RU2076363C1 - Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn - Google Patents

Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn Download PDF

Info

Publication number
RU2076363C1
RU2076363C1 RU9595100564A RU95100564A RU2076363C1 RU 2076363 C1 RU2076363 C1 RU 2076363C1 RU 9595100564 A RU9595100564 A RU 9595100564A RU 95100564 A RU95100564 A RU 95100564A RU 2076363 C1 RU2076363 C1 RU 2076363C1
Authority
RU
Russia
Prior art keywords
assembly
tin
elements
bronze
wire
Prior art date
Application number
RU9595100564A
Other languages
English (en)
Other versions
RU95100564A (ru
Inventor
Н.С. Грязнов
А.Д. Никулин
А.К. Шиков
А.Г. Силаев
И.И. Давыдов
А.Е. Воробьева
М.Г. Клиневский
Л.И. Вождаев
К.А. Мареев
Original Assignee
Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара filed Critical Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара
Priority to RU9595100564A priority Critical patent/RU2076363C1/ru
Publication of RU95100564A publication Critical patent/RU95100564A/ru
Application granted granted Critical
Publication of RU2076363C1 publication Critical patent/RU2076363C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Использование: изобретение относится к получению сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения. Сущность изобретения: в способе, включающем операции изготовления сверхпроводящего провода по "бронзовой технологии", перед операцией герметизации на каждой из ступеней обработки сборки наносят слой толщиной 3-10 мкм из олова или сплава на его основе, содержащего один или несколько легирующих элементов, выбранных из перечня In, Ga, Zn, общее количество легирующих элементов составляет от 1% до 40%. Изобретение позволяет получить технический результат, заключающийся в повышении критического тока по сравнению с проводником, получаемым по обычной "бронзовой технологии", на 12-15%. 1 з.п. ф-лы.

