RU2043656C1 - Способ вычислительной томографии - Google Patents

Способ вычислительной томографии Download PDF

Info

Publication number
RU2043656C1
RU2043656C1 SU5063247A RU2043656C1 RU 2043656 C1 RU2043656 C1 RU 2043656C1 SU 5063247 A SU5063247 A SU 5063247A RU 2043656 C1 RU2043656 C1 RU 2043656C1
Authority
RU
Russia
Prior art keywords
energy
patterns
section
different
point
Prior art date
Application number
Other languages
English (en)
Inventor
Валерий Аркадьевич Шафтан
Сергей Васильевич Антипин
Роман Эляич Гут
Original Assignee
Валерий Аркадьевич Шафтан
Сергей Васильевич Антипин
Роман Эляич Гут
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Аркадьевич Шафтан, Сергей Васильевич Антипин, Роман Эляич Гут filed Critical Валерий Аркадьевич Шафтан
Priority to SU5063247 priority Critical patent/RU2043656C1/ru
Application granted granted Critical
Publication of RU2043656C1 publication Critical patent/RU2043656C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение может быть применено для получения изображения внутренней структуры объектов, в особенности протяженных и труднодоступных (медицина, физика атмосферы и т.д.). Способ включает воздействие на исследуемый объект, детектирование энергии воздействия, рассеянную либо переизлученную элементами внутренней структуры объекта, и восстановление изображения в выбранном сечении. Воздействие выполняют с использованием n различных диаграмм направленности энергии воздействия. Детектирование выполняют с использованием m различных диаграмм направленности приема, причем n+m≥ 3 . Воздействие формируют в виде импульсов с длительностью, не превышающей время их распространения через исследуемый объект. Первичные сечения выбирают по времени прихода импульса рассеянной энергии, а изображения в других сечениях восстанавливают по первичным сечениям. 3 ил.

