стадии парокислородной газификации подачу водяного пара Gп и кислорода Gк в дутье и топлива Gт осуществляют согласно следующим массовым соотношениям:
Gп/Gк < 9•q2/(16•q3);
Gт/Gп≥(2•q2+4•q3)/ (3•q2),
где
q3 - тепловой эффект реакции конверсии водяного пара, кДж/кмоль.
Остатки топлива со стадий газификации подают на стадию сжигания. Способ предусматривает переработку отходящих газов со стадии термоочистки в серную и азотную кислоты, предпочтительно контактно-нитрозным методом.
Отличительными признаками настоящего способа являются:
введение стадий термоочистки и парокислородной газификации в процесс комплексной переработки твердого углеродсодержащего топлива;
осуществление стадии термоочистки топлива от соединений серы и азота путем подачи кислорода и горючего газа со стадии газификации в количествах, необходимых для полного окисления соединений серы и азота и стабилизации заданного температурного режима очистки;
переработка отходящих газов стадии термоочистки в серную и азотную кислоты, предпочтительно контактно-интрозным методом;
управление соотношением вырабатываемых количеств тепла на стадии сжигания, горючего газа на стадии газификации дымовыми газами и синтез-газа на стадии парокислородной газификации путем распределения топлива между стадиями переработки и отводом дымовых газов, согласно приведенным выше формулам;
проведение стадий газификации при определенных выше условиях подачи топлива, кислорода на массовую единицу перерабатываемых дымовых газов и массовом соотношении водяного пара, кислорода в дутье и топлива;
возможность переработки остатков топлива со стадий газификации на стадии сжигания.
Эти признаки придают предлагаемому способу следующие свойства: комплексность переработки исходного топлива; возможность варьирования в широком диапазоне соотношением тепла и химической продукции, вырабатываемых в процессе комплексной переработки топлива и простота управления этим соотношением; использование процесса газификации по разному назначению; для конверсии диоксида углерода и для конверсии водяного пара, что повышает глубину комбинированной переработки топлива; гибкость и маневренность комбинированной и комплексной технологии переработки топлива; автономность и простота управления стадией парокислородной газификации; сохранение постоянным в ходе эксплуатации энергетического КПД котельного агрегата; повышение экологической безопасности.
На чертеже приведена установка для реализации предлагаемого способа.
Установка содержит аппарат 1 термической очистки твердого углеродсодержащего топлива, газификаторы 2 и 3, топку 4 котельного агрегата для сжигания твердого топлива.
Способ осуществляют следующим образом.
Измельченное твердое топливо подают в аппарат 1. Сюда подают также кислород. В аппарате 1 содержащиеся в исходном топливе соединения серы и азота окисляют, образуются окислы серы и азота. Качество очистки угля от вредных соединений путем их окисления зависит от количества кислорода и температуры в аппарате 1. Эти параметры влияют на интенсивность окисления соединений серы и азота и полноту исчерпания этих соединений. Хотя процесс окисления соединений серы и азота экзотермической, однако в общем случае реакционного тепла недостаточно для поддержания в аппарате заданного температурного режима, поэтому в аппарат 1 с выхода газификатора 2 подают часть горючего газа. При этом происходит реакция окисления оксида углерода кислородом, протекающая с значительным тепловыделением.
Таким образом кислород в аппарате 1 расходуют на окисление соединений серы и азота, содержащихся в исходном топливе, и на окисление оксида углерода. Подачу горючего газа и кислорода осуществляют в зависимости от заданного уровня температурного режима и требуемой степени очистки топлива от соединений серы и азота. Заданное значение температуры устанавливают исходя из требуемой степени очистки и скорости проведения процесса. Минимальной температурой, при которой протекают процесс очистки, является 400oC.
Отходящей из аппарата 1 газ представляет собой смесь диоксида серы, окислов азота, диоксида углерода и паров воды. Эту смесь подают на дальнейшую переработку, где из нее получают серную и азотную кислоты. Переработку отходящего газа ведут предпочтительно контактно-нитрозным методом.
Термоочистка исходного топлива в сочетании с переработкой отходящих газов обеспечивает получение целевой продукции из минеральной составляющей исходного топлива. Поэтому предлагаемый способ характеризуется более полным использованием сырья, что придает ему новое свойство - комплексность переработки.
С выхода аппарата 1 очищенное топливо разделяют на три потока x, y и z и подают соответственно: x - на стадию газификации 2, которую осуществляют с использованием в качестве газифицирующего агента дымовых газов α, отводимых со стадии сжигания топлива, и кислорода, подаваемого для стабилизации заданного температурного режима газификации, z - на стадию парокислородной газификации 3, y - на стадию сжигания в топку 4 котельного агрегата.
В газификаторе 2 в среде очищенного топлива осуществляют конверсию диоксида углерода дымовых газов в оксид углерода по уравнению
CO2 + C = 2CO - q1.
где
q1 - тепловой эффект реакции конверсии диоксида углерода, кДж/кмоль.
Тепла, подводимого извне в газификатор 2 с дымовыми газами и топливом, в общем случае недостаточно для поддержания требуемой температуры процесса. Поэтому в аппарат подают еще кислород и за счет тепловыделения реакции окисления части углерода топлива, протекающей в условиях дефицита окислителя по уравнению
2C + Q2 = 2CO + q2,
стабилизируют температурный режим в газификаторе, где q2 - тепловой эффект, кДж/кмоль. Такой прием обеспечивает проведение процесса конверсии диоксида углерода в автотермическом режиме.
При избыточной подаче дымовых газов в газификатор получаемый на выходе аппарата горючий газ содержит балласт - невосстановленный диоксид углерода. Для получения чистого горючего газа путем полного восстановления подаваемых в газификатор 2 дымовых газов и проведения процесса в режиме компенсации эндотермического эффекта реакции (1) необходимо соблюдение соотношения расходов топлива, кислорода и дымовых газов. Подачу топлива
Figure 00000006
, кислорода
Figure 00000007
на массовую единицу перерабатываемых дымовых газов на стадии газификации ведут согласно следующим условиям:
Figure 00000008

