RU2010145736A - Способ эксплуатации топливного элемента - Google Patents

Способ эксплуатации топливного элемента Download PDF

Info

Publication number
RU2010145736A
RU2010145736A RU2010145736/07A RU2010145736A RU2010145736A RU 2010145736 A RU2010145736 A RU 2010145736A RU 2010145736/07 A RU2010145736/07 A RU 2010145736/07A RU 2010145736 A RU2010145736 A RU 2010145736A RU 2010145736 A RU2010145736 A RU 2010145736A
Authority
RU
Russia
Prior art keywords
gas
polymer electrolyte
proton
fuel cell
oxygen
Prior art date
Application number
RU2010145736/07A
Other languages
English (en)
Inventor
Томас ШМИДТ (DE)
Томас Шмидт
Original Assignee
Басф Се (De)
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Се (De), Басф Се filed Critical Басф Се (De)
Publication of RU2010145736A publication Critical patent/RU2010145736A/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

1. Способ эксплуатации топливного элемента, содержащего: ! протонпроводящую мембрану из полимерного электролита или матрицу из полимерного электролита, ! по меньшей мере один слой катализатора на обеих сторонах протонпроводящей мембраны из полимерного электролита или матрицы из полимерного электролита, ! по меньшей мере один токопроводящий газодиффузионный слой на наружных сторонах обоих слоев катализатора, ! по меньшей мере одну биполярную пластину на наружных сторонах обоих газодиффузионных слоев, ! который включает следующие стадии: ! подачу водородсодержащего газа по выполненным в биполярной пластине газовым каналам через газодиффузионный слой к находящемуся на анодной стороне слою катализатора, ! подачу содержащей кислород и азот газовой смеси по выполненным в биполярной пластине газовым каналам через газодиффузионный слой к находящемуся на катодной стороне слою катализатора, ! генерирование протонов в находящемся на анодной стороне слое катализатора, ! диффузию генерируемых протонов через протонпроводящую мембрану из полимерного электролита или матрицу из полимерного электролита, ! взаимодействие протонов с подаваемым к катодной стороне кислородсодержащим газом, ! снятие образуемого потенциала, создающего напряжение, посредством находящихся на анодной и катодной сторонах биполярных пластин, ! отличающийся тем, что, с целью выключения топливного элемента, прекращают подачу содержащей кислород и азот газовой смеси, причем имеющийся на катоде кислород превращается вследствие взаимодействия с имеющимися протонами, в результате чего остаточное содержание кислорода на катодной стороне

Claims (18)