Description

Изобретение касается томографии и предназначено для получения изображения внутренней структуры объектов, в особенности протяженных и труднодоступных (медицина, физика атмосферы и т.д.).
Известные реализации компьютерной томографии на эффекте рассеяния реализуют практически один и тот же способ и отличаются друг от друга различными решениями технических вопросов, характерных для реализации соответствующих устройств. Этот способ сводится к тому, что на исследуемый объект оказывают внешнее воздействие, например, проникающим излучением. Воздействие, как правило, осуществляется одним источником. Энергию, рассеянную (переизлученную) внутренними неоднородностями изучаемого объекта, фиксируют системой детекторов, расположенных с различных сторон объекта. Далее выполняют операции преобразования сигналов от детекторов в цифровые эквиваленты и восстанавливают внутреннюю структуру объекта в выбранном сечении путем реализации соответствующих алгоритмов восстановления изображения на ЭВМ. Источник воздействия может быть естественным (например, Солнце), а фиксация переизлученной энергии с различных сторон может осуществляться последовательно [1]
Недостаток указанного способа заключается в том, что он не позволяет исследовать труднодоступные объекты, для которых невозможно реализовать фиксацию рассеянной (отраженной) энергии с различных сторон исследуемого объекта. Это может быть обусловлено различными причинами, например их большими размерами, трудностью доступа (например, при зондировании ионосферы с целью выявления структуры ее неоднородностей) либо дороговизной (необходимость бурения скважин при определении наличия рудных тел при геологоразведке).
Технический результат изобретения заключается в упрощении и расширении области применения за счет возможности исследования труднодоступных и протяженных объектов.
Сущность предложения заключается в том, что в способе вычислительной томографии, использующем эффекте рассеяния и заключающемся в воздействии на исследуемый объект, например, проникающим излучением, детектировании энергии, переизлученной элементами внутренней структуры объекта, и восстановлении изображения в выбранном сечении, воздействие выполняют с применением n различных диаграмм направленности энергии воздействия, а детектирование осуществляют с помощью m диаграмм направленности приема. При этом количество используемых диаграмм направленности излучения (n) и детектирования (m) таково, что n+m≥ 3. Иначе говоря, если n 1 (одна диаграмма излучения), то количество различных диаграмм детектирования m должно быть не менее двух, и наоборот, если m 1, то n ≥ 2. В общем случае n и m могут быть произвольными целыми числами, подчиняющимися условиям n ≥ 1, m ≥ 1, n+m ≥ 3. Воздействие имеет импульсный характер.
Выбор исследуемого сечения (называемого в данной заявке первичным) осуществляется за счет выбора момента прихода импульса рассеянной энергии. По принятому импульсу отраженной энергии с помощью компьютерной обработки восстанавливают структуру (изображение) выбранного первичного сечения. По зафиксированному набору первичных сечений могут быть восстановлены любые сечения. Следует подчеркнуть, что различие диаграмм совершенно не обязательно требует различных источников воздействия либо различных детекторов. Оно может достигаться изменением формы либо направленности диаграммы от импульса к импульсу.
Сопоставительный анализ изобретения с прототипом и известными аналогами показывает, что предлагаемый способ отличается от известного тем, что воздействие носит импульсный характер, выбор первичного сечения осуществляют подбором момента детектирования импульса рассеянной (отраженной) энергии, воздействие и детектирование ведут с помощью различающихся диаграмм направленности, суммарное число которых должно быть не менее трех, и выбор исследуемого сечения выполняют по набору восстановленных первичных сечений.
На фиг. 1 проиллюстрирована реализация способа при различных диаграммах приема переизлученной энергии; на фиг.2 то же, при различных диаграммах воздействия; на фиг.3 формирование структуры произвольного сечения по структуре первичных сечений.
На приведенных чертежах 1 точка, из которой выполняют воздействие, 2 точка, в которой выполняют детектирование (приема) переизлученной энергии, 3 исследуемый объект, 4 выбранное первичное сечение, 4i (i 1,2,) элементарные объемы в выбранном сечении, 5 следующее первичное сечение, 6i (i 1,2,) направления распространения энергии воздействия от точки 1 к элементарным объемам, 7i (i 1,2,) направления распространения энергии от элементарных объемов к точке 2, G диаграммы направленности энергии воздействия, S диаграммы направленности детекторов принимаемой энергии, 8 выборочное (вторичное) сечение, 9-12 элементарные объемы первичных сечений, из которых формируется вторичное сечение 8.