В газификаторе 3 в атмосфере парокислородного дутья наряду с реакцией (2) имеет место реакция конверсии водяного пара
C + H2O = CO + H2 - q3,
где q3 - тепловой эффект конверсии водяного пара, кДж/кмоль.
В газификаторе 3 возможно протекание также следующей реакции
CO + H2O = CO2 + H2 - q4,
где q4 - тепловой эффект конверсии оксида углерода, кДж/кмоль.
Скорость реакции (3) восстановления водяного пара пропорциональна температуре в зоне газификации. В то же время скорость реакции (4) уменьшается с ростом температуры. Оптимальной температурой для конверсии оксида углерода является область 400 - 500oC. Поэтому в аппарате поддерживают более высокую температуру.
Стремление к полной конверсии водяного пара и получению синтез-газа без примесей диоксида углерода ведет к подъему температуры в газификаторе 3. Этого можно добиться за счет тепла, подводимого в аппарат с дутьем и топливом, а также тепла реакции (2). В общем случае тепла извне может быть недостаточно для проведения процесса в заданном температурном режиме. Поэтому кислород является фактором, с помощью которого за счет реакции (2) стабилизируют автотермический режим процесса.
Вместе с тем содержание кислорода в дутье согласно реакции (2) влияет не только на температуру в зоне газификации, но также на количество получаемого здесь оксида углерода, а следовательно на соотношение водорода и оксида углерода в продуктовом газе. Поэтому изменением количества кислорода в дутье можно управлять как температурой в зоне реакции, так и составом синтез-газа.
Диапазон варьирования подачи кислорода ограничен рамками осуществления газификации в автотермическом режиме. Данное обстоятельство накладывает ограничение на массовое соотношение водяного пара Gп и кислорода Gп, и топлива Gт на стадии парокислородной газификации, которое соответствует следующим условиям:
Gп/Gк<9•q2/(16•q3);
Gт/Gп≥(2•q2 + 4•q3)/(3•q2)
Результат газификации зависит от времени контактирования твердой и газовой фаз, состава газифицирующего дутья, а также температурного режима. В ходе эксплуатации любой из этих факторов может стать причиной неполного превращения углерода в газификаторе. Данное обстоятельство учтено в предлагаемом способе тем, что остаток непереработанного топлива с выхода газификаторов 2 и 3 направляют (пунктирные линии на фиг. 1) на дожигание в топку котельного агрегата.
В топке 4 котельного агрегата для окисления углерода горючей массы - топлива, подаваемого из аппарата 1, и остатков топлива из газификаторов 2 и 3 используют кислород, подачу которого определяют из условия полного выгорания топлива. Полученное в топке тепло используют в котельном агрегате для производства пара.
Дымовой газ, отводимый из котельного агрегата, представляет собой диоксид углерода. Часть дымовых газов используют на стадии газификации, а остальное количество дымовых газов выводят в атмосферу на выхлоп.
В котельных агрегатах, работающих на твердом топливе, происходит загрязнение экранов и конвективных поверхностей сульфатными отложениями. Это ведет к тому, что в ходе эксплуатации падает эффективность теплообмена и снижается энергетический КПД. В предлагаемом способе в топку котла подают сухое и очищенное от соединений серы топливо. Поэтому в атмосфере котла отсутствуют пары воды и окислы серы. Такой прием исключает условия образования сульфатотложений на поверхности теплообменной аппаратуры. Следствием является сохранение высокой эффективности теплообмена и постоянство энергетического КПД котельного агрегата.
В предлагаемом способе твердое топливо перерабатывается в тепловую энергию и одновременно получают синтез-газ - ценное химическое сырье, а также горючий газ. Количество получаемого тепла на стадии сжигания, горючего газа на стадии газификации и синтез-газа на стадии парокислородной газификации зависит от количества топлива, перерабатываемого на каждой из стадий процесса. Управляют выработкой продукции путем распределения очищенного топлива между стадиями процесса. Такой прием обеспечивает возможность варьирования в широком диапазоне соотношением видов продукции процесса комплексной переработки топлива. Сущность этого варьирования заключается в перераспределении потенциала исходного топлива между вырабатываемым теплом и продуктовыми газами.
Распределяют топливо в соответствии с условием
x + y + z = 1,
где x, y, z - доля топлива, подаваемого соответственно на стадии 2, 4 и 3. Согласно вышеприведенному условию возможно варьирование этих величин. Между тем стадии сжигания и газификации связаны. Это необходимо учитывать при получении в газификаторе 2 чистого горючего газа. Другими словами величины x и y не могут варьироваться независимо. Они взаимосвязаны через дымовые газы, подаваемые из котельного агрегата в газификатор. Поэтому управляют соотношением вырабатываемых количеств тепла, горючего газа и синтез-газа путем изменения расхода дымовых газов в газификатор 2 и топлива в топку 4 котельного агрегата. Остальные потоки топлива x и z определяют из следующих формул:
Figure 00000009

