RU182826U1 - Устройство для поверки вихретокового измерительного преобразователя - Google Patents

Устройство для поверки вихретокового измерительного преобразователя Download PDF

Info

Publication number
RU182826U1
RU182826U1 RU2017129662U RU2017129662U RU182826U1 RU 182826 U1 RU182826 U1 RU 182826U1 RU 2017129662 U RU2017129662 U RU 2017129662U RU 2017129662 U RU2017129662 U RU 2017129662U RU 182826 U1 RU182826 U1 RU 182826U1
Authority
RU
Russia
Prior art keywords
verification
vtip
sensor
linear
fmc
Prior art date
Application number
RU2017129662U
Other languages
English (en)
Inventor
Дмитрий Сергеевич Крюков
Леонид Сергеевич Крюков
Сергей Александрович Крюков
Леонид Дмитриевич Метелёв
Original Assignee
Дмитрий Сергеевич Крюков
Сергей Александрович Крюков
Леонид Сергеевич Крюков
Леонид Дмитриевич Метелёв
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Сергеевич Крюков, Сергей Александрович Крюков, Леонид Сергеевич Крюков, Леонид Дмитриевич Метелёв filed Critical Дмитрий Сергеевич Крюков
Priority to RU2017129662U priority Critical patent/RU182826U1/ru
Application granted granted Critical
Publication of RU182826U1 publication Critical patent/RU182826U1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Устройство содержит стенд статических калибровок, включающий узел задания эталонного перемещения электропроводного образца объекта (ЭПО) и узел крепления (УК) датчика, и имитатор виброперемещения (ИВП), включающий блок электроники (БЭ) линейного типа, стандартные СИТ и имитационную катушку (ИК), что позволяет выполнить поверку MX вихретокового измерительного преобразователя (ВТИП) без привлечения поверочной вибрационной установки. Поверку статических MX осуществляют традиционно по методике с использованием стенда статических калибровок, в котором ЭПО узла задания перемещения и УК, оснащенный червячными хомутами для закрепления датчика при поверке, смонтированы на отдельных линейных каретках с возможностью их перемещении по общему линейному направляющему рельсу, закрепленному на основании стенда. Для поверки ЧМХ устанавливают ИК в рабочее положение с образованием индуктивной связи с обмоткой датчика, что обеспечивается соответствующим выполнением ее корпуса-каркаса. Причем ИВП с БЭ линейного типа перед осуществлением поверки ЧМХ градуируют по методике, включающей использование стенда статических калибровок в качестве рабочего эталона задания перемещения ЭПО и экспериментальных данных поверки статических MX ВТИП. Этим обеспечивается гарантированное повышение точности имитирования виброперемещений в лабораторных и иных условиях, что способствует гарантированному повышению точности и достоверности поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот. Технический результат заключается в повышении точности и достоверности поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот устройством, доступным к применению в лабораторных и в рабочих условиях. 4 з.п. ф-лы, 4 илл.

Description

Полезная модель относится к измерительной технике и может быть использована для обеспечения достоверного контроля метрологических характеристик широко применяемого вихретокового измерительного преобразователя (ВТИП), в частности, в составе измерительного канала ИИС диагностики вибрационного и технического состояния мощных роторных агрегатов.
Широко известен ВТИП включающий, по меньшей мере, вихретоковый датчик (далее - ВТД или датчик) с измерительной обмоткой (ИО), подключенной кабелем через соединитель на вход блока нормирующего измерительного преобразователя (НИП) генераторного типа с соединителем выхода на внешнее устройство контроля по линии связи. ВТИП с генераторным преобразованием линейных перемещений широко применяется в составе измерительных каналов ИИС контроля и диагностики вибрационного состояния отечественными и зарубежными фирмами. Он надежно обеспечивает требуемый для практики коэффициент и диапазон преобразования линейных перемещений и виброперемещений и допускает беспроблемную замену датчика и блока НИП в процессе производства и эксплуатации. При этом для обеспечения качества измерения (точности и достоверности) линейных перемещений подвергаются доскональному контролю его статические метрологические характеристики (MX) и динамические MX, прежде всего те, которые зависят от частоты гармонического входного сигнала (далее - частотные MX или ЧМХ). Причем необходимость тщательного и качественного контроля MX и, прежде всего, в широком диапазоне амплитуд и частот измерения виброперемещения, обусловлено тем, что это напрямую влияет на достоверность диагностики вибрации и оценки технического состояния мощных роторных агрегатов посредством ИИС, что обеспечивает безопасность их эксплуатации. Повышение точности контроля ЧМХ ВТИП сохраняет актуальность и на это будет направленно техническое решение задачи заявляемой полезной модели.
В настоящее время для контроля статических MX ВТИП применяют стенд статических калибровок, а контроль ЧМХ осуществляют в лабораторных условиях посредством применения образцовой (поверочной) вибрационной установки или специальные калибровочные стенды с электроприводом, как вспомогательное оборудование. Причем для контроля ЧМХ ВТИП с широким диапазоном измерения амплитуд и частот привлекают электрический имитатор виброперемещения токопроводящей поверхности (далее - имитатор виброперемещения или ИВП). Это
обусловлено тем, что не каждая образцовая вибрационная установка в полной мере обеспечивает воспроизведение виброперемещений в требуемом диапазоне измерения амплитуд и частот для поверки ЧМХ.