Для подтверждения возможности осуществления предлагаемого способа рассмотрим первоначально случай, когда используют одну диаграмму направленности энергии воздействия (n 1) и m диаграмм направленности приема рассеянной (переизлученной) энергии.
Воздействие осуществляют из точки 1, и оно имеет диаграмму направленности G. В точке 2 осуществляют детектирование с использованием m различных диаграмм направленности приема S1,S2,Sm. Воздействие выполняют энергией электромагнитного излучения. Из точки 1 излучают импульс длительностью τ который распространяется через исследуемый объект 3 и отражается от его внутренних неоднородностей. Длительность импульса τ должна быть меньше времени распространения воздействующего излучения через исследуемый объект. Часть переизлученной (отраженной) энергии принимается детектором (или системой детекторов), расположенных в точке 2. Предположим, что детектирование выполняют через время t после излучения импульса из точки 1 и делают это в течение времени τ т.е. открывают приемник через время t после излучения на промежуток времени длительностью τ Тогда детектор будет регистрировать энергию, отраженную от всех тех внутренних объемов объекта 3, для которых сумма времени распространения энергии из точки 1 до данного объема и времени распространения отраженной (переизлученной) энергии от объема до точки 2 равна t. Таким образом, эти объемы расположены на эллипсе с полюсами в точках 1 и 2, а ширина этих объемов определяется длительностью импульса τ. Изменяя время t, можно фиксировать различные такие эллипсы 4, 5,
Предположим, что выбором величины t выделено эллипсоидное сечение 4. Представим это сечение в виде совокупности элементарных объемов 41,42,4m. Энергия воздействия из точки 1 поступает к элементарным объемам 41,42,4m по траекториям 61, 62,6m, а отраженная (переизлученная) ее часть поступает в точку детектирования 2 по траекториям 71.7m. Энергия распространяется из точки 1 к объему 41 по траектории 61 и ее доля от общей энергии определяется коэффициентом передачи G1 по направлению 61 диаграммы направленности воздействия G. Точно так же по траектории 62 к объему 42 поступает часть энергии G2 и т.д. К объему 4m по траектории 6m поступает часть энергии Gm.
Вследствие неоднородности структуры объекта различные его объемы рассеивают (переизлучают) различные доли падающей на них энергии. Если обозначить через Ki долю энергии, отраженной в направлении точки 2 по траектории 7i (i 1,m), то объем 41 в направлении точки 2 по траектории 71 "пошлет" энергию G1K1, для объема 42 так же величина будет равна G2K2 и т.д. Для объема 4m эта величина составит GmKm.
Предположим, что фиксация рассеянной (переизлученной) энергии ведется m детекторами так, что каждому детектору соответствует своя диаграмма направленности приема S1,Sm. Тогда первый детектор получит энергию от всех объемов 41,4m. Распространение энергии от объема 41 к детекторам (в точку 2) идет по траектории 71, распространение энергии от объема 42 к детекторам в точку 2 происходит по траектории 72 и т.д.
Как видно из фиг.1, первый детектор, имеющий диаграмму направленности приема S1, принимает энергию от объема 41 по траектории 71 с коэффициентом передачи S11 от объема 42 по траектории 72 с коэффициентом передачи S12 и т. д. и от объема 4m происходит прием энергии по траектории 7m с коэффициентом передачи S1m. Второй детектор с диаграммой направленности приема S2 фиксирует энергию от объема 41 по направлению 71 с коэффициентом S21 от объема 42 по направлению 72 с коэффициентом S22 и от объема 4m по направлению 7m с коэффициентом S2m. Последний m-й детектор с диаграммой Sm по тем же направлениям фиксирует энергию от объема 41 с коэффициентом Sm1 от объема 42 с коэффициентом Sm2 и от объема 4m с коэффициентом Smm. Суммарная энергия, фиксируемая первым детектором равна E1
Figure 00000001
GiS1iKi или, если обозначить GiS1i через a1i, то E1=
Figure 00000002
a1iKi. Для второго детектора общая величина зафиксированной энергии составит E2
Figure 00000003
a2iKi, где a2i GiS2i и т.д. Для m-го детектора Em
Figure 00000004
amiKi, где ami GiSmi.
Таким образом, описанному выше процессу соответствует система линейных уравнений
a11K1+a12K2+ +a1mKm E1
a21K1+a22K2+ +a2mKm E2