где K = (4•q1 + 3•q2)/(3•q2) - константа; α - дымовые газы, подаваемые в газификатор. Диапазоны допустимого изменения величин y и α, определяющих распределение очищенного топлива между стадиями переработки, следующие:
Figure 00000010
.
В табл. 1 приведены данные, иллюстрирующие широкие возможности распределения топлива между стадиями переработки. Данные получены для величины K = 2,072, рассчитанной по следующим значениям тепловых эффектов реакций: q1 = 175699 кДж/кмоль; q2 = 218907 кДж/кмоль [5].
Важным свойством, присущим многопродуктовому способу переработки топлива, является простота аккумулирования вырабатываемой продукции путем накопления горючего газа и синтез-газа в газгольдерах. Данное свойство в совокупности с возможностью управления соотношением видов вырабатываемой продукции придают предлагаемому способу гибкость и маневренность.
Пример. Исходное топливо - 100 кг угля, содержащего, мас.%: углерода 91, воды 5, серы 3 и азота 1, предварительно осушают, а далее 95 кг сухого угля подают в аппарат 1. Сюда подают 11,8 кг кислорода, а также с выхода газификатора 2 3,93 кг горючего газа. Термоочистку ведут при температуре 500oC.
С выхода аппарата 1 газ, содержащий следующие компоненты, кг: диоксид углерода 6,16, диоксид серы 6,0, оксиды азота 3,28, водяные пары 5, направляют на стадию переработки, где из окислов серы и азота получают серную и азотную кислоты.
Очищенный уголь в количестве 91 кг разделяют на три потока x, z, y и подают их на переработку соответственно в аппараты 2, 3 и 4. Газификацию угля в аппарате 2 ведут при температуре 900oC, а сжигание угля в топке 4 парового котла - при температуре 1200oC. Дымовые газы на выходе котла имеют температуру 500oC. Тепло выводимых с установки дымовых газов, синтез-газа и горючего газа используют для нагрева исходных реагентов до температуры 200oC (теплообменная аппаратура на схеме не показана).
В нижеследующих таблицах приведены данные распределения топлива по стадиям переработки (табл. 1), данные материального и теплового балансов и показатели процессов для установки (табл. 2), а также для газификаторов 2 и 3 (табл. 3 и 4).
Расчет материального и теплового балансов газификаторов и топки котла приведен для разных вариантов распределения очищенного угля между стадиями его переработки и отвода дымовых газов. В частности приведены варианты расчетов 1 и 3, 6 и 8, 10 и 12 из табл. 1. Полученные в результате расчетов данные сведены в табл. 2, а также приведены в табл. 3 и 4. Последние по сравнению с табл. 2 дополнительно содержат показатели, которые характеризуют стадии переработки топлива.
Для табл. 1 и 2 имеет место различие в значениях величин x и z. Так, в табл. 1 для варианта 3 эти величины таковы: x = 0,4144; z = 0,3856. В табл. 3 и 4 этому случаю соответствуют следующие значения: x = 0,5823; z = 0,2187. Такое расхождение величин обусловлено тем, что в примере при расчете процессов для каждого аппарата учтено тепло входных и выходных потоков. В то же время распределение топлива для табл. 1 получено без учета этого тепла.
Как следует из анализа данных табл. 2 изменение α дымовых газов, отводимых с выхода котельного агрегата в газификатор 2, и перераспределение топлива между аппаратами установки существенно влияет на результаты переработки топлива. Эффективность воздействия распределения топлива между стадиями процесса на соотношение компонентов вырабатываемой продукции характеризуют опыты, полученные при фиксированном значении α. Например, в опыте 1 при α = 1 выработка тепла в котельном агрегате для производства пара наименьшая и равна 147,76 МДж. Этот показатель возрастает при том же значении α за счет изменения нагрузки на аппараты 3 и 4. Так в опыте 3 количество топлива, подаваемого в аппарат 4, увеличено до 18,2 кг. В итоге количество тепла на выработку пара возросло до 591,05 МДж. Одновременно количество синтез-газа уменьшилось с 175,5 кг до 47,53 кг.
Варьирование величиной α влияет также на перераспределение количеств вырабатываемого газа. В опыте 6 величина α = 0,5. В аппарате 4 сжигают 18,2 кг угля, а в аппаратах 2 и 3 подвергают газификации соответственно 26,5 кг и 46,31 кг угля. На выходе установки получают 79,13 кг горючего газа и 94,68 кг синтез-газа. В опыте 10 при той же нагрузке на топку котла и α = 0,1 распределение топлива между газификаторами 2 и 3 таково, что количество горючего газа уменьшилось до 12,61 кг, а выработка синтез-газа наоборот возросла до 161,75 кг.
Наибольшее количество тепла на выработку пара получено в опыте 12 - 2068,6 МДж. Однако здесь выхлоп дымовых газов в атмосферу наибольший из всех опытов и составляет 210,21 кг. В опытах 1 и 3 выхлоп вовсе отсутствует.
Удельные расходы топлива и кислорода, подаваемых в газификатор 2 на массовую единицу перерабатываемых дымовых газов, не должны быть ниже пороговых величин, определенных условиями:
Figure 00000011