1. Способ эксплуатации топливного элемента, содержащего:
протонпроводящую мембрану из полимерного электролита или матрицу из полимерного электролита,
по меньшей мере один слой катализатора на обеих сторонах протонпроводящей мембраны из полимерного электролита или матрицы из полимерного электролита,
по меньшей мере один токопроводящий газодиффузионный слой на наружных сторонах обоих слоев катализатора,
по меньшей мере одну биполярную пластину на наружных сторонах обоих газодиффузионных слоев,
который включает следующие стадии:
подачу водородсодержащего газа по выполненным в биполярной пластине газовым каналам через газодиффузионный слой к находящемуся на анодной стороне слою катализатора,
подачу содержащей кислород и азот газовой смеси по выполненным в биполярной пластине газовым каналам через газодиффузионный слой к находящемуся на катодной стороне слою катализатора,
генерирование протонов в находящемся на анодной стороне слое катализатора,
диффузию генерируемых протонов через протонпроводящую мембрану из полимерного электролита или матрицу из полимерного электролита,
взаимодействие протонов с подаваемым к катодной стороне кислородсодержащим газом,
снятие образуемого потенциала, создающего напряжение, посредством находящихся на анодной и катодной сторонах биполярных пластин,
отличающийся тем, что, с целью выключения топливного элемента, прекращают подачу содержащей кислород и азот газовой смеси, причем имеющийся на катоде кислород превращается вследствие взаимодействия с имеющимися протонами, в результате чего остаточное содержание кислорода на катодной стороне топливного элемента снижается до концентрации 5 об.% и менее, предпочтительно 3 об.% и менее, прежде всего 1 об.% и менее.
2. Способ по п.1, отличающийся тем, что протонпроводящая мембрана из полимерного электролита включает материалы, полимер которых содержит по меньшей мере одну ковалентно присоединенную кислоту или легирован кислотой.
3. Способ по п.1, отличающийся тем, что протонпроводящая матрица из полимерного электролита содержит по меньшей мере один полимер с основным характером и по меньшей мере одну кислоту.
4. Способ по п.1, отличающийся тем, что протонпроводящая мембрана из полимерного электролита или матрица из полимерного электролита является смесью по меньшей мере двух разных полимеров.
5. Способ по п.1, отличающийся тем, что топливный элемент содержит протонпроводящую мембрану из полимерного электролита или протонпроводящую матрицу из полимерного электролита, которая включает по меньшей мере один полимер с основным характером и по меньшей мере одну кислоту, причем топливный элемент эксплуатируют при температурах выше 100°С без дополнительного увлажнения водородсодержащего газа.
6. Способ по п.5, отличающийся тем, что топливный элемент эксплуатируют при температурах выше 120°С.
7. Способ по п.1, отличающийся тем, что водородсодержащим газом является чистый водород или газ с содержанием водорода по меньшей мере 20 об.%.
8. Способ по п.1, отличающийся тем, что водородсодержащим газом является продукт риформинга, который получают на предшествующей стадии риформинга углеводородов.
9. Способ по п.1, отличающийся тем, что осуществляют подачу водородсодержащего газа предпочтительно без давления, причем его расход не превышает значений, которым соответствует двукратный стехиометрический избыток.
10. Способ по п.5, отличающийся тем, что в водородсодержащем газе присутствует до 5 об.% монооксида углерода.
11. Способ по п.1, отличающийся тем, что под содержащей кислород и азот газовой смесью подразумевают искусственно приготавливаемые газовые смеси кислорода с азотом или воздух.
12. Способ по п.1, отличающийся тем, что подачу содержащей по меньшей мере кислород и азот газовой смеси к катодной стороне осуществляют предпочтительно без давления, причем расход газовой смеси не превышает значений, которым соответствует пятикратный стехиометрический избыток.
13. Способ по п.1, отличающийся тем, что, с целью выключения топливного элемента, прекращают подачу содержащей кислород и азот газовой смеси и подачу газа к катодной стороне осуществляют изолированно от внешней среды.
14. Способ по п.1, отличающийся тем, что, с целью выключения топливного элемента, прекращают подачу содержащей кислород и азот газовой смеси и продолжают подачу водородсодержащего газа к анодной стороне.
15. Способ по одному из пп.1-14, отличающийся тем, что в процессе выключения топливного элемента ток отводят до тех пор, пока не снизится напряжение топливного элемента.
16. Способ по п.14, отличающийся тем, что водородсодержащий газ подают к анодной стороне до тех пор, пока концентрация остаточного кислорода не достигнет необходимого уровня.
17. Способ по п.16, отличающийся тем, что подачу газа к анодной стороне осуществляют изолированно от внешней среды.
18. Способ по п.17, отличающийся тем, что остающийся на катодной стороне азот используют для промывки анодной стороны.
RU2010145736/07A 2008-04-11 2009-04-08 Способ эксплуатации топливного элемента RU2010145736A (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08007168.1 2008-04-11
EP08007168 2008-04-11

Publications (1)

Publication Number Publication Date
RU2010145736A true RU2010145736A (ru) 2012-05-20

Family

ID=40801856

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010145736/07A RU2010145736A (ru) 2008-04-11 2009-04-08 Способ эксплуатации топливного элемента

Country Status (8)