Применяемые ИВП для поверки ЧМХ ВТИП в своей основе реализуют известный способ имитации изменения параметров токопроводящей поверхности для испытания приборов с вихретоковым преобразователем по патенту SU №1599756 А1, МКИ 5 G01N 27/90 // G01B 5/02, 1990 г., Бюл. №38, в котором явление взаимодействия измерительной обмотки с ВЧ током и расположенной вблизи нее токопроводящей поверхности аналогично явлению в системе связанных контуров. При этом устройство реализующее способ включает имитационную катушку (ИК), цепь которой замкнута (нагружена) на функционально управляемое сопротивление, выполненное в виде преобразователя напряжение-сопротивление (ПНС), подключенного к формирователю сигнала управления, при этом ИК в корпусе установлена соосно и контактно с ИО.
Известны отечественные образцы ИВП, в частности, от разработчика и производителя НПП «Измерительные технологии» это «Приспособление ИПВ» (см. Руководство по эксплуатации ИКЖЛ. 441314.001 РЭ) и «Установка имитации параметров виброперемещений ИТ26» (см. Госреестр РФ №42959-09). Они предназначены для поверки ЧМХ ВТИП собственной разработки и включают блоки электроники (БЭ) с соединителями для подключения стандартных СИТ и набор ИК под конкретные типоразмеры ВТД с установкой их в рабочее положение накручиванием ИК на корпус датчика по его резьбе до легкого контакта с торцом ВТД. При этом поверка ЧМХ ВТИП с широким рабочим диапазоном измерения амплитуд и частот виброперемещений осуществляется этими ИВП в лабораторных условиях с привлечением образцовой вибрационной установкой. Причем вначале воздействуют на датчик электропроводным образцом (ЭПО), установленным на вибрационной установке с установочным зазором до торца ВТД, и измеряют амплитудную характеристику ВТИП на базовой или другой фиксированной частоте меньше базовой, если вибрационная установка не позволяет воспроизвести значения амплитуд виброперемещения в рабочем диапазоне на базовой частоте. Затем к торцу ВТД устанавливают ИК посредством накручивания ее на его корпус до легкого контакта с его торцом, подключают ИК к выходу БЭ имитатора виброперемещения, которым задают и изменяют напряжение с частотой, соответствующей фиксированной частоте измерения амплитудной характеристики ВТИП, и воздействуют на ИО датчика. При этом контролируют сигнал на выходе испытуемого ВТИП и устанавливают эквивалентный сигнал, соответствующий сигналу, зафиксированному при воздействии на него образцовой вибрационной установки. Однако
при такой методике согласования амплитуды имитируемого виброперемещения по амплитудной характеристике ВТИП, которая из-за присущей ей зависимости (неравномерности) от частоты выражает соответствие его коэффициента преобразования виброперемещения только на этой фиксированной частоте. Поэтому при воспроизведении виброперемещения посредством ИВП в широком диапазоне частот будет вноситься соответствующая погрешность в имитирование значения виброперемещения, что снижает качество контроля ЧМХ в широком диапазоне частот даже посредством ИВП с высокими техническими и метрологическими характеристиками.
К тому же привлечение дорогостоящей образцовой вибрационной установки не всегда возможно на практике вне лаборатории, например, непосредственно на объекте контроля при монтаже, при пуско-наладочных работах или для осуществления внеочередной поверки ВТИП при возникновении сомнений в его метрологической исправности. Это может быть необходимым и важным для поверки ВТИП в составе много канальных ИИС диагностирования технического состояния мощных агрегатов. Следует отметить, что применяемый технологический процесс (порядок, способ) использования ИВП для поверки ЧМХ ВТИП, в котором для обеспечения точности их поверки предусматривается использование образцовой вибрационной установки, существенно сужается применение ИВП вне лаборатории из-за малой мобильности (не переносности) образцовой вибрационной установки. Она не всегда доступна потребителю по ее стоимости и требованиям по ее размещению и обслуживанию.
Известно устройство калибровки измерителя линейных перемещений, в котором поверка его ЧМХ осуществляется без привлечения поверочной вибрационной установки (см. патент SU №1679179 А2, МКП G01B 7/14, 1991 г., Бюл. №35 дополнение к патенту SU №1580152 A1, G01B 7/14, 1990 г., Бюл. №27) более близкое по общим признакам к заявляемой полезной модели, характеризующееся тем, что содержит стенд статических калибровок на основании которого установлен узел задания эталонного перемещения электропроводного образца (ЭПО) и узел крепления (УК) датчика, в котором установлен вихретоковый преобразователь (датчик) с измерительной обмоткой (катушкой индуктивности) и подключен на вход блока измерения линейных перемещений, причем для обеспечения возможности калибровки (поверки) и измерителей виброперемещения оно оснащено ИВП с БЭ импульсного типа. Он включает формирователь прямоугольных импульсов, который подключен входом к выходу генератора периодического сигнала перестраиваемой частоты, а выходом на вход управления управляемого электронного ключа, на выход которого через переменный резистор (нагрузочное сопротивление) подключена ИК и установлена на узле крепления датчика соосно оси узла.
