RU2006119560A - METHOD FOR DETERMINING FILTRATION-CAPACITY PARAMETERS OF OIL AND GAS-SATURATED LAYERS - Google Patents

METHOD FOR DETERMINING FILTRATION-CAPACITY PARAMETERS OF OIL AND GAS-SATURATED LAYERS Download PDF

Info

Publication number
RU2006119560A
RU2006119560A RU2006119560/03A RU2006119560A RU2006119560A RU 2006119560 A RU2006119560 A RU 2006119560A RU 2006119560/03 A RU2006119560/03 A RU 2006119560/03A RU 2006119560 A RU2006119560 A RU 2006119560A RU 2006119560 A RU2006119560 A RU 2006119560A
Authority
RU
Russia
Prior art keywords
wells
thickness
filtration
reservoir
gas
Prior art date
Application number
RU2006119560/03A
Other languages
Russian (ru)
Other versions
RU2320869C1 (en
Inventor
шев Расим Нагимович Ди (RU)
Расим Нагимович Дияшев
Original Assignee
Общество с ограниченной ответственностью "ТНГ-Групп" (RU)
Общество с Ограниченной Ответственностью "ТНГ-Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ТНГ-Групп" (RU), Общество с Ограниченной Ответственностью "ТНГ-Групп" filed Critical Общество с ограниченной ответственностью "ТНГ-Групп" (RU)
Priority to RU2006119560/03A priority Critical patent/RU2320869C1/en
Publication of RU2006119560A publication Critical patent/RU2006119560A/en
Application granted granted Critical
Publication of RU2320869C1 publication Critical patent/RU2320869C1/en

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Measuring Volume Flow (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (1)

Способ определения фильтрационно-емкостных параметров нефтегазонасыщенных пластов, включающий эксплуатацию нагнетательных и добывающих скважин, проведение петрофизических исследований керна, а также геофизических и гидродинамических исследований скважин, построение корреляционных зависимостей соответствующих параметров по результатам этих исследований, гидропрослушивание, определение оптимальных режимов эксплуатации скважин и участвующих в процессе фильтрации работающих нефтегазонасыщенных толщин, отличающийся тем, что гидродинамические исследования проводят на установившихся и неустановившихся режимах фильтрации, определяют базовые фильтрационно-емкостные параметры пластов, устанавливают для данного месторождения оптимальные забойные давления при отборе продукции и закачке реагента, переводят скважины на режим эксплуатации с оптимальными забойными давлениями, проводят гидропрослушивание при оптиальных забойных давлениях и определяют участвующую в фильтрации (работающую) между возмущающей и наблюдательной скважинами толщину пласта по формулеA method for determining the filtration-capacitive parameters of oil-and-gas-saturated formations, including the operation of injection and production wells, conducting petrophysical core surveys, as well as geophysical and hydrodynamic studies of wells, building correlation dependencies of the corresponding parameters according to the results of these studies, hydraulic sensing, determining optimal operating modes of wells and participating in the process filtration of working oil and gas saturated thicknesses, characterized in that dynamic studies are carried out at steady and unsteady filtration modes, determine the basic filtration and reservoir parameters of the reservoirs, establish the optimal bottomhole pressure for the given field during the selection of the product and injection of the reagent, transfer the wells to the operating mode with the optimal bottomhole pressure, conduct hydrotesting at the optimal bottomhole pressure and determine the thickness of the formation participating in the filtration (working) between the disturbing and observation wells according to the formula
Figure 00000001
Figure 00000001
где
Figure 00000002
- участвующая в фильтрации (работающая) между возмущающей и наблюдательной скважинами толщина пласта, м
Where
Figure 00000002
- participating in the filtration (working) between the disturbing and observation wells, the thickness of the reservoir, m
ε и ж - коэффициенты гидропроводности и пьезопроводности работающей толщины пласта, д·см/спз и см2/с;ε and g are the coefficients of hydraulic conductivity and piezoconductivity of the working thickness of the reservoir, d · cm / SPZ and cm 2 / s; βж и βn - коэффициенты сжимаемости жидкости и породы, (кг/см2)-1;β W and β n - the compressibility coefficients of the liquid and rock, (kg / cm 2 ) -1 ; mср. - средняя пористость пласта между исследуемыми скважинами, % и предельную его проницаемость, по формулеm cf. - the average porosity of the formation between the studied wells,% and its ultimate permeability, according to the formula
Figure 00000003
Figure 00000003
где hобщ - общая нефтегазонасыщенная толщина пласта между исследуемыми скважинами, м;where h total is the total oil and gas saturated thickness of the reservoir between the studied wells, m; h - толщина прослоев с проницаемостями Кi, м;h is the thickness of the interlayers with permeabilities K i , m;
Figure 00000004
- сумма толщин прослоев с проницаемостями Кi,
Figure 00000004
- the sum of the thicknesses of the interlayers with permeabilities K i ,
начиная с минимальных значений в возрастающем порядке, последовательно вычитая которую от общей нефтегазонасыщенной толщины пласта между исследуемыми скважинами, находят то предельное значение проницаемости Кinp, при котором правая часть уравнения становится близкой или равной левой части, соответствующей работающей в процессе исследования между возмущающей и наблюдательной скважинами толщине пласта, после чего по экспериментальной корреляционной зависимости пористость-проницаемость определяют предельное значение пористости, соответствующее найденному предельному значению проницаемости.starting from the minimum values in ascending order, sequentially subtracting that from the total oil and gas-saturated thickness of the reservoir between the wells under study, we find the limiting value of permeability K i = K np , at which the right side of the equation becomes close to or equal to the left side, corresponding to the working between the disturbing and observing the formation thickness by the wells, after which the porosity-permeability is determined by the experimental correlation dependence, the porosity limit value, corresponding to the found limit value of permeability.
RU2006119560/03A 2006-06-05 2006-06-05 Method to determine permeability and porosity of oil-saturated reservoirs RU2320869C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006119560/03A RU2320869C1 (en) 2006-06-05 2006-06-05 Method to determine permeability and porosity of oil-saturated reservoirs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006119560/03A RU2320869C1 (en) 2006-06-05 2006-06-05 Method to determine permeability and porosity of oil-saturated reservoirs