Значения этих пороговых величин согласно расчету равны 0,565 и 0,389. Как следует из табл. 3, во всех опытах эти условия строго соблюдаются.
Влияние состава парокислородного дутья на процесс газификации в аппарате 3 раскрывают данные, содержащиеся в табл. 4. От соотношения компонентов в дутье зависит состав получаемого синтез-газа и температура в аппарате. Наиболее наглядно это следует из данных опытов 12 - 1...12 - 3, большему содержанию кислорода в дутье соответствует более высокая температура в газификаторе. При этом содержание водорода в получаемом синтез-газе наоборот падает. В этих опытах нагрузка на аппарат по углю неизменна, что позволяет судить о чувствительности состава получаемого синтез-газа к содержанию кислорода в парокислородном дутье.
Во всех опытах табл. 4 массовое соотношение водяного пара Gп и кислорода Gк в дутье не превосходит порогового значения, определяемого условием
Gп/Gк<9•q2/(16•q3),
и составляет 0,928 (при q3 = 132680 кДж/кмоль [5]). В то же время массовое соотношение топлива Gт к водяному пару Gп в дутье не ниже порогового значения, определяемого условием
Gт/Gп≥(2•q2 + 4•q3)/(3•q2)
и составляет 1,4748. Как следует из табл. 4, во всех опытах эти условия строго соблюдаются.