Согласно описанию работы и использования устройства в режиме по поверке ЧМХ вихретокового измерителя линейных перемещений ИК в корпусе закрепляют на узле крепления датчика и устанавливают в рабочее положение соосно с ИО датчика. Далее посредством ИВП с БЭ импульсного типа периодически подключают к цепи ИК обычный переменный резистор R и задают нагрузку в виде меандра сопротивления с амплитудой Rk, соответствующей размаху виброперемещения Sk, который задают по методике, включающей использование стенда статических калибровок. Размыкают цепь с ИК посредством электронного ключа, перемещают ЭПО до касания корпуса ИК и фиксируют на узле задания эталонного перемещения показание в виде S0, а на блоке измерения в режиме измерения перемещения показание S0изм, затем удаляют ЭПО на Sk и фиксируют на блоке измерения показание в виде S=(S0изм+Skизм). Замыкают цепь ИК посредством электронного ключа на переменный резистор R, плавно изменяют его величину и наблюдают за изменением показания на блоке измерения до того момента, когда оно станет равным зафиксированному показанию S0изм при касании ЭПО корпуса ИК. Это означает, что величина переменного сопротивления Rk эквивалентна физическому перемещению Sk. Для поверки ЧМХ блок измерения переводят в режим измерения виброперемещения и задают с помощью генератора периодического сигнала перестраиваемой частоты через формирователь прямоугольных импульсов (в виде триггера Шмита), замыкающий периодически электронный ключ с заданной частотой, и так задают эталонный сигнал виброперемещения Sk. Последовательно задают ряд калиброванных значений перемещений Sk в диапазоне амплитуд и частот измерения виброперемещения поверяемого измерителя виброперемещений, обрабатывают полученные данные измерений и оформляют результаты поверки его ЧМХ.
Существенным недостатком прототипа является то, что оснащение его ИВП с БЭ импульсного типа для осуществления поверки ЧМХ измерителя виброперемещений путем изменения нагрузки в цепи ИК в виде меандра сопротивления снижает качество поверки. Это обусловлено тем, что импульсное изменение нагрузки в контуре с ИК не всегда вызывает адекватное изменение вносимого сопротивления в ИО датчика, включенную в колебательный контур измерителя с не подконтрольным разбросом его добротности. Общеизвестно из основ радиоэлектроники, что в колебательном контуре с реальной добротностью больше единицы при каждом импульсном воздействии (нарастании и спаде) имеет место переходный процесс длительностью в соответствии с параметрами колебательного контура и вызывает неподконтрольное искажение ожидаемой формы выходного сигнала. При этом гармонический сигнал может только при определенных соотношениях длительности импульса и постоянной времени контура. Все это
существенно усложняет технологию процесса выполнения операций по поверке ЧМХ и существенно снижает точность и достоверность получаемых результатов испытания.
Другой недостаток его в том, что реальные габариты ИК в корпусе перекрывает в рабочем положении часть рабочего зазора ВТД и допускает перемещение ЭПО до касания торца ее корпуса для задавания ряд значений Sk лишь на какой-то не перекрытой части рабочего зазора, что ограничивает рабочий диапазон для поверки. Это снижает достоверность поверки, что будет особенно ощутимо для ВТИП с малым диапазоном измерения зазора, когда ИК в корпусе перекрывает существенную его часть, а применяемая в прототипе методика использования стенда статических калибровок для задания значений виброперемещения будет ограничена в реализации (лишена смысла).
А положительно в прототипе уже то, что в нем в принципе обозначена возможность осуществления поверки ЧМХ ВТИП без привлечения образцовой вибрационной установки, используя стенд статических калибровок в качестве эталона задания перемещений, что в свою очередь позволяет упростить устройство поверки ВТИП. Однако при его практической реализации, как отмечено выше, имеют место ряд существенных недостатков и прежде всего это низкая точность и достоверность поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот.
Техническое решение в заявляемой полезной модели целесообразно направить на устранение отмеченных недостатков прототипа и аналогов, а именно, на обеспечение повышения точности и достоверности поверки ЧМХ ВТИП без привлечения дополнительных образцовых средств задания перемещений.
Задача полезной модели заключается в обеспечении повышения точности и достоверности поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот устройством доступным к применению в лабораторных и рабочих условиях.