Description

Изобретение относится к получению сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения.
Известен способ получения сверхпроводящего провода на основе соединения Nb3Sn, основанный на "бронзовой технологии", который включает: заключение стержня ниобия в оболочку из бронзы, содержащей олова 8-13 мас. герметизацию сборки путем сварки, горячее выдавливание композитной заготовки и последующую холодную деформацию прутка волочением до получения шестигранного профиля требуемого размера, разрезку шестигранного прутка на заготовки для последующей сборки их в бронзовую оболочку, повторную герметизацию сборки и последующую деформацию ее до получения шестигранного профиля требуемого размера. В зависимости от конструкции сверхпроводящего провода таких стадий может быть 2 или 3. На последней стадии сборку деформируют до необходимого размера провода, после чего проводят термодиффузионный отжиг с целью получения сверхпроводящего соединения Nb3Sn на границе контакта ниобий-бронза (Металловедение и технология сверхпроводящих материалов. /под ред. С.Фенера и Б.Шварца, пер. с англ. М. Металлургия, 1987, с. 274-289).
При этом способе получения сверхпроводящего провода используется бронза с содержанием олова как правило 8-13 мас. Ограничение содержания олова в бронзе определяется главным образом требованием к ее пластичности в процессе получения провода.
Известен ряд изобретений и работ по влиянию легирования ниобия и бронзы различными элементами на сверхпроводящие свойства получаемого провода. Такие добавки, как Ti, Zr, Zn, In повышают токовые характеристики сверхпроводящих проводов, особенно в высоких полях, однако затрудняют технологию получения провода (Levingston I. D. Effekt of Ta additions on bronse proctised Nb3Sn superconductors IEEE. Trans. Magn. 1978. Mag 14, N-5, p. 611-613).
Наиболее близким по сущности является способ получения сверхпроводящего провода "бронзовая технология", при котором в композитной заготовке, предназначенной для получения провода, между стенкой чехла и композитными прутками, помещают ленту из Sn и Nb, причем Sn лента контактирует с композиционными прутками, после чего ее подвергают деформации до конечного размера провода, который термообрабатывают по заданному режиму (прототип, статья D.Hohno, I. Ikeno, N. Sadahata и M.Suginoto Ti added Nb3Sn wires by new fabrication processes IEEE. Trans. Magn. Mag-23, N-2, 1986, p. 964-967).
Недостатком этого способа является то, что в процессе волочения сборки более пластичная по сравнению с медью и бронзой полоса из олова утоняется до минимального размеров, что мало влияет на повышение содержания олова в бронзе при изготовлении провода, а также то, что область, богатая оловом, находится на периферии многожильного провода, что обуславливает неоднородность формирования слоя Nb3Sn по сечению проводника.
Целью изобретения является повышение токовых характеристик сверхпроводящего провода, получаемого по "бронзовой технологии". Поставленная цель достигается тем, что в способе получения сверхпроводящего провода на основе соединения Nb3Sn, заключающемся в том, что стержень ниобия размещают в оболочку из бронзы, содержащей олова 8-13 мас. герметизируют сборку путем сварки, проводят горячее выдавливание с последующей холодной деформацией прутка волочением до получения шестигранного профиля требуемого размера, разрезку шестигранного прутка на заготовки и сборку их в медную оболочку, герметизируют сборку, подвергают деформации до конечного размера провода, который термообрабатывают по заданному режиму, на поверхность элементов сборки перед операцией герметизации наносится слой олова или оловянного сплава, имеющего в составе In, Ga, Zn 1-40 мас. толщиной 3-10 мкм на каждой из ступеней обработки сборки. Нанесение олова или оловянного сплава на элементы сборки может осуществляться путем напыления или горячего лужения.
Для предотвращения стекания легкоплавкого сплава с поверхности элементов сборки в процессе нагрева ее перед выдавливанием толщина покрытия не должна превышать 10 мкм. Нижний предел толщины покрытия составляет 3 мкм, что определяется возможным эффектом повышения содержания олова в бронзе в процессе термообработки провода.
Так как в процессе получения сверхпроводящего провода предусмотрено несколько операций сборки шестигранников, то процесс покрытия элементов сборки сплавом на основе олова может осуществляться перед каждой операцией сборки.
Таким образом, сборка перед последней операцией деформирования будет иметь элементы (шестигранники), в которых равномерно по сечению композита ниобий-бронза будут располагаться зоны богатые оловом. Так как они имеют достаточно узкую (3-5 мкм) зону внутри пластичной бронзы, то на обработку путем горячего выдавливания и волочения они практически не оказывают влияния.
Легирование олова такими элементами, как In, Ga, Zn позволяет улучшить смачивание бронзы, а также повысить скорость и токовые характеристики образования соединения Nb3Sn при термодиффузионном отжиге. Наиболее оптимальным является легирование олова этими элементами в пределах 1-40 мас.
Пример выполнения. Перед сборкой конструктивных элементов (шестигранников), имеющих композиционную структуру с количеством жил 121, они подвергались лужению по всей поверхности, с помощью специальной фильеры, сплавом: 8% Sn, In; 0,5% Ga, 1% Zn. Толщина покрытия сохранялась на уровне 5-7 мкм. Шестигранники собирались в трубу из бронзы марки БрО 13, внутренняя поверхность которой также покрывалась этим же сплавом толщиной 3-5 мкм. Сборка герметизировалась, после чего подвергалась горячему выдавливанию с предварительным нагревом 600oC в течение 2 часов и волочилась с промежуточными термообработками до диаметра 0,3 мм, после чего провод подвергался термодиффузионному отжигу.
Электрофизические измерения, проведенные на образцах провода, изготовленного по выбранной технологии, показали, что критический ток их на 12-15% выше по сравнению с проводом, полученным по обычной "бронзовой технологии", а прочностные характеристики мало отличаются друг от друга.
Таким образом, совместное использование в предлагаемом способе упомянутых выше известных и отличительных признаков, позволяет получить новый технический результат, заключающийся в повышении критического тока по сравнению с проводником, полученным по обычной "бронзовой технологии", на 12-15%

Claims (2)

