RU2034937C1 - Method for electrochemical treatment of products - Google Patents

Method for electrochemical treatment of products Download PDF

Info

Publication number
RU2034937C1
RU2034937C1 SU4938651A RU2034937C1 RU 2034937 C1 RU2034937 C1 RU 2034937C1 SU 4938651 A SU4938651 A SU 4938651A RU 2034937 C1 RU2034937 C1 RU 2034937C1
Authority
RU
Russia
Prior art keywords
products
diamond
tools
hydrochloric acid
electrochemical treatment
Prior art date
Application number
Other languages
Russian (ru)
Inventor
Б.С. Хапачев
Р.И. Остроушко
Х.Г. Тхагапсоев
С.Х. Афаунов
Original Assignee
Кабардино-Балкарский государственный университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабардино-Балкарский государственный университет filed Critical Кабардино-Балкарский государственный университет
Priority to SU4938651 priority Critical patent/RU2034937C1/en
Application granted granted Critical
Publication of RU2034937C1 publication Critical patent/RU2034937C1/en

Links

Images

Abstract

FIELD: materials electrochemical treatment. SUBSTANCE: method for electrochemical treatment of products, preferentially for removing layers of binding based on carbides of metals, as well as copper, tin, cobalt, nickel, and iron components from tools of super hard materials, includes anode treatment at 30-40 A/dm2 current density during 10 - 15 min in solution containing as follows (g/l): 400 - 600 (1.19) hydrochloric acid, 50 - 80 (1.83) sulfurous acid. EFFECT: highly effective method to clear machine tools of super hard materials. 1 tbl

Description

Изобретение относится к станкоинструментальной промышленности, именно к изготовлению и эксплуатации инструментов из сверхтвердых материалов. The invention relates to machine tool industry, namely to the manufacture and operation of tools from superhard materials.

Известны способы вскрытия алмазных инструментов, заключающиеся в механическом воздействии на сегменты отрезных кругов шлифовальными кругами [1]
Вскрытие кристаллов алмаза при помощи абразивных кругов не обеспечивает необходимой размерной точности сегментов, что обусловлено неравномерностью процесса. Кроме того, указанный способ сопровождается сколом и выкрашиванием алмаза из связки, т.е. ведет к непроизводительным потерям дефицитного алмазного сырья.
Known methods for opening diamond tools, consisting in the mechanical impact on the segments of cutting wheels with grinding wheels [1]
Opening crystals of diamond using abrasive wheels does not provide the necessary dimensional accuracy of the segments, due to the unevenness of the process. In addition, this method is accompanied by chipping and chipping of the diamond from the bundle, i.e. leads to unproductive losses of scarce rough diamonds.

Известен также способ вскрытия рабочей поверхности алмазных инструментов, заключающийся в удалении связки с поверхностного слоя сегментов путем их травления в растворах хлорного железа и соляной кислоты [2]
Недостатком способа является быстрая потеря травильным раствором активности.
There is also a method of opening the working surface of diamond tools, which consists in removing the ligament from the surface layer of the segments by etching them in solutions of ferric chloride and hydrochloric acid [2]
The disadvantage of this method is the rapid loss of the etching solution of activity.

Из известных решений наиболее близким по технической сущности решением является способ, предусматривающий удаление со стальных изделий никелевого покрытия, содержащего кристаллы алмаза, и включающий анодную обработку в электролите, содержащем серную кислоту, органическую добавку и воду. При этом с целью интенсификации процесса и снижения растравливания стали в качестве органической добавки берут сахарную кислоту при следующем соотношении компонентов, мас. серная кислота 60-70; сахарная кислота 0,5-1,0; вода остальное, а обработку ведут при плотности тока 25.45 А/дм2 [3]
Обработку инструментов из сверхтвердых материалов по известному способу не обеспечивает высокой производительности процесса удаления слоя связки из-за наличия в электролите органической добавки. Кроме того, анодную обработку изделия по способу-прототипу проводят без учета временного фактора, что исключает возможность прогнозирования качества вскрытия инструментов и регулирования величины выступания зерна над связкой.
Of the known solutions, the closest solution in technical essence is the method of removing nickel coating containing diamond crystals from steel products and including anode treatment in an electrolyte containing sulfuric acid, an organic additive and water. Moreover, in order to intensify the process and reduce steel pickling, sugar acid is taken as an organic additive in the following ratio of components, wt. sulfuric acid 60-70; sugar acid 0.5-1.0; the rest is water, and the treatment is carried out at a current density of 25.45 A / dm 2 [3]
The processing of tools from superhard materials by a known method does not provide high productivity of the process of removing the binder layer due to the presence of an organic additive in the electrolyte. In addition, the anodic processing of the product according to the prototype method is carried out without taking into account the time factor, which eliminates the possibility of predicting the quality of the opening of tools and regulating the magnitude of the protrusion of grain over the bunch.