Решение поставленной задачи достигается за счет того, что в устройстве для поверки вихретокового измерительного преобразователя (ВТИП), содержащее стенд статических калибровок, включающий основание (станину) на котором установлены узел задания эталонного перемещения ЭПО и узел крепления (УК) датчика, в котором при поверке MX ВТИП закреплен ВТД с измерительной обмоткой (ИО) подключенной на вход блока нормирующего измерительного преобразователя (НИП), и имитатор виброперемещения (ИВП) для поверки ЧМХ, включающий генератор периодического сигнала перестраиваемой частоты, блок электроники (БЭ) импульсного типа с переменным резистором и имитационную катушку (ИК), согласно техническому решению в нем ИВП выполнен, включающим БЭ линейного типа с функционально управляемым сопротивлением в виде преобразователя напряжение-сопротивление и оснащенным
внешним соединителем имитационного выхода и внешним соединителем входа функционального управления, на последний подключены стандартные средства измеренной техники, по меньшей мере, измерительный НЧ генератор синусоидального сигнала, лабораторный источник питания постоянного тока и цифровой вольтметр, а его имитационная катушка (ИК) выполнена с диэлектрическим корпусом-каркасом с элементами крепления, оснащена соединительным кабелем, подключена соединительным кабелем к имитационному выходу БЭ линейного типа и для поверки ЧМХ ВТИП она установлена в рабочее положение на корпусе ВТД или на узле его крепления, причем ИВП с БЭ линейного типа непосредственно перед осуществлением поверки ЧМХ ВТИП градуируют по методике, включающей использование стенда статических калибровок в качестве рабочего эталона задания перемещения ЭПО, в котором ЭПО узла задания эталонного перемещения и УК датчика смонтированы на отдельных линейных каретках с возможностью их независимого перемещения посредством соответствующих винтов по общему линейному направляющему рельсу, закрепленном на основании стенда статических калибровок, в котором УК датчика выполнен оснащенным многоразовыми червячными хомутами, закрепленными в поперечных пазах съемной монтажной планки известным способом.
Возможно исполнение, что имитационная катушка выполнена посредством навивки в виде кольца на трубчатом диэлектрическом корпусе-каркасе, зафиксирована компаундом или клеем и при установке в рабочее положение она свободно охватывает снаружи ИО датчика в осевом направлении.
Возможно исполнение, что имитационная катушка выполнена в виде диска или кольца посредством печати или навивки, зафиксирована в диэлектрическом корпусе-каркасе компаундом или клеем и при установке в рабочее положение она своей плоскостью контактна с торцом ИО датчика.
Возможно исполнение, что диэлектрический корпус-каркас с имитационной катушкой связи для ее установки в рабочее положение на УК датчика выполнен с крепежным ушком.
Возможно исполнение, что диэлектрический корпус-каркас с имитационной катушкой связи для ее установки в рабочее положение на корпусе датчика выполнен с внутренней резьбой под резьбу корпуса датчика и с радиальным резьбовым отверстием под стопорный винт в корпусе-каркасе.
По существу в заявленной полезной модели технический результат по обеспечению повышения точности и достоверности поверки ЧМХ ВТИП устройством доступным к применению в лабораторных и рабочих условиях в основном достигается тем, что:
- ИВП выполнен, включающим БЭ линейного типа с функционально управляемым сопротивлением в виде ПНС, при этом на его вход функционального управления подключены стандартные СИТ, по меньшей мере, измерительный НЧ генератор синусоидального сигнала, лабораторный источник питания постоянного тока и цифровой вольтметр, а на его имитационный выход подключена ИК. Причем ИК выполнена с диэлектрическим корпусом-каркасом с элементами крепления и для поверки ЧМХ ВТИП установлена в рабочее положение на корпусе ВТД или на узле его крепления и к тому же при использовании любого из них она образует с ИО датчика индуктивно связанную цепь;
- ИВП с БЭ линейного типа градуируют непосредственно перед осуществлением поверки ЧМХ ВТИП по методике, включающей использование стенда статических калибровок в качестве рабочего эталона задания перемещения ЭПО. По этой методике, также как и в прототипе, при поверке ЧМХ не привлекают поверочную вибрационную установку для получения соответствующих данных, а используют экспериментальные данные статических MX поверяемого ВТИП, полученных посредством этого стенда статических калибровок. При этом естественно предпочтительно использование экспериментальных данных определения действительного значения коэффициента КS преобразования ВТИП, который, по сути, является основной метрологической характеристикой, влияющей на точность измерения перемещения.
Действительно совокупностью этих технических решений, отраженных существенными признаками в формуле полезной модели, обеспечивается линейное имитирование перемещения, включая и синусоидальные виброперемещения в широком диапазоне частот посредством стандартных СИТ. При этом, прежде всего, обеспечивается повышение качества поверки ЧМХ ВТИП в отличие от импульсного имитирования перемещения и устраняется существенный недостаток прототипа. А градуировка ИВП с БЭ линейного типа перед осуществлением поверки ЧМХ непосредственно с датчиком испытуемого ВТИП по соответствующей методике обеспечивает выполнение поверки ЧМХ градуированным ИВП с БЭ линейного типа, что способствует гарантированному повышению точности имитирования перемещений в лабораторных и рабочих условиях. Это в свою очередь способствует обеспечению гарантированной точности и достоверности поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот и устранению недостатков прототипа и аналогов. Следует отметить, что градуировка ИВП с БЭ линейного типа с использованием экспериментальных данных статических MX испытуемого ВТИП метрологически правомерна и допустима и, прежде всего с использованием экспериментальных данных по определению действительного значения коэффициента КS преобразования перемещения в электрический сигнал. Это правомерно
на основании того, что преобразование расстояния (зазора) до объекта контроля и преобразование вибрационного перемещения (вибрационного изменения зазора) в информационный сигнал посредством ВТИП осуществляется с одним и тем же значением действительного коэффициента КS преобразования перемещения. К тому же он является основной метрологической характеристикой ВТИП, влияющей на точность измерения перемещений объекта контроля, а его нормированное значение КH задано (установлено) в ТУ, причем контроль отклонения КS от КH осуществляют в процессе поверки статических MX ВТИП в соответствии с требованием методики его поверки. Характеристика коэффициента КS в диапазоне измерения перемещения линейна и поэтому при градировке не вносится дополнительная погрешность. При этом использование экспериментальных данных определения коэффициента KS для градуировки ИВП с БЭ линейного типа допустимо, только в случае, если отклонение КS от КH не превышает допуск. Важно отметить еще и то, что такая методика градуировки БЭ линейного типа осуществима независимо от конструктивного исполнения ИК при ее установке в рабочее положение на корпусе датчика или на УК датчика. Порядок (технология) использования стенда статических калибровок и упомянутых экспериментальных данных для градуировки ИВП с БЭ линейного типа будут изложены при описании применения устройства по назначению.