Country Link
US (1) US20110033759A1 (ru)
EP (1) EP2277226A1 (ru)
JP (1) JP2011517037A (ru)
KR (1) KR20110021717A (ru)
CN (1) CN102067369A (ru)
CA (1) CA2717540A1 (ru)
RU (1) RU2010145736A (ru)
WO (1) WO2009124737A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553751A4 (en) * 2010-04-01 2014-07-16 Trenergi Corp HIGH TEMPERATURE MEMBRANE ELECTRODE ASSEMBLY WITH HIGH POWER DENSITY AND METHOD FOR MANUFACTURING THE SAME
KR101449124B1 (ko) * 2012-09-17 2014-10-08 현대자동차주식회사 수소연료전지용 사출성형 일체화 불소계 가스켓
CN112864424A (zh) * 2021-03-29 2021-05-28 武汉理工大学 一种质子交换膜燃料电池快速活化的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919217A (en) * 1953-07-28 1959-12-29 Bobkowicz Emilian Textile webs
AU664703B2 (en) * 1991-06-04 1995-11-30 Ballard Power Systems Inc. Gasketed membrane electrode assembly for electrochemical fuel cells
DE19509749C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
DE19509748C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
US5922488A (en) * 1997-08-15 1999-07-13 Exxon Research And Engineering Co., Co-tolerant fuel cell electrode
JPH1167245A (ja) * 1997-08-21 1999-03-09 Toshiba Corp 燃料電池の保持電解質管理方法
EP1523053A3 (en) * 1999-09-09 2010-04-28 Danish Power Systems APS Polymer electrolyte membrane fuel cells
US6432566B1 (en) * 1999-10-25 2002-08-13 Utc Fuel Cells, Llc Direct antifreeze cooled fuel cell power plant
DE10052242A1 (de) * 2000-10-21 2002-05-02 Celanese Ventures Gmbh Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung
DE10059393A1 (de) * 2000-11-30 2002-06-20 Siemens Ag Gleichstromversorgungseinrichtung und Verfahren zum Abschalten eines Brennstoffzellenblocks
DE10109829A1 (de) * 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10110752A1 (de) * 2001-03-07 2002-09-19 Celanese Ventures Gmbh Verfahren zur Herstellung einer Membran aus verbrücktem Polymer und Brennstoffzelle
DE10140147A1 (de) * 2001-08-16 2003-03-06 Celanese Ventures Gmbh Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle
JP2004022487A (ja) * 2002-06-20 2004-01-22 Nissan Motor Co Ltd 燃料電池システム
US6835479B2 (en) * 2002-06-26 2004-12-28 Utc Fuel Cells, Llc System and method for shutting down a fuel cell power plant
DE10235360A1 (de) * 2002-08-02 2004-02-19 Celanese Ventures Gmbh Membran-Elektrodeneinheiten mit langer Lebensdauer
DE102004008628A1 (de) * 2004-02-21 2005-09-08 Celanese Ventures Gmbh Membran-Elektroden-Einheit mit hoher Leistung und deren Anwendung in Brennstoffzellen
DE102004035309A1 (de) * 2004-07-21 2006-02-16 Pemeas Gmbh Membran-Elektrodeneinheiten und Brennstoffzellen mit erhöhter Lebensdauer
DE102005052378A1 (de) * 2005-10-31 2007-05-03 Pemeas Gmbh Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit hoher Lebensdauer
US7855022B2 (en) * 2005-11-30 2010-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel system with improved fuel cell shutdown
EP1987556A1 (en) * 2006-02-08 2008-11-05 Hydrogenics Corporation Passive electrode blanketing in a fuel cell
JP4820711B2 (ja) * 2006-08-01 2011-11-24 Jx日鉱日石エネルギー株式会社 触媒の選択酸化能の評価方法および高濃度水素含有ガスの製造方法
JP5169056B2 (ja) * 2007-07-31 2013-03-27 日産自動車株式会社 燃料電池システム及びその運転停止方法

Also Published As

Publication number Publication date
WO2009124737A9 (de) 2009-12-03
JP2011517037A (ja) 2011-05-26
CN102067369A (zh) 2011-05-18
KR20110021717A (ko) 2011-03-04
CA2717540A1 (en) 2009-10-15
WO2009124737A1 (de) 2009-10-15
US20110033759A1 (en) 2011-02-10
EP2277226A1 (de) 2011-01-26

Similar Documents

Publication Publication Date Title
Inaba et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells
Peled et al. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)
US7045233B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
CN100372160C (zh) 燃料电池电极和膜电极组件以及燃料电池***
US7141323B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
Rajalakshmi et al. Effect of carbon dioxide and ammonia on polymer electrolyte membrane fuel cell stack performance
Lee et al. Hydrogen separation using electrochemical method
GB2404377A (en) Direct hydrocarbon reforming in protonic ceramic fuel cells by electrolyte steam permeation
Wang et al. A study on fuel additive of methanol for room temperature direct methanol fuel cells
US7132182B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
Kim et al. Development of shut-down process for a proton exchange membrane fuel cell
RU2010145736A (ru) Способ эксплуатации топливного элемента
US20070059577A1 (en) Proton exchange membrane fuel cell using solid electrolyte membrane of sheet silicate minerals and an intercalation compound
Hori et al. Electrolysis of humidified methane to hydrogen and carbon dioxide at low temperatures and voltages
Xu et al. Effect of relative humidity on membrane degradation rate and mechanism in PEM fuel cells
JP2011517037A5 (ru)
Choo et al. Performance Recovery of Fuel Cell Stack for FCEV
KR20070099354A (ko) 연료전지 시스템의 활성화 방법
JP2005353603A (ja) 燃料電池システムおよび有機燃料
KR20070044628A (ko) 직접 산화형 연료 전지용 스택의 회복 방법
Louh et al. Design of electrophoretically deposited microporous layer/catalysts layer composite structure for power generation of fuel cells
KR100673748B1 (ko) 연료 전지용 연료 조성물 및 이를 이용한 연료 전지
KR100696688B1 (ko) 직접 산화형 연료 전지 장치
US20050260470A1 (en) Fuel cell and control method thereof
Tyagi et al. Direct methane proton exchange membrane fuel cell

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20120830