Целью изобретения является обеспечение высокой производительности процесса электрохимической обработки алмазных инструментов и возможности регулирования толщины снимаемого слоя, а также повышение качества обработки за счет предотвращения нарушения поверхностного слоя инструмента. The aim of the invention is to ensure high productivity of the process of electrochemical processing of diamond tools and the ability to control the thickness of the removed layer, as well as improving the quality of processing by preventing violation of the surface layer of the tool.

Указанная цель достигается за счет применения электрохимического метода обработки алмазных инструментов. Предлагаемый способ предусматривает анодную обработку в растворе, содержащем серную кислоту и воду. При этом обработку ведут при плотности тока 30-40 А/дм2 в течение 10-15 мин (в зависимости от требуемой величины вылета зерна над связкой инструмента) в растворе, дополнительно содержащем соляную кислоту при следующем соотношении компонентов, г/л: соляная кислота (1,19) 400-600; серная кислота (1,83) 50-80.This goal is achieved through the use of the electrochemical method of processing diamond tools. The proposed method involves anodic processing in a solution containing sulfuric acid and water. In this case, the treatment is carried out at a current density of 30-40 A / dm 2 for 10-15 minutes (depending on the required amount of grain overhang over the tool bundle) in a solution additionally containing hydrochloric acid in the following ratio of components, g / l: hydrochloric acid (1.19) 400-600; sulfuric acid (1.83) 50-80.

Уменьшение концентрации кислот в электролите (как водного раствора соляной кислоты, так и снижение добавки концентрированной серной кислоты) замедляет процесс вскрытия кристаллов алмаза. Увеличение же концентрации за пределы диапазона, предусмотренного предлагаемым способом, повышает избирательность вскрытия: вокруг алмаза появляется лунка (местное углубление), в то время как общее линейное уменьшение геометрических размеров инструмента находится в заданном диапазоне. А появление лунки вокруг алмаза не допускается, поскольку она уменьшает прочность закрепления зерна в связке. A decrease in the concentration of acids in the electrolyte (both an aqueous solution of hydrochloric acid and a decrease in the addition of concentrated sulfuric acid) slows down the process of opening diamond crystals. An increase in the concentration outside the range provided by the proposed method increases the selectivity of the autopsy: a hole appears around the diamond (local recess), while the overall linear decrease in the geometric dimensions of the tool is in the specified range. And the appearance of a hole around the diamond is not allowed, since it reduces the strength of the fixing of grain in a bunch.

Аналогичное действие на инструмент (при выявленных концентрациях соляной и серной кислоты) оказывает изменение величины плотности тока: ее увеличение вызывает появление углублений вокруг кристаллов, а уменьшение ведет к возрастанию времени обработки. Увеличение одного из параметров процесса (плотности тока или концентрации раствора) при одновременном уменьшении другого (за пределы защищаемых диапазонов) способствует появлению на рабочих поверхностях не только канавок вокруг зерен, но и травильных каверн, которые не допускаются по техническим требованиям к качеству инструмента. A similar effect on the instrument (at detected concentrations of hydrochloric and sulfuric acid) is exerted by a change in the current density: its increase causes the appearance of recesses around the crystals, and a decrease leads to an increase in the processing time. An increase in one of the process parameters (current density or solution concentration) while reducing the other (outside the protected ranges) contributes to the appearance on the working surfaces of not only grooves around the grains, but also etching caverns, which are not allowed according to the technical requirements for the quality of the instrument.

Подвод тока к инструментам (сегментом отрезных кругов), помещаемым в ванну с электролитом и являющимся анодом, осуществляется через контакты из кислотостойких материалов. В качестве катода может быть использован медный лист, лист из нержавеющей стали или другого металла, преобладающего в связке инструмента. The current is supplied to the instruments (a segment of cutting wheels), placed in a bath with an electrolyte and which is an anode, through contacts made of acid-resistant materials. As a cathode, a copper sheet, a sheet of stainless steel or another metal prevailing in the bundle of the tool can be used.

Предлагаемый способ рекомендуется использовать для вскрытия кристаллов алмазных инструментов, изготовленных на связках, содержащих карбиды металлов, а также изготовленных на основе медных, оловянных, кобальтовых, никелевых и железных компонентов. The proposed method is recommended for opening crystals of diamond tools made on bundles containing metal carbides, as well as made on the basis of copper, tin, cobalt, nickel and iron components.