Достижению технического результата также способствует и возможные варианты выполнения ИК с диэлектрическим корпусом-каркасом, позволяющие установить ее в рабочее положение на корпусе ВТД или на УК датчика посредством соответствующих элементов крепления, предпочтительно последнее. Установка ИК на узле крепления ВТД обеспечивает индуктивную связь ее с ИО датчика, необходимую для осуществления имитации перемещения независимо от типа ВТД, как с неэкранированной (открытой) ИО, так и с экранированной ИО поверяемого ВТИП. В этом случае снижаются требования к точности совпадения их типоразмеров при установке в рабочее положение. Это дает возможность использовать одну и ту же ИК с рядом ВТД близких типоразмеров, в отличие от установки ее на корпусе ВТД по резьбе, при которой требуется строгое соответствие их резьбы. В заявленном устройстве для поверки ВТИП взаимное положение ИК и датчика зафиксировано на стенде и поэтому отпадает необходимость в использовании специальных приспособлений для фиксации взаимного положения ИК и ИО при поверке, как это предусмотрено в известных ИВП. Все это также позволяет упростить устройство и технологию его использования без снижения качества поверки.
При этом выполнением стенда статических калибровок с размещением его узла крепления датчика и ЭПО на отдельных линейных каретках с возможностью их
перемещении по общему линейному направляющему рельсу, закрепленном на основании стенда обеспечивается неизменность взаимного положения плоскости торца датчика и плоскости ЭПО при его перемещении. Неизменность взаимного положения этих плоскостей сохраняется также и при вариации высоты торца ВТД из-за различия их диаметров при установке в узле крепления. Этим исключается необходимость центровки оси датчика и ЭПО и при этом не вносится дополнительная погрешность при его перемещении в процессе поверки и градуировки, которая возможна из-за биения поверхности при установке ЭПО на микрометрическом винте для его перемещения, как это отображено в ближайшем аналоге. Это способствует обеспечению качества (точности и достоверности) поверки статических MX ВТИП и, следовательно, качества поверки его ЧМХ. В тоже время оснащение УК датчика многоразовыми червячными хомутами позволят упростить технологию надежного закрепления ВТД в сравнении с цанговым зажимом в прототипе. Все это способствует практической реализации устройства для поверки ВТИП доступного к использованию по назначению.
Кроме того положительным в реализации заявленного устройства для поверки ВТИП с обеспечением гарантированной точности и достоверности его поверки в отличие от аналогов является еще и то, что оно позволяет при необходимости осуществить контрольную внеочередную поверку MX ВТИП не только в лабораторных условиях, а и в иных не лабораторных. А именно, в процессе его монтажа и ввода в эксплуатацию на объекте контроля в случае возникновения сомнения в его метрологической исправности, а также для поверки ВТИП на рабочем месте. Для этого будет достаточно демонтировать только ВТД и установить его на стенде статических калибровок и выполнить градуировку ИВП с БЭ линейного типа, что может быть доступно целесообразным для поверки ВТИП, используемых в измерительных каналах многоканальной ИИС диагностики мощного турбогенератора. Причем стенд статических калибровок при необходимости может быть откалиброван посредством образцовой плоскопараллельной плитки на рабочем месте.
В целом все это способствует обеспечению гарантированной точности и достоверности поверки ЧМХ ВТИП в широком диапазоне амплитуд и частот заявленным устройством поверки, которое доступно к применению в лабораторных и в рабочих условиях. При этом это возможно и достижимо без привлечения поверочной вибрационной установки.
Таким образом, при осуществлении полезной модели в том виде, как она характеризуется в формуле, достигается заявленный технический результат. Следовательно, полезная модель соответствует требованию «уровень».
Полезная модель поясняется чертежами, которые иллюстрируют возможность ее осуществления и практического использования. При этом чертежами отображены: на Фиг. 1 - функциональная блок-схема устройства для поверки ВТИП с микрометрической головкой; на Фиг. 2 - имитационная катушка (варианты выполнения); на Фиг. 3 - варианты установки ИК в рабочее положение к ИО датчика; на Фиг. 4 - функциональная блок-схема устройства для поверки ВТИП с цифровым индикатором часового типа.
