RU2025869C1 - Полюс электрической машины с жидкостным охлаждением - Google Patents

Полюс электрической машины с жидкостным охлаждением Download PDF

Info

Publication number
RU2025869C1
RU2025869C1 SU5008893A RU2025869C1 RU 2025869 C1 RU2025869 C1 RU 2025869C1 SU 5008893 A SU5008893 A SU 5008893A RU 2025869 C1 RU2025869 C1 RU 2025869C1
Authority
RU
Russia
Prior art keywords
pole
coolers
core
electric machine
coil
Prior art date
Application number
Other languages
English (en)
Inventor
Виталий Сергеевич Максимов
Original Assignee
Виталий Сергеевич Максимов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Сергеевич Максимов filed Critical Виталий Сергеевич Максимов
Priority to SU5008893 priority Critical patent/RU2025869C1/ru
Application granted granted Critical
Publication of RU2025869C1 publication Critical patent/RU2025869C1/ru

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

Использование: в электромашиностроении. Сущность изобретения: явновыраженный полюс 1 с жидкостным охлаждением содержит сердечник 2 и башмак 3 с уложенными в пазы демпферными стержнями 4 и катушкой 9 возбуждения со сплошными проводниками 10, изолированной от сердечника 2 литым диэлектриком 15 и зафиксированной шайбой 14. По периметру сердечника 2 в пазах размещены охладители 17 из ферромагнитной коррозионно-стойкой стали, а по периметру башмаков 3 в пазах размещены охладители 18 и 19 из ферромагнитной коррозионно-стойкой стали, по которым циркулирует жидкий хладагент: техническая вода, проточная вода или ферромагнитная жидкость. Охлаждения катушки 9 осуществляется через диэлектрик 15, а башмаков 3 и демпферных стержней 4 - через сталь полюса 1 охладителями 17, 18, 19, закрепленными в пазах сваркой 20. 3 з.п. ф-лы, 4 ил.