an1K1+am2K2+ +ammKm Em
Поскольку коэффициенты ali (l 1,m; i 1,m) определяются диаграммами G и Sl и известны заранее, а энергии El фиксируются (измеряются) детекторами, то решение системы уравнений позволит определить величины Ki, т.е. восстановить структуру объекта в сечении 4 (естественно с точностью до дискретных объемов 4i). Из приведенного выше рассмотрения следует также, что наибольшее число различных объемов, т. е. разрешающая способность способа, определяется количеством m различных диаграмм направленности приема.
Проведенное выше относилось к случаю, когда в точке 2 расположено m различных детекторов. Предположим теперь, что в точке 2 имеется один детектор, но приемная диаграмма направленности может изменяться. Например, лепесток диаграммы направленности детектора поворачивается так, что первый импульс воздействия принимается в положении приемной диаграммы S1. Затем диаграмма изменяет свое положение на S2 и второй импульс принимается уже в этом положении диаграммы и т.д. вплоть до положения Sm. Поэтому первое из уравнений системы (1) соответствует детектированию энергии Е1 в первом положении диаграмм. Второе уравнение описывает суммарную продетектированную энергию Е2 в положении диаграммы S2 и т.д. Следовательно, описанный способ реализуется в данном случае одним детектором при различных положениях одной и той же диаграммы. Поворот диаграммы направленности приема реализуется с помощью хорошо известных технических средств. Таким образом случай с m детекторами, когда система уравнений может быть получена при приеме одного импульса, и случай с одним детектором, когда система (1) реализуется при приеме m импульсов, принципиально неразличимы. Существенно то, что в обоих случаях использовано m различных диаграмм направленности.
Предыдущее рассмотрение относилось к случаю, когда воздействие производилось одним источником из точки 1 с одной диаграммой направленности воздействия. Рассмотрим теперь случай, когда использовано n различных диаграмм направленности воздействия G1,Gn и одна диаграмма направленности приема (см. фиг.2).
Первый импульс воздействует на объект 3 при положении диаграммы направленности воздействия G1. Проводя рассмотрение, аналогичное приведенному выше, получим, что суммарная энергия от всех объемов, полученная детектором в этом случае составит
E1
Figure 00000005
G1iSi; Ki
Figure 00000006
b1iKi, где b1i G1i ˙Si
Далее производится изменение диаграммы направленности от G1 и G2 и вновь выполняется импульсное воздействие. Энергия, зафиксированная детектором, в этом случае E2
Figure 00000007
G2iSi, Ki
Figure 00000008
b2iKi, где b2i G2iSi. Далее процесс происходит аналогично, в n-м положении диаграммы G детектор зафиксирует энергию En
Figure 00000009
GniSi, Ki
Figure 00000010
bni K, где bni GniSi.
Следовательно, получена система уравнений
b11K1+b12K2+ +b1nKn E1
b21K1+b22K2+ +b2nKn E2 (2)
bn1K1+bn2K2+ +bnnKn En
Величины bli известны заранее, величины Ei измеряются детектором. Следовательно, решением системы (2) можно определить значение Ki, т.е. восстановить внутреннюю структуру объекта 3 в сечении 4.
Как и в предыдущем случае, количество различных элементарных объемов b определяется числом n различных диаграмм направленности воздействия.
Наконец, возможен случай использования нескольких (n) диаграмм направленности воздействия и нескольких (m) диаграмм направленности приема. Аналогично рассмотренному выше можно получить, что общее число возможных уравнений в этом случае Knm, за счет чего можно существенно повысить разрешающую способность предлагаемого метода.
Изменяя интервал времени t, можно последовательно сечение за сечением восстановить внутреннюю структуру объекта (см. фиг.1). Значения К для соответствующих элементарных объемов, определенные на ЭВМ по системам уравнений типа (1), (2), фиксируют в запоминающем устройстве ЭВМ. По полученным наборам значений К в случае необходимости, определяют структуру любого сечения. Например, если необходимо восстановить структуру сечения 8, его можно получить комбинируя значения К для элементарных объемов 9-12, полученных в различных выше последовательностью приемов. Поэтому описанная выше последовательность позволяет восстановить внутреннюю структуру объекта 3 в сечениях, которые естественно назвать первичными. По структуре этих первичных сечений можно, как описано выше, восстановить структуру в любом сечении и визуализировать ее с помощью обычных средств отображения информации, входящих в состав ЭВМ.
Проведенное выше рассмотрение для простоты выполнено для плоского случая. Однако оно целиком переносится на трехмерный (объемный) случай.
Как видно из приведенного описания, в предлагаемом способе вычислительной томографии воздействие и детектирование реализуется в фиксированных точках. При этом нет никаких препятствий к тому, чтобы эти точки были бы пространственно совмещены. В известных способах воздействие либо детектирование, либо и то и другое выполняют с различных сторон (последовательно во времени либо одновременно). Поскольку в предложенном способе этого не требуется, он реализуется существенно проще. Кроме того, это позволяет реализовать томографию труднодоступных объектов, для которых нельзя осуществить воздействие с различных сторон либо реализовать детектирование энергии вокруг объекта. Это может быть необходимым при зондировании атмосферы, в геологоразведке, а также при медицинском обследовании нетранспортабельных больных, например, с тяжелыми повреждениями и травмами.