Зависимость количественных параметров производительности и качества вскрытия от режимов обработки при реализации предлагаемого способа представлена в таблице. The dependence of the quantitative parameters of productivity and opening quality on processing conditions when implementing the proposed method is presented in the table.

По предложенному способу была обработана в колокольной ванне ВАКР-320-18У4 партия сегментов в количестве 200 шт. (в качестве катода использовали медный лист). Обрабатывали сегменты размером 40 х 7 х 5,5 мм, изготовленные на связке М6-02 (основа карбид вольфрама). Сегменты с 50%-ной концентрацией зерен были оснащены природными алмазами зернистостью 630/500. Обработку проводили в водном растворе соляной кислоты (500 г на 1 л HCl (1,19) с добавкой концентрированной серной кислоты в количестве 65 г на 1 л раствора при плотности тока 35 А/дм2 в течение 12 мин.According to the proposed method, a batch of segments in the amount of 200 pieces was processed in a bell bath VAKR-320-18U4. (a copper sheet was used as a cathode). Processed segments with a size of 40 x 7 x 5.5 mm, made on a bunch of M6-02 (the basis of tungsten carbide). Segments with a 50% grain concentration were equipped with 630/500 natural diamonds. The treatment was carried out in an aqueous solution of hydrochloric acid (500 g per 1 liter of HCl (1.19) with the addition of concentrated sulfuric acid in an amount of 65 g per 1 liter of solution at a current density of 35 A / dm 2 for 12 minutes.

Микроскопический контроль обработанных сегментов показал, что на их поверхностях отсутствуют травильные каверны и местное углубление вокруг кристаллов алмаза. При этом выступание зерен над связкой 0,12-0,20 мм, а удельный съем слоя связки -

Figure 00000001
20 мм3/мин.Microscopic inspection of the treated segments showed that etching cavities and a local cavity around diamond crystals were absent on their surfaces. In this case, the protrusion of grains above the ligament 0.12-0.20 mm, and the specific removal of the layer of the ligament -
Figure 00000001
20 mm 3 / min.

Кроме указанных сегментов, по предлагаемому способу были также обработаны и другие партии сегментов, изготовленных с использованием номенклатуры связок: М2-01, МЖ, М6-03 и М6-10 (во всех случаях обеспечивалось качественное вскрытие кристаллов алмаза на заданную глубину). In addition to these segments, the proposed method also processed other batches of segments made using the nomenclature of ligaments: M2-01, MF, M6-03 and M6-10 (in all cases, high-quality opening of diamond crystals to a given depth was provided).

Предлагаемый способ обеспечивает хорошее качество вскрытия кристаллов как природного, так и синтетического алмаза, используемого для изготовления инструментов на различных связках. Процесс не влияет на прочность алмазоудержания, проходит без нарушения поверхностного слоя инструмента и физико-механических свойств алмаза. The proposed method provides good quality opening crystals of both natural and synthetic diamond used for the manufacture of tools on various bundles. The process does not affect the diamond holding strength; it takes place without violating the surface layer of the tool and the physicomechanical properties of diamond.

Claims (1)

СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ, преимущественно удаления слоев связки на основе карбидов металлов, а также медных, оловянных, кобальтовых, никелевых и железных компонентов с инструментов из сверхтвердых материалов, включающий анодную обработку в растворе, содержащем серную кислоту и воду, отличающийся тем, что обработку ведут при плотности тока 30 40 А/дм2 в течение 10 15 мин в растворе, дополнительно содержащем соляную кислоту при следующем соотношении компонентов, г/л:
Соляная кислота (1,19) 400 600
Серная кислота (1,83) 50 80
METHOD FOR ELECTROCHEMICAL PROCESSING OF PRODUCTS, mainly removing binder layers based on metal carbides, as well as copper, tin, cobalt, nickel and iron components from instruments made of superhard materials, including anode processing in a solution containing sulfuric acid and water, characterized in that the treatment is carried out at a current density of 30 40 A / dm 2 for 10 15 min in a solution additionally containing hydrochloric acid in the following ratio of components, g / l:
Hydrochloric acid (1.19) 400 600
Sulfuric acid (1.83) 50 80
SU4938651 1991-05-22 1991-05-22 Method for electrochemical treatment of products RU2034937C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4938651 RU2034937C1 (en) 1991-05-22 1991-05-22 Method for electrochemical treatment of products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4938651 RU2034937C1 (en) 1991-05-22 1991-05-22 Method for electrochemical treatment of products

Publications (1)