Description

Изобретение относится к электромашиностроению, в частности к узлам электрических машин, явновыраженным полюсам с жидкостным охлаждением.
Известна конструкция явновыраженного полюса с жидкостным охлаждением, в которой трубчатые охладители, изготовленные из коррозионностойкого немагнитного материала, встроены в среднее сечение сердечника полюса и по ним циркулирует охлаждающая вода - дистиллят. Обмотка возбуждения выполнена из полых проводников, по которым циркулирует охлаждающая жидкость - дистиллированная вода (авт. св. СССР N 400240, кл. Н 02 К, 1976).
Недостатки конструкции следующие. Выполнение трубчатых элементов немагнитными повышает магнитную индукцию в сечениях сердечника полюса, что увеличивает несколько ток возбуждения и потери и мощность возбуждения. Применение встроенных трубчатых охладителей внутри сердечника полюса при достаточно эффективном теплосъеме с активных поверхностей, требующем при удаленности от основных источников потерь на поверхности полюсов и в демпферной системе больших гидравлических диаметров, значительно ослабляет рабочее сечение сердечника полюса и создает концентрации напряжений при разгонном числе оборотов. Удаленность охладителей от источников потерь в полюсном башмаке снижает эффективность охлаждения и повышает температуру активных элементов полюсного башмака на 10-15оС. Использование для охлаждения дистиллята удорожает эксплуатацию машины.
Известна конструкция явновыраженного полюса, в котором обмотка возбуждения с жидкостным охлаждением закреплена на полюсном сердечнике с помощью стальной шайбы, приваренной к сердечнику полюса по контактным поверхностям (Электросила N 34, с. 78, рис. 1; "Капсульные гидрогенераторы ГЭС "Джен-Пег").
Известна конструкция полюса синхронной машины, в котором для охлаждения поверхности полюсов и демпферных стержней используется охладительный элемент, размещенный под заплечиками полюсных башмаков, по которому циркулирует жидкий хладагент, отводящий потери (швейцарский патент в США N 3633054, кл. Н 02 К, 1972).
Недостатки конструкции следующие. Охлаждаются только полюсные башмаки и демпферная обмотка с достаточной эффективностью. Установка охладителей под полюсные башмаки снижает коэффициент заполнения высоты полюсов проводниковым материалом.
Прототипом изобретения выбрана конструкция полюса с продольными встроенными в полюс охладителями сердечника и охладителями полюсных башмаков.
Целью изобретения является повышение надежности и КПД синхронной машины путем выполнения встроенных охладителей в сердечниках полюсов в пазах, расположенных по периметру сердечника и полюсных башмаков, повышение КПД синхронной машины и снижение эксплуатационных расходов за счет увеличения коэффициента использования межполюсного пространства путем исключения каналов в проводниках катушек возбуждения и охлаждения за счет теплопередачи к охладителям полюса через заливаемую корпусную диэлектрическую массу в промежутки между сердечниками и катушками, повышение КПД синхронной машины за счет снижения потерь и мощности возбуждения путем использования для охлаждения технической воды, а также за счет уменьшения потерь на возбуждение путем охлаждения сердечников полюсов с помощью ферромагнитной жидкости.
На фиг.1 представлен явновыраженный полюс 1, состоящий из сердечника 2 и полюсного башмака 3, в пазы которого уложены демпферные стержни 4, изолированные диэлектриком 5. Шихтованный полюс 1 стянут шпильками 6, 7 и нажимными щеками 21 (на фиг.3). У сердечников 2 выполнен, например, хвостовик 8 для крепления к ободу. На сердечники 2 надеты катушки 9 возбуждения, состоящие из проводников 10 в собственной изоляции 11, которые расположены в столбик и изолированы от башмаков диэлектрической шайбой 12, а от обода диэлектрической шайбой 13, зафиксированной на сердечнике 2 немагнитной шайбой 14, приваренной к сердечнику 2 швами 27 (на фиг.2). Корпусная диэлектрическая изоляция 15 заливается через отверстия 16 в шайбе 14 и, полимеризуясь, надежно изолирует катушку 9 от сердечника 2, в пазах которого по высоте размещены трубчатые коррозионно-стойкие элементы 17, являющиеся охладителями сердечника и обмотки 9 возбуждения. В заплечиках башмаков 3 в пазах расположены трубчатые элементы 18, а по боковым граням башмаков 3 расположены трубчатые элементы 19, причем как охладители 18, так и охладители 19 могут быть выполнены из коррозионно-стойкого металла, но немагнитного. Охладители 17, 18 и 19 заварены в своих пазах швами 20.
На фиг. 2 представлен вид А на сердечник 2 и шайбу 14, которая к нему приварена швами 27.
На фиг.3 представлен вид Б на сердечник 2 и нажимные щеки 21. Водоподводящая арматура 23 и 24 расположена по внешней поверхности щеки 21 в пространстве между ферромагнитной стенкой 22 и щекой 21, причем пустоты между арматурой 23 и 24 заполнены магнитодиэлектрической массой 28.
На фиг. 4 представлена гидравлическая схема соединений охладителей 17, 18 и 19, потоки жидкого хладагента в которых подводятся к охладителям 17, 18 и 19 через напорную 25 и сливную 26 камеры и таким образом, что в соседних по периметру охладителях хладагент течет во взаимно противоположные стороны, выравнивая этим температуру поверхности элементов полюса 1: сердечника 2 и башмака 3.