Claims (1)

  1. СПОСОБ ВЫЧИСЛИТЕЛЬНОЙ ТОМОГРАФИИ, при котором выполняют проникающее воздействие на исследуемый объект, детектируют энергию воздействия, рассеянную или переизлученную элементами внутренней структуры объекта и восстанавливают его изображение в выбранном сечении, отличающийся тем, что воздействие выполняют с использованием n различных, но заранее определенных диаграмм направленности энергии воздействия, а детектирование выполняют с использованием определенных m различных диаграмм направленности приема, причем n + m ≥ 3, при этом воздействие организуют в виде импульсов с длительностью, не превышающей время их распространения через исследуемый объект, первичные сечения объекта выбирают по времени прихода отраженного импульса, а изображения объекта в других сечениях восстанавливают с учетом первичных и видом диаграмм направленности по соответствующим им алгоритмам.
SU5063247 1992-09-25 1992-09-25 Способ вычислительной томографии RU2043656C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5063247 RU2043656C1 (ru) 1992-09-25 1992-09-25 Способ вычислительной томографии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5063247 RU2043656C1 (ru) 1992-09-25 1992-09-25 Способ вычислительной томографии

Publications (1)

Publication Number Publication Date
RU2043656C1 true RU2043656C1 (ru) 1995-09-10

Family

ID=21613795

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5063247 RU2043656C1 (ru) 1992-09-25 1992-09-25 Способ вычислительной томографии

Country Status (1)

Country Link
RU (1) RU2043656C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085049B2 (en) 1999-01-28 2011-12-27 Halliburton Energy Services, Inc. Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone
US8085050B2 (en) 2007-03-16 2011-12-27 Halliburton Energy Services, Inc. Robust inversion systems and methods for azimuthally sensitive resistivity logging tools
US8222902B2 (en) 2006-07-11 2012-07-17 Halliburton Energy Services, Inc. Modular geosteering tool assembly
US9157315B2 (en) 2006-12-15 2015-10-13 Halliburton Energy Services, Inc. Antenna coupling component measurement tool having a rotating antenna configuration
US9732559B2 (en) 2008-01-18 2017-08-15 Halliburton Energy Services, Inc. EM-guided drilling relative to an existing borehole

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Бейто Р.Х.Т. и др. Реконструктивная вычислительная томография, ТИНЭР, т.71, N 3, 1983. *
2. Тихонов А.П. и др. Математические задачи компьютерной томографии М.: Наука, 1987. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085049B2 (en) 1999-01-28 2011-12-27 Halliburton Energy Services, Inc. Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone
US8222902B2 (en) 2006-07-11 2012-07-17 Halliburton Energy Services, Inc. Modular geosteering tool assembly
US10119388B2 (en) 2006-07-11 2018-11-06 Halliburton Energy Services, Inc. Modular geosteering tool assembly
US9157315B2 (en) 2006-12-15 2015-10-13 Halliburton Energy Services, Inc. Antenna coupling component measurement tool having a rotating antenna configuration
US8085050B2 (en) 2007-03-16 2011-12-27 Halliburton Energy Services, Inc. Robust inversion systems and methods for azimuthally sensitive resistivity logging tools
US9732559B2 (en) 2008-01-18 2017-08-15 Halliburton Energy Services, Inc. EM-guided drilling relative to an existing borehole

Similar Documents

Publication Publication Date Title
Tsang et al. A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes
US7130374B1 (en) Snapshot backscatter radiography (SBR) systems including system having dynamic collimation
Norton et al. Time exposure acoustics
Aschwanden et al. Electron time-of-flight distances and flare loop geometries compared from CGRO and Yohkoh observations
EP0782375B1 (en) Apparatus and method for removing scatter from an x-ray image
US6528795B2 (en) Compton scatter imaging instrument
US6735279B1 (en) Snapshot backscatter radiography system and protocol
IL198295A (en) Statistical tomographic reconstruction based on measurements of charged particles
CN101971010A (zh) 复合构造物的非破坏检查装置和非破坏检查方法
US12007527B2 (en) Drift tube borehole muon detector system, apparatus, and method for muon radiography and tomography
RU2043656C1 (ru) Способ вычислительной томографии
US3688113A (en) Tomographic radiation sensitive device
US20220196874A1 (en) Muon tomography system, apparatus, and method for tunnel detection
Li et al. Source process featuring asymmetric rupture velocities of the 2021 Mw 7.4 Maduo, China, earthquake from teleseismic and geodetic data
Greenberg et al. Coding and sampling for compressive x-ray diffraction tomography
PL228119B1 (pl) Sposób wyznaczania parametrów reakcji kwantów gamma w detektorach scyntylacyjnych i układ do wyznaczania parametrów reakcji kwantów gamma w detektorach scyntylacyjnych tomografów PET
Zhao et al. A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study
Lee et al. Mathematical introduction to seismic tomography
WO2006122244A2 (en) Snapshot backscatter radiography (sbr) systems including system having dynamic collimation
Stephen Techniques of coded aperture imaging for gamma-ray astronomy
Calderón-Ardila et al. Study of spatial resolution of muon hodoscopes for muography applications in geophysics
Johansson et al. The use of an active coded aperture for improved directional measurements in high energy γ-ray astronomy
Kilty Acoustic tomography in shallow geophysical exploration using transform reconstruction
Ukaegbu Integration of ground-penetrating radar and gamma-ray detectors for non-intrusive localisation of buried radioactive sources
Moita et al. Monte Carlo study of a 3D CZT spectroscopic-imager for scattering polarimetry