Publications (2)

Publication Number Publication Date
RU2006119560A true RU2006119560A (en) 2007-12-20
RU2320869C1 RU2320869C1 (en) 2008-03-27

Family

ID=38916857

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006119560/03A RU2320869C1 (en) 2006-06-05 2006-06-05 Method to determine permeability and porosity of oil-saturated reservoirs

Country Status (1)

Country Link
RU (1) RU2320869C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488282A (en) * 2019-01-03 2019-03-19 西南石油大学 Can dynamic reserve physical property lower limit determination method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619502B (en) * 2012-03-21 2014-05-14 西南石油大学 Method for determining crack permeability of crack-pore seepage experiment model
RU2015145020A (en) * 2014-05-15 2018-06-15 Общество С Ограниченной Ответственностью "Поликод" METHOD FOR DETERMINING FILTRATION PARAMETERS OF INTER-WELL INTERVALES BY THREE-DIMENSIONAL HYDRODYNAMIC SIMULATION OF PULSE INFLUENCE ON A PLAST
WO2018012995A1 (en) * 2016-07-12 2018-01-18 Общество С Ограниченной Ответственностью "Поликод" Method for determining filtration parameters in multi-well system via pulse-code observation well testing method
RU2752802C1 (en) * 2020-10-26 2021-08-06 Публичное акционерное общество "Газпром нефть" (ПАО "Газпром нефть") Method for determining porosity and permeability characteristics of reservoir and method for increasing petroleum recovery thereby
RU2747959C1 (en) * 2020-11-04 2021-05-17 Общество с ограниченной ответственностью "НОВАТЭК Научно-технический центр" Method for determining filtration-capacity properties of inter-well interval of reservoir

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488282A (en) * 2019-01-03 2019-03-19 西南石油大学 Can dynamic reserve physical property lower limit determination method

Also Published As

Publication number Publication date
RU2320869C1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
RU2006119560A (en) METHOD FOR DETERMINING FILTRATION-CAPACITY PARAMETERS OF OIL AND GAS-SATURATED LAYERS
CN105468886B (en) The method for calculating strata pressure based on petrophysical parameters
CN109424362B (en) Method and system for calculating single-well control crude oil reserve of bottom water reservoir
RU2455483C2 (en) Method for estimation of degree of carbonate rocks jointing by parameter of diffusion-adsorption activity
AU761677B2 (en) Method for determining a fluid contact level in a formation
CN108920824A (en) A kind of Production Decline Analysis method of narrow river reservoir
US20170370209A1 (en) Method for predicting post-fracking pressure build-up in shale
RU2465455C1 (en) Method of monitoring oil well crosshole intervals
RU2669322C1 (en) Method for determining perspective sites and optimum technological parameters for use of cyclic water flooding
Wang et al. Pressure Transient Analysis of Multi‐stage Hydraulically Fractured Horizontal Wells
Neto et al. Dual pore system evaluation of Albian grainstone carbonates from Brazil using effective elastic media theory models
Sulaiman et al. Two-phase relative permeability prediction from capillary pressure data for one Iraqi oil field: A comparative study
Suenaga et al. Analysis of two-phase flow properties of sandstones to evaluate their suitability for geologic storage of CO2
CN112746836A (en) Oil well layer yield calculation method based on interlayer interference
Czarnota et al. Laboratory measurement of wettability for Ciężkowice sandstone
RU2814233C1 (en) Method for development of section of multilayer oil deposit
Mohiuddin et al. Stress-dependent porosity and permeability of a suite of samples from Saudi Arabian sandstone and limestone reservoirs
Kruglov et al. Development of surfactant-polymer flooding technology for carbonate reservoirs with high salinity formation water and high reservoir temperature (Russian)
RU2200231C2 (en) Process of development of oil field
RU2717847C1 (en) Oil deposit development method
RU2098851C1 (en) Method of geophysical prospecting to determine productivity of oil pool
RU2781413C1 (en) Method for determining the complex of petrophysical properties of a rock sample when modeling reservoir conditions
RU2005133037A (en) METHOD FOR DEVELOPING OIL DEPOSIT
RU2043485C1 (en) Method for increase of condensate recovery in development of gas-condensate pool
RU1777048C (en) Method for determining wettability of collector rocks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140606