  1. Способ получения многожильного сверхпроводящего провода на основе соединения Nb3Sn, при котором стержень из ниобия размещают в оболочке из бронзы, содержащей олово 8 13 мас. полученную сборку с элементами герметизируют путем сварки, проводят горячее выдавливание с последующей холодной деформацией прутка волочением до получения шестигранного профиля требуемого размера, разрезают шестигранный пруток на заголовки и собирают в медную оболочку, полученную сборку с элементами герметизируют, подвергают деформации до конечного размера провода, который термообрабатывают по заданному режиму, при этом перед герметизацией каждой сборки в ней образуют зоны, содержащие олово, отличающийся тем, что указанные зоны образуют путем нанесения на элементы сборки слоя толщиной 3 10 мкм олова или сплава на его основе, содержащего один или несколько легирующих элементов, выбранных из перечня Jn, Ga, Zu.
  2. 2. Способ по п.1, отличающийся тем, что общее количество легирующих элементов составляет 1 40%
RU9595100564A 1995-01-12 1995-01-12 Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn RU2076363C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9595100564A RU2076363C1 (ru) 1995-01-12 1995-01-12 Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9595100564A RU2076363C1 (ru) 1995-01-12 1995-01-12 Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn

Publications (2)

Publication Number Publication Date
RU95100564A RU95100564A (ru) 1996-06-27
RU2076363C1 true RU2076363C1 (ru) 1997-03-27

Family

ID=20163995

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9595100564A RU2076363C1 (ru) 1995-01-12 1995-01-12 Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn

Country Status (1)

Country Link
RU (1) RU2076363C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507636C2 (ru) * 2008-12-23 2014-02-20 Лувата Эспоо Ой Металлическая сборка, заготовка для сверхпроводника, сверхпроводник и способ, пригодный для получения сверхпроводника
RU2522901C2 (ru) * 2012-11-20 2014-07-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "НАНОЭЛЕКТРО" СВЕРХПРОВОДЯЩИЙ ПРОВОД НА ОСНОВЕ Nb3Sn
RU2559803C2 (ru) * 2013-11-18 2015-08-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Металловедение и технология сверхпроводящих материалов. /Под ред. Фенера С. и Шварца Б. - М.: Металлургия, 1987, с.274-289. 2. JEEE. Trans. Magn, 1978, Mag 14, N 5, p.611-613. 3. JEEE. Trans. Magn Mag 23, N 2, 1986, p.964-967. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507636C2 (ru) * 2008-12-23 2014-02-20 Лувата Эспоо Ой Металлическая сборка, заготовка для сверхпроводника, сверхпроводник и способ, пригодный для получения сверхпроводника
RU2522901C2 (ru) * 2012-11-20 2014-07-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "НАНОЭЛЕКТРО" СВЕРХПРОВОДЯЩИЙ ПРОВОД НА ОСНОВЕ Nb3Sn
RU2559803C2 (ru) * 2013-11-18 2015-08-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn

Also Published As

Publication number Publication date
RU95100564A (ru) 1996-06-27

Similar Documents

Publication Publication Date Title
US8319105B2 (en) Wire-in-channel superconductor
US4195199A (en) Superconducting composite conductor and method of manufacturing same
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US6199266B1 (en) Method for producing superconducting cable and cable produced thereby
US4055887A (en) Method for producing a stabilized electrical superconductor
US4224735A (en) Method of production multifilamentary intermetallic superconductors
US5364709A (en) Insulation for superconductors
JPS5827603B2 (ja) 安定化超伝導体の製造法
RU2076363C1 (ru) Способ получения многожильного сверхпроводящего провода на основе соединения nb*003sn
US4084989A (en) Method for producing a stabilized electrical superconductor
CN100361234C (zh) 提高超导体线材中铜/超导体比率的方法
JP2562903B2 (ja) 超電導体
SU499847A3 (ru) Способ изготовлени сверхпроводника
JPS62164897A (ja) 導電用複合ブスバ−
JPS6381709A (ja) 超電導体
JP3257703B2 (ja) パルス又は交流用電流リード及び前記電流リードにa15型化合物超電導撚線を接続する方法
JP3070969B2 (ja) 超電導線の製造方法
JP2993986B2 (ja) アルミニウム安定化超電導線の製造方法
JPS63102115A (ja) 超電導合金線材の製造方法
JPH08167336A (ja) Nb3 Sn超電導線の製造方法
JPH0821272B2 (ja) 超電導体
JP2742437B2 (ja) 化合物系超電導撚線の製造方法
JPS5933653B2 (ja) 安定化超電導体の製造方法
JPS6381708A (ja) 超電導体
JPS59214111A (ja) 化合物系極細多芯超電導線の製造方法