Конструкция охлаждения явновыраженного полюса 1 работает следующим образом.
Жидкий хладагент - техническая вода или проточная вода - поступает через напорную камеру 25 в охладители 17, 18, 19 и, протекая по ним, снимает тепловые потери из катушки 9 возбуждения, причем тепло проходит через корпусную диэлектрическую изоляцию 15, создавая на ней перепад температуры 30-40оС при удельной тепловой нагрузке 0,75-1 Вт/см на каждый 1 мм изоляции. При входящей температуре охлаждающей воды 5-20оС температура обмотки возбуждения может составлять 45-50оС, но в отличие от непосредственного охлаждения температура по длине витка и высоте полюса 1 распределяется равномерно без аксиального перепада, свойственного непосредственному охлаждению. Шайба 14 фиксирует катушку 9 относительно сердечника 2 и этим обеспечивается хороший теплопередающий контакт между катушкой 9 и сердечником 2, достигнутый при заливке полимеризующегося диэлектрика 15. Поскольку охладители 17 выполнены из магнитной коррозионно-стойкой стали, например, 20Х13, то это снижает индукцию в сечениях охладителей 17 по сравнению с прототипом. При протекании ферромагнитной жидкости по охладителям 17, 18 и 19 увеличения индукции в сечениях нет. При водяном охлаждении охладители 18 и 19, расположенные по периметру полюсного башмака 3, могут изготавливаться из коррозионно-стойкой немагнитной стали, например, 12ХН8Н10Т, при этом поток рассеяния несколько уменьшается. Охладители 18 и 19 отводят тепловые потери с поверхности полюсов и из демпферных стержней 4, особенно из наиболее нагретых крайних. Жидкий хладагент из обратных контуров охладителей 17, 18 и 19 сливается в камеру 26 и из нее в сливной коллектор. Для выравнивания аксиально-радиального перепада температуры направление движение хладагента в соседних охладителях 17, 18 и 19 имеет встречное направление. В торцовых частях полюса 1 охладители, размещенные по внешней поверхности щек 21, контактируют с лобовыми частями катушки 9 через ферромагнитную стенку 22 из тонколистового материала и изоляцию 15, обеспечивая теплоотвод потерь из лобовых частей катушки 9.
Преимущества изобретения по сравнению с прототипом следующие. Применение охладителей, расположенных по периметру полюса, в зоне контакта с обмоткой возбуждения позволяет избежать резких концентраторов магнитных и механических напряжений в сердечнике полюса, что позволяет на 3-5% уменьшить потери на возбуждение и повысить конструкционный запас прочности, а это повышает КПД и надежность машины. Применение охладителей, расположенных по периметру сердечника и башмака полюса, в сочетании с литой диэлектрической корпусной изоляцией катушки и с фиксацией катушки шайбой позволяет отказаться от непосредственного дистиллятного охлаждения обмотки возбуждения, которое приводит к высоким эксплуатационным расходам при обеспечении тех же температур в катушке возбуждения. Например, для генератора 45 МВт при потерях возбуждения на полюс р = 0,51 кВт и удельной тепловой нагрузке через изоляцию Φ = 0,3 Вт/см температура катушки при входящей температуре жидкости Тж = 5оС равна Тк = 17оС, а при Тж = 20оС Тк = 32оС. При непосредственном дистиллятном охлаждении эта температура равна 50оС, т.е. реальные потери могут быть уменьшены в обмотке возбуждения на 11,5 и 6,3 л% за счет снижения температуры и за счет более эффективного заполнения межполюсного пространства потери могут быть уменьшены в 1,55 раза, что позволяет увеличить КПД генератора на 0,03% за счет лучшего заполнения и на 0,01-0,005%. Но более эффективен вариант повышения мощности на 15-20%. Применение охладителей сердечника полюса из ферромагнитной коррозионно-стойкой стали позволяет уменьшить концентрацию магнитного потока и этим снизить потери на возбуждение, что повышает КПД электрической машины. Применение для охлаждения ферромагнитной жидкости позволяет практически на 100% использовать сечение под гидравлические каналы для проведения магнитного потока, что уменьшает потери на возбуждение и повышает КПД электрической машины. Применение пар теплогидравлических контуров со встречным течением жидкого хладагента позволяет выровнять аксиально-радиальный перепад температуры и этим повысить надежность конструкции косвенного охлаждения обмотки возбуждения.
Сущностью изобретения, достигающего поставленные цели, являются применение трубчатых охладителей полюса, размещенных в пазах по периметру сердечника полюса и полюсного башмака, охлаждающих полюсный башмак и обмотку возбуждения через корпусную изоляцию, применение для охлаждения полюса технической или проточной воды, применение для охлаждения сердечника полюса и полюсных башмаков ферромагнитной жидкости.
Изобретение может быть использовано в синхронных явнополюсных машинах: генераторах, двигателях, компенсаторах и, в частности, в капсульных гидрогенераторах, а также в машинах постоянного тока.