Устройство для поверки ВТИП в возможном предпочтительном варианте отображено на Фиг. 1 в виде функциональной блок-схемы сдержит стенд статических калибровок, включающий узел задания эталонного перемещения ЭПО и узел крепления датчика, ИВП с ЭБ линейного типа и поверяемый ВТИП с ВТД с неэкранированной (открытой) ИО.
Стенд статических калибровок, отображенный на Фиг. 1, в котором основании 1 закреплены линейный направляющий рельс 2 с установленными линейными каретками 3 и 4, уголковая стойка 5 с винтом 6 (целесообразно микрометрический) и П-образная опора 7 с монтажным элементом 10 над линейной кареткой 3. В монтажном элементе 10 установлена микрометрическая головка 9, например типа МГН15 по ГОСТ 6507-90 с отсчетом по нониусу 0.001 мм. При этом в узле задания эталонного перемещения его сменный ЭПО 13 выполнен прямоугольной формы и установлен на уголковой стойке 14, закрепленной на линейной каретке 3. Причем торец винта 11 микрометрической головки 9 прижимается к полусферическому контакту 12 на уголковой стойке 14 посредством пружины 8, прикрепленной одним концом к линейной каретке 3, а вторым к рельсу 2 и обеспечивается контакт при перемещении ЭПО 13 посредством винта 11 микрометрической в головки 9. Узел крепления ВТД 30 смонтирован на линейной каретке 4 и включает, закрепленный на ней крепежный элемент 15 П-образного сечения, на горизонтальной полке которого установлена съемная монтажная планка 16, в поперечных пазах 17 которой закреплены многоразовые червячные хомуты 18, например из нержавстали, посредством пайки, сварки, прижима или другим известным способом. Монтажная планка 16 может быть, например, в виде угловой призмы прихвата цилиндра (профиль призмы не отображен). Для надежной и однозначной установки ВТД 30 в узле крепления достаточно закрепить на монтажной планке 16 два червячных хомута 18, как отображено на Фиг. 1 и на Фиг. 4. При необходимости узел крепления датчика может быть оснащен разрезными втулками, в т.ч. и пластиковыми, под типоразмеры ВТД 30 (втулка на чертеже не отображена), что повысит надежность и улучшит технологичность установки и обеспечит сохранность резьбы на корпусе датчика. При этом для обеспечения технологического перемещения УК датчика по рельсу 2 в левой вертикальной полке
крепежного элемента 15 по резьбе установлен винт 6, например, с микрометрическим шагом резьбы 0,5 мм, а на правой вертикальной полке закрепляют ИК 19 с диэлектрическим корпусом-каркасом 20, выполненный крепежным ушком 21.
Для практической реализации стенда статических калибровок представляется возможным использовать известные прецизионные линейные рельсовые направляющие, например, Mini-Rail типа MR20 со скольжением линейной каретки по рельсу, цельная длина рельса до 3600 мм, допускает порезку на требуемую длину. Рельс и каретки с керамическим покрытием, защищены от коррозии, обеспечивают высокую точность перемещения, допускают нагрузку до 3500 Н в том числе и боковую, не требуют смазки в процессе эксплуатации в отличие от шариковых (роликовых) кареток.
На функциональной блок-схеме Фиг. 1 отображен ИВП с БЭ линейного типа, в котором ИК 19 с трубчатым диэлектрическим корпусом-каркасом 20 установлена в рабочее положение на крепежном элементе 15 УК датчика посредством крепежного ушка 21 и она свободно охватывает не экранированную измерительную обмотку 29 ВТД 30. Соединительным кабелем 22 со встроенным тумблером 23 ИК 19 подключена к соединителю Х3 имитационного выхода БЭ 24 линейного типа, включающий преобразователь напряжение-сопротивление (ПНС) 25 в виде электронного линейного функционально управляемого сопротивления, например на базе известной схемотехники ОУ и полевых транзисторов, а к его соединителю Х4 входа функционально управления подключены стандартные СИТ, рекомендуемые для поверки ВТИП, а именно: лабораторный источник 26 постоянного напряжения, например, типа Б5-45 или Б5-71У; измерительный НЧ генератор 27 синусоидального сигнала, например, типа Г3-122 и универсальный цифровой вольтметр 28, например, типа В7-78/1. Эти СИТ обеспечивают задание и контроль управляющего (функционального) напряжения при градуировке ИВП с БЭ линейного типа и при имитировании перемещения (смещения, зазора) и виброперемещения в рабочем диапазоне амплитуд и частот. При этом не исключена возможность применения после соответствующей доработки и БЭ известных ИВП линейного типа с высокими техническими и метрологическими характеристиками имитации перемещений.
Варианты конструктивного выполнения ИК 19 отображены на Фиг. 2, а их возможное рабочее положение относительно измерительной обмоткой ВТД отображено на Фиг. 3. На этих чертежах элементы имеют следующие обозначения, а именно: 19 - ИК; 20 - диэлектрический корпус-каркас; 21 - крепежное ушко; 22 - соединительный кабель ИК; D - внутренний диаметр трубчатого корпуса-каркаса; МД - внутренняя резьба корпуса-каркаса под резьбу на корпусе ВТД; 29 - измерительная обмотка; 30 - ВТД;
31 - соединительный кабель ВТД; 34 - винт стопорный.