Publication Number Publication Date
RU2034937C1 true RU2034937C1 (en) 1995-05-10

Family

ID=21575781

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4938651 RU2034937C1 (en) 1991-05-22 1991-05-22 Method for electrochemical treatment of products

Country Status (1)

Country Link
RU (1) RU2034937C1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435478B2 (en) * 2005-01-27 2008-10-14 Smith International, Inc. Cutting structures
US7462003B2 (en) * 2005-08-03 2008-12-09 Smith International, Inc. Polycrystalline diamond composite constructions comprising thermally stable diamond volume
US7575805B2 (en) * 2003-12-11 2009-08-18 Roy Derrick Achilles Polycrystalline diamond abrasive elements
US7647993B2 (en) 2004-05-06 2010-01-19 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US7681669B2 (en) 2005-01-17 2010-03-23 Us Synthetic Corporation Polycrystalline diamond insert, drill bit including same, and method of operation
US7726421B2 (en) 2005-10-12 2010-06-01 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US7730977B2 (en) 2004-05-12 2010-06-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
US7740673B2 (en) 2004-09-21 2010-06-22 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7754333B2 (en) 2004-09-21 2010-07-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7757791B2 (en) 2005-01-25 2010-07-20 Smith International, Inc. Cutting elements formed from ultra hard materials having an enhanced construction
US7980334B2 (en) 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
US7985470B2 (en) * 2007-02-02 2011-07-26 Sumitomo Electric Hardmetal Corp. Diamond sintered compact
US8020642B2 (en) 2003-05-27 2011-09-20 Brett Lancaster Polycrystalline diamond abrasive elements
US8057562B2 (en) 2006-02-09 2011-11-15 Smith International, Inc. Thermally stable ultra-hard polycrystalline materials and compacts
US8197936B2 (en) * 2005-01-27 2012-06-12 Smith International, Inc. Cutting structures
US8309050B2 (en) 2005-05-26 2012-11-13 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US8377157B1 (en) 2009-04-06 2013-02-19 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US8627904B2 (en) 2007-10-04 2014-01-14 Smith International, Inc. Thermally stable polycrystalline diamond material with gradient structure
US8881851B2 (en) 2003-12-05 2014-11-11 Smith International, Inc. Thermally-stable polycrystalline diamond materials and compacts
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
US8951317B1 (en) 2009-04-27 2015-02-10 Us Synthetic Corporation Superabrasive elements including ceramic coatings and methods of leaching catalysts from superabrasive elements
US9097074B2 (en) 2006-09-21 2015-08-04 Smith International, Inc. Polycrystalline diamond composites
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US9144886B1 (en) 2011-08-15 2015-09-29 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
RU2579717C2 (en) * 2010-09-24 2016-04-10 Эрликон Серфиз Солюшнз Аг, Трюббах Method for removal of coating from processed parts
US9352447B2 (en) 2009-09-08 2016-05-31 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US9394747B2 (en) 2012-06-13 2016-07-19 Varel International Ind., L.P. PCD cutters with improved strength and thermal stability
US9550276B1 (en) 2013-06-18 2017-01-24 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1. Журнал "Алмазы и сверхтвердые материалы", 1980, N 10, с.12,13. *
2. Журнал "Сверхтвердые материалы", 1985, N 3, с.77. *
3. Авторское свидетельство СССР N 1661252, кл. C 25F 5/00, 1988. *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020642B2 (en) 2003-05-27 2011-09-20 Brett Lancaster Polycrystalline diamond abrasive elements
US8469121B2 (en) 2003-05-27 2013-06-25 Baker Hughes Incorporated Polycrystalline diamond abrasive elements
US8881851B2 (en) 2003-12-05 2014-11-11 Smith International, Inc. Thermally-stable polycrystalline diamond materials and compacts
US7575805B2 (en) * 2003-12-11 2009-08-18 Roy Derrick Achilles Polycrystalline diamond abrasive elements
US7647993B2 (en) 2004-05-06 2010-01-19 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts
USRE47605E1 (en) 2004-05-12 2019-09-17 Baker Hughes, A Ge Company, Llc Polycrystalline diamond elements, cutting elements, and related methods
US7730977B2 (en) 2004-05-12 2010-06-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
US8172012B2 (en) 2004-05-12 2012-05-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
US8147572B2 (en) 2004-09-21 2012-04-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US9931732B2 (en) 2004-09-21 2018-04-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US10350731B2 (en) 2004-09-21 2019-07-16 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7740673B2 (en) 2004-09-21 2010-06-22 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7754333B2 (en) 2004-09-21 2010-07-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7681669B2 (en) 2005-01-17 2010-03-23 Us Synthetic Corporation Polycrystalline diamond insert, drill bit including same, and method of operation
US7757791B2 (en) 2005-01-25 2010-07-20 Smith International, Inc. Cutting elements formed from ultra hard materials having an enhanced construction
US8197936B2 (en) * 2005-01-27 2012-06-12 Smith International, Inc. Cutting structures
US7435478B2 (en) * 2005-01-27 2008-10-14 Smith International, Inc. Cutting structures
US8852546B2 (en) 2005-05-26 2014-10-07 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US8309050B2 (en) 2005-05-26 2012-11-13 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US7462003B2 (en) * 2005-08-03 2008-12-09 Smith International, Inc. Polycrystalline diamond composite constructions comprising thermally stable diamond volume
US7726421B2 (en) 2005-10-12 2010-06-01 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US8932376B2 (en) 2005-10-12 2015-01-13 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US8057562B2 (en) 2006-02-09 2011-11-15 Smith International, Inc. Thermally stable ultra-hard polycrystalline materials and compacts
US9097074B2 (en) 2006-09-21 2015-08-04 Smith International, Inc. Polycrystalline diamond composites
US7985470B2 (en) * 2007-02-02 2011-07-26 Sumitomo Electric Hardmetal Corp. Diamond sintered compact
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US8627904B2 (en) 2007-10-04 2014-01-14 Smith International, Inc. Thermally stable polycrystalline diamond material with gradient structure
US7980334B2 (en) 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
US8741005B1 (en) 2009-04-06 2014-06-03 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US8377157B1 (en) 2009-04-06 2013-02-19 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US8951317B1 (en) 2009-04-27 2015-02-10 Us Synthetic Corporation Superabrasive elements including ceramic coatings and methods of leaching catalysts from superabrasive elements
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US9352447B2 (en) 2009-09-08 2016-05-31 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
RU2579717C2 (en) * 2010-09-24 2016-04-10 Эрликон Серфиз Солюшнз Аг, Трюббах Method for removal of coating from processed parts
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US11383217B1 (en) 2011-08-15 2022-07-12 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9144886B1 (en) 2011-08-15 2015-09-29 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9394747B2 (en) 2012-06-13 2016-07-19 Varel International Ind., L.P. PCD cutters with improved strength and thermal stability
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US11370664B1 (en) 2013-06-18 2022-06-28 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9550276B1 (en) 2013-06-18 2017-01-24 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11618718B1 (en) 2014-02-11 2023-04-04 Us Synthetic Corporation Leached superabrasive elements and leaching systems, methods and assemblies for processing superabrasive elements
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US11253971B1 (en) 2014-10-10 2022-02-22 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11535520B1 (en) 2015-05-31 2022-12-27 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11946320B2 (en) 2017-09-18 2024-04-02 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Similar Documents