Claims (4)

1. Способ переработки твердого углеродсодержащего топлива, включающий стадию газификации твердого топлива в присутствии газифицирующего агента с получением горючего газа и стадию сжигания топлива в потоке окислителя, отличающийся тем, что твердое топливо вначале подвергают термоочистке от соединений серы и азота путем подачи кислорода и горючего газа со стадии газификации в количествах, необходимых для полного окисления соединений серы и азота и стабилизации заданного температурного режима очистки, с последующим отводом отходящего газа со стадии термоочистки на дальнейшую переработку в серную и азотную кислоты, затем очищенное твердое топливо распределяют на три потока X, Y и Z и подают на переработку соответственно: X - на стадию газификации, которую осуществляют с использованием в качестве газифицирующего агента дымовых газов α, отводимых со стадии сжигания топлива, и кислорода, подаваемого для стабилизации заданного температурного режима газификации, Y - на стадию сжигания с использованием в качестве окислителя кислорода и Z - дополнительно на стадию парокислородной газификации, причем соотношением вырабатываемых количеств тепла на стадии сжигания, горючего газа на стадии газификации дымовыми газами и синтез-газа на стадии парокислородной газификации управляют путем распределения топлива между стадиями переработки и отводом дымовых газов согласно формулам
X = α•K•Y и Z = 1 - (1+α•K)•Y,
где α - дымовые газы, отводимые со стадии сжигания топлива и подаваемые на стадию газификации;
K = (4 • q1 + 3 • q2)/(3 • q2) - константа;
q1 и q2 - тепловые эффекты реакций соответственно конверсии диоксида углерода и окисления углерода до оксида углерода, кДж/кмоль, при этом 0 < Y < 1/(1+α•K) и 0 < α ≤ 1.
2. Способ по п.1, отличающийся тем, что на стадии газификации топлива дымовыми газами подачу топлива
Figure 00000012
и кислорода
Figure 00000013
на массовую единицу перерабатываемых дымовых газов осуществляют согласно формулам
Figure 00000014

Figure 00000015

где
Figure 00000016
удельный расход соответственно топлива и кислорода на массовую единицу перерабатываемых дымовых газов;
q1, q2 - тепловые эффекты реакций соответственно конверсии диоксида углерода и окисления углерода до оксида углерода, кДж/кмоль.
3. Способ по пп.1 и 2, отличающийся тем, что на стадии парокислородной газификации подачу водяного пара Gп и кислорода Gк в дутье и топлива Gт осуществляют согласно массовым соотношениям
Gп/Gк < 9 • q2/(16 • q3);
Gт/Gп ≥ (2 • q2 + 4 • q3)/(3 • q2),
где q2, q3 - тепловые эффекты реакций соответственно окисления углерода до оксида углерода и конверсии водяного пара, кДж/кмоль.
4. Способ по пп.1 - 3, отличающийся тем, что остатки топлива со стадий газификации подают на стадию сжигания.
5. Способ по пп.1 - 4, отличающийся тем, что отходящий газ со стадии термоочистки перерабатывают в серную и азотную кислоты контактно-нитрозным методом.
RU97104670A 1997-03-25 1997-03-25 Способ переработки твердого углеродсодержащего топлива RU2115696C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97104670A RU2115696C1 (ru) 1997-03-25 1997-03-25 Способ переработки твердого углеродсодержащего топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97104670A RU2115696C1 (ru) 1997-03-25 1997-03-25 Способ переработки твердого углеродсодержащего топлива