Claims (4)

1. ПОЛЮС ЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ, включающий сердечник, башмак, продольные охладители и изолированную от корпуса катушку обмотки возбуждения, зафиксированную на сердечнике немагнитной шайбой, отличающийся тем, что на боковой поверхности башмака и на его поверхности и на поверхностях сердечника, обращенных к указанной катушке, расположены пазы, в которых размещены продольные охладители, выполненные из коррозионно-стойкого ферромагнитного металла.
2. Полюс электрической машины по п.1, отличающийся тем, что фиксирующие на сердечнике катушку обмотки возбуждения шайбы выполнены с отверстиями, залитыми полимеризующейся корпусной диэлектрической изоляцией, осуществляющей теплопередающий контакт между проводниками катушки и охладителями.
3. Полюс электрической машины по п.1, отличающийся тем, что охладители заполнены циркулирующей технической очищенной водой или очищенной проточной водой.
4. Полюс электрической машины по п.1, отличающийся тем, что охладители заполнены циркулирующей ферромагнитной жидкостью.
SU5008893 1991-10-30 1991-10-30 Полюс электрической машины с жидкостным охлаждением RU2025869C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5008893 RU2025869C1 (ru) 1991-10-30 1991-10-30 Полюс электрической машины с жидкостным охлаждением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5008893 RU2025869C1 (ru) 1991-10-30 1991-10-30 Полюс электрической машины с жидкостным охлаждением

Publications (1)

Publication Number Publication Date
RU2025869C1 true RU2025869C1 (ru) 1994-12-30

Family

ID=21588666

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5008893 RU2025869C1 (ru) 1991-10-30 1991-10-30 Полюс электрической машины с жидкостным охлаждением

Country Status (1)

Country Link
RU (1) RU2025869C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649972C2 (ru) * 2013-01-31 2018-04-06 Яса Лимитед Охлаждающий зазор полюсного башмака для аксиального двигателя
CN109417326A (zh) * 2016-07-04 2019-03-01 西门子股份公司 具有冷却通道间隔空间的水冷发电机带

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Патент США N 3633071, кл. H 02K 9/00, 1972. *
Электросила N 34, с.78, рис.1. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649972C2 (ru) * 2013-01-31 2018-04-06 Яса Лимитед Охлаждающий зазор полюсного башмака для аксиального двигателя
US10044237B2 (en) 2013-01-31 2018-08-07 Yasa Limited Pole shoe cooling gap for axial motor
CN109417326A (zh) * 2016-07-04 2019-03-01 西门子股份公司 具有冷却通道间隔空间的水冷发电机带
US10910897B2 (en) 2016-07-04 2021-02-02 Siemens Aktiengesellschaft Water-cooled generator strip having a cooling channel gap space

Similar Documents

Publication Publication Date Title
FI124814B (fi) Sähkökoneen staattori ja sähkökone
US5189325A (en) Liquid cooling the rotor of an electrical machine
US9698653B2 (en) Electrical generator with dedicated cooling of stator segments
US4278905A (en) Apparatus for supporting a stator winding in a superconductive generator
US5670835A (en) Cooling apparatus for an AC generator
JP4593963B2 (ja) 超伝導多極電気機械
WO2011073520A2 (en) Arrangement and method for cooling an electrical machine
US3261995A (en) Cooling system for electrical machines
KR100518087B1 (ko) 선박용 전동 구동 장치
GB2425662A (en) Rotor cooling
CN109494901A (zh) 一种槽内水冷电机定子
US3983427A (en) Superconducting winding with grooved spacing elements
KR100761432B1 (ko) 회전자 어셈블리
RU2025869C1 (ru) Полюс электрической машины с жидкостным охлаждением
US3870913A (en) Rotor winding directly cooled by liquid for use in non-salient pole synchronous machine
RU2570834C1 (ru) Магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением (варианты) и способ его изготовления
Minnich et al. Design studies of superconducting generators
US3487243A (en) Turbogenerator with internal liquid cooling of exciter winding
US2986663A (en) Rotor construction for dynamoelectric machines
EA001129B1 (ru) Вращающаяся электрическая машина с радиальным охлаждением
KR101243291B1 (ko) 공랭식 고정자코일 냉각장치
RU2054781C1 (ru) Ротор неявнополюсной электрической машины
US2832910A (en) Insulation for air gap of unipolar generator
US3633054A (en) Arrangement for cooling the poles of a dynamoelectric machine
RU201583U1 (ru) Индуктор синхронного двигателя с постоянными магнитами