Publication Publication Date Title
RU2034937C1 (en) Method for electrochemical treatment of products
US3762243A (en) Methods of making sharp-edge cutting elements
US3619390A (en) Aqueous electrolytic stripping bath to remove metal coatings from bases of steel
US6110240A (en) Superhard article with diamond coat and method of manufacturing same
JPS5832240B2 (en) Aluminum Denkaimetatehouhou
JP2597931B2 (en) Removal agent for titanium coating on high speed tool steel
US3627654A (en) Electrolytic process for cleaning high-carbon steels
US3174363A (en) Method of forming cutting tools
JP3647875B2 (en) A method of forming the cutting edge of a cutting tool insert to an intended radius by electrolytic polishing technology
US2745800A (en) Electroplating with iron
JP2003001505A (en) Cemented carbide cutting tool insert for turning processing titanium alloy
EP1175949B1 (en) Coated cemented carbide
US3749618A (en) Process and solution for removing titanium and refractory metals and their alloys from tools
EP0599948B1 (en) Electrolytic bath solution and method for improving the surface wear resistance of tools
JP2004325190A (en) Method of making austenitic grain boundary of steel emerged
EP3488030B1 (en) Method for polishing conductive metal surfaces
JPH11347805A (en) Diamond coated tool member and manufacture thereof
JP2000297342A (en) Surface-refined cemented carbide, coated surface-refined cemented carbide, and their manufacture
JPH0920590A (en) Production of cemented carbide base material having diamond film
JP2762203B2 (en) Chemical remover and method for removing titanium coating film on cemented carbide surface
CN115446334B (en) Method for turning groove on hard alloy
JPS6288509A (en) Surface coated cemented carbide end mill
SU1009607A1 (en) Method of working hard-alloy cerment articles
US2461036A (en) Stainless steel polishing
SU785010A1 (en) Electrolyte for diamond abrasive electrochemical grinding