Publications (2)

Publication Number Publication Date
RU2115696C1 true RU2115696C1 (ru) 1998-07-20
RU97104670A RU97104670A (ru) 1998-11-10

Family

ID=20191188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97104670A RU2115696C1 (ru) 1997-03-25 1997-03-25 Способ переработки твердого углеродсодержащего топлива

Country Status (1)

Country Link
RU (1) RU2115696C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462503C1 (ru) * 2011-05-24 2012-09-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения горючего газа, обогащенного водородом
RU2499033C2 (ru) * 2008-03-06 2013-11-20 Уде Гмбх Способ и устройство для обработки потоков текучей среды, полученных во время сгорания
RU2553892C2 (ru) * 2010-02-01 2015-06-20 Сее - Солусойнш, Энержия Э Мейу Амбиенте Лтда. Способ и система для подачи тепловой энергии и эксплуатирующая ее установка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
5. Федосеев С.Д. Физико-химическая модель процесса газификации угля. - Химия твердого топлива, 1987, N 5, с.91. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499033C2 (ru) * 2008-03-06 2013-11-20 Уде Гмбх Способ и устройство для обработки потоков текучей среды, полученных во время сгорания
RU2553892C2 (ru) * 2010-02-01 2015-06-20 Сее - Солусойнш, Энержия Э Мейу Амбиенте Лтда. Способ и система для подачи тепловой энергии и эксплуатирующая ее установка
RU2462503C1 (ru) * 2011-05-24 2012-09-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения горючего газа, обогащенного водородом

Similar Documents

Publication Publication Date Title
KR100694367B1 (ko) 석탄을 연료 전지 품질의 수소 및 즉시 격리가능한이산화탄소로 전환시키는 방법
US4102989A (en) Simultaneous reductive and oxidative decomposition of calcium sulfate in the same fluidized bed
JPH021878B2 (ru)
US6083862A (en) Cyclic process for oxidation of calcium sulfide
EP0195447A2 (en) Oxygen enriched claus system with sulfuric acid injection
JP2519691B2 (ja) 硫酸製造の方法および装置
GB2180849A (en) Producing clean gas containing hydrogen and carbon monoxide
RU2220209C2 (ru) Способ получения железа прямым восстановлением
RU2726175C1 (ru) Способы и системы для повышения содержания углерода в губчатом железе в восстановительной печи
US3710737A (en) Method for producing heat
KR0152427B1 (ko) 제련 가스화 장치에서의 연소성 가스 생성 방법
US20190048429A1 (en) Method and system for the production of porous iron
RU2127319C1 (ru) Способ получения губчатого железа и установка для осуществления этого способа
RU2115696C1 (ru) Способ переработки твердого углеродсодержащего топлива
US8765017B2 (en) Gasification systems and associated processes
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JPH10506951A (ja) ガス化ガスからのアンモニアの除去方法
US5653955A (en) Cyclic process for oxidation of calcium sulfide
JPH07228910A (ja) 鉄を製造する方法および装置
JPH05523B2 (ru)
US5433939A (en) Cyclic process for oxidation of calcium sulfide
JPS63159496A (ja) 原料ガス処理方法及びその装置
WO2003068894A1 (fr) Procede et dispositif de gazeification
KR101960578B1 (ko) 탄소 캐리어를 기화시키기 위한 그리고 생성된 가스를 추가 가공하기 위한 방법 및 시스템
RU2630118C1 (ru) Способ переработки углеродсодержащего сырья в реакторе с расплавом металла