При этом ИК 19, выполненная на трубчатом корпусе-каркасе 20 (см. Фиг. 2а и Фиг. 2в), при установке в рабочее положение для поверки ЧМХ ВТИП (см. Фиг. 1, Фиг. 3а и Фиг. 3б) она свободно охватывает ИО, что предпочтительно и применимо для широко распространенного типа (класса) ВТД с неэкранированной (открытой) измерительной обмоткой, так как это обеспечивает улучшение коэффициента индуктивной связи и повышает эффективность воздействия на измерительную обмотку при имитировании перемещений, но она не применима для ВТД с экранированной ИО. В тоже же время при выполнении ИК 19 с закреплением внутри трубчатого корпуса-каркаса 20 (см. Фиг. 2б и Фиг. 2г) она может быть применена как с неэкранированной (открытой) измерительной обмоткой ВТД (см. Фиг. 3в), так и с экранированной измерительной обмоткой (см. Фиг. 3г, Фиг. 3д и Фиг. 4). Такое выполнение упрощает технологию применения ИК, но снижается коэффициент индуктивной связи с измерительной обмоткой датчика.
При разработке узла задания эталонного перемещения ЭПО 13 исходными требованиями были это диапазон измерения перемещения и точность его задания с учетом цены и доступности комплектования от отечественного производителя без учета удобства пользования. Таким требованиям удовлетворяет выбранная микрометрическая головки 9 типа МГН15 ГОСТ 6507-90 (с отсчетом по нониусу 0.001 мм). При этом этот узел задания эталонного перемещения ЭПО 13 допускает посредством не сложных конструктивных доработок осуществить замену микрометрической головки 9 типа МГН15 в монтажном элементе 10 на П-образной опоре 7 на известный отечественный цифровой индикатор часового типа ИЧЦ-10 с разрешением 0.001 мм или типа ИЦ 12,5 с разрешением 0.001 мм. Это улучшит наглядность визуального восприятия задания и отсчета значений перемещения ЭПО 13, но при этом возрастет цена его, по крайней мере, на порядок. А для повышения технологичности устройства и при условии отсутствии жестких ограничений на его цену в целом, то целесообразно установить цифровой индикатор известных зарубежных производителей с более расширенными функциональными возможностями, например высокоточный цифровой индикатор типа MarCator 1086R ИЧЦ 12.5-0.001 (Германия) с диапазоном измерения 12,5 мм с разрешением 0,001 мм и с выходом на ПК, что позволит осуществить компьютерную обработку результатов градуировки и поверки. Функциональная блок-схема устройства для поверки ВТИП с цифровым индикатором часового типа отображена на Фиг. 4, где ИК 19 в корпусе-каркасе 20 посредством крепежного ушка 21 закреплена на крепежном элементе 15 УК датчика 30 и она контактна к торцу экранированной ИО 29. А для реализации установки ИЧЦ необходимо убрать пружину 8, установить на основании 1 дополнительную стойку 35 с
винтом 36, например, с микрометрическим шагом резьбы 0,5 мм, закрепить его гайку 37 на линейной каретке 3 и установить цифровой индикатор 38 в монтажном элементе 10 на П-образной опоре 7 взамен микрометрической головки 9. При этом для задания эталонного перемещения перемещают ЭПО 13 посредством винта 36 линейную каретку 3 по рельсу 2, а его величину контролируют по цифровому индикатору 38.
Поверяемый ВТИП включает общеизвестные элементы, по меньшей мере, ВТД 30 с ИО 29, подключенный кабелем 31 через соединитель X1 на вход блока 32 НИП, на выход которого в штатном использовании на соединитель Х2 подключают линию связи к внешним устройствам, а при поверке подключают универсальный цифровой вольтметр 33, например, типа В7-78/1, при этом ВТД 30 устанавливают на стенд статических калибровок в узле крепления и фиксируют его положение посредством червячных хомутов 18. Для поверки ЧМХ на крепежном элементе 15 узла крепления ВТД 30 устанавливают ИК 19, как это отображено, например, на Фиг. 1 или на Фиг. 4.
Изложенное описание заявленной полезной модели позволяет собрать схему для поверки ВТИП. Причем с практической и технологической точки зрения установка ИК 19 на узле крепления ВТД 30 упрощает ее крепление и взаимное размещение в рабочее положение относительно измерительной обмотки 29. При этом возможные разбросы их параметров и взаимного положения установки в разумных пределах учитываются при градуировке ИВП с БЭ линейного типа.
Использование Устройства для поверки ВТИП по назначению рассмотрим путем изложения порядка поверки ЧМХ с иллюстрацией по функциональной блок-схеме Фиг. 1. Для поверки метрологических характеристик ВТИП собирают схему поверки по функциональной схеме Фиг. 1. При этом поверку и контроль статических MX ВТИП осуществляют стандартно с использованием стенда статических калибровок по прямому назначению, как того требует методика поверки в каждом конкретном случае, при этом ИК 19 не устанавливают и не задействуют.
В процессе контроля статических MX ВТИП, прежде всего, определяют действительное значение коэффициента преобразования перемещения КS, как основную его метрологическую характеристику, влияющую на точность измерения параметров перемещения, и контролируют его отклонения от номинального значения КH в рабочем диапазоне измерения перемещения. При этом контроль статических MX осуществляют в соответствии требований методики поверки ВТИП. Причем для определения коэффициента преобразования КS посредством узла задания эталонного перемещения ЭПО 13 задают ряд значений зазора Sзад в рабочем диапазоне измерения перемещения (зазора) и контролируют посредством микрометрической головки 9 этот ряд значений
зазора в виде Sk между торцом ВТД 30 и ЭПО 13. Причем задают, по крайней мере, значения зазора вначале диапазона в виде Skmin, мкм, в середине диапазона зазор Sk0, мкм и равный установочному зазору Sycт согласно паспорта, и зазор в виде Skmax, мкм в конце рабочего диапазона измерения линейного перемещения. При каждом задании зазора Sk фиксируют на выходе блока 32 НИП напряжения Uk по показаниям цифрового вольтметра 33 в режиме измерения постоянного напряжение в виде Ukmin, Uk0 и Ukmax, В, соответственно. По полученным экспериментальным данным контролируют линейность статической MX и вычисляют действительное значение коэффициента преобразования перемещения по выражению КS=(|Ukmax-Ukmin|) / (Skmax-Skmin), В/мкм. Определяют отклонение КS от значения КН по выражению в виде Δк=(КSН) / КН 100%. Допуск на отклонение (1-2)%, а при превышении этого допуска осуществляют подстройку в соответствии с методикой настройки ВТИП конкретной модификации.
После завершения статических метрологических испытаний удаляют ЭПО 13 от торца ВТД 30 на расстояние, превышающее его диапазон измерения линейного перемещения (зазора). И для выполнения проверки ЧМХ ВТИП в рабочем диапазоне частот и амплитуд устанавливают ИК 19 в рабочее положение на узле крепления ВТД 30 посредством ее крепления крепежным ушком 21 на крепежном элементе 15. При этом ВТД 30 посредством червячных хомутов 18 фиксируют его в УК так, чтобы ИК 19 в рабочем положении охватывала не экранированную ИО 29 (см. Фиг. 1) для образования с ней индуктивно связанной цепи. Подключают ИК 19 соединительным кабелем 22 со встроенным тумблером 23 через соединитель Х3 на имитационный выход БЭ 24 линейного типа, включающий ПНС 25, а на его вход функционального управления через соединитель Х4 подключают стандартные поверенные СИТ, которые были означены выше при изложении описания устройства ИВП с БЭ 24 линейного типа.
Процесс поверки ЧМХ начинают с выполнения операций градуировки образованного ИВП с БЭ 24 линейного типа. Следует отметить, что градуировка будет метрологически допустима и достоверна только в том случае, если действительное значение коэффициента преобразования перемещения КS поверяемого ВТИП не превышает допуск отклонения от номинального коэффициента КН. Поэтому контроль отклонения значения действительного коэффициента КS от номинального значения КН должен предшествовать испытаниям ЧМХ ВТИП. В процессе градуировки ИВП с БЭ 24 линейного типа определяют действительное значение коэффициента NS функции имитации перемещения. Для этого последовательно выполняют следующие операции, которые осуществимы и при других возможных вариантах конструктивного исполнения ИК для ее установки в рабочее положение относительно ИО 29 ВТД 30:
- подключают ИК 19 к имитационному выходу БЭ 24 посредством тумблера 23;
- подают на вход функционального управления БЭ 24 от лабораторного источника постоянного тока 26 напряжение US, В и плавно изменяют его величину. При этом посредством ПНС 25 плавно изменяется нагрузочное сопротивление в цепи ИК 19 и воздействуют на ИО 29 датчика 30 и осуществляется имитирование перемещения. Наблюдают за изменением показания цифрового вольтметра 33 на выходе блока 32 НИП и когда его показание станет равным значению напряжения Ukmax В, зарегистрированного при определении КS, регистрируют величину напряжения на входе управления БЭ 24 от источника постоянного тока 26 по показанию вольтметра 28 напряжение в виде USmax В. Это означает, что имитируемое значение зазора соответствует заданному физическому значению зазора Skmax, мкм, зарегистрированного при определении КS;
- продолжают плавно изменять напряжение US В и при этом, когда показание на выходе блока 32 НИП по цифровому вольтметру 33 станет равным значению напряжения Uk0, В, зарегистрированного при определении КS, регистрируют величину напряжения на входе управления БЭ 24 от источника постоянного тока 26 по показанию вольтметра 28 напряжение в виде US0, В, а это означает, что имитируемое значение зазора соответствует заданному физическому значению зазора Sk0, зарегистрированного при определении КS;
- продолжают плавно изменять напряжение US, В и при этом, когда показание на выходе блока 32 НИП по цифровому вольтметру 33 станет равным значению напряжения Ukmin В, зарегистрированного при определении КS, регистрируют величину напряжения на входе управления БЭ 24 от источника постоянного тока 26 по показанию вольтметра 28 напряжение в виде Usmin В, а это означает, что имитируемое значение зазора соответствует заданному физическому значению зазора Skmin мкм, зарегистрированного при определении КS. По полученным экспериментальным данным вычисляют напряжение в виде US=(|USmax - USmin|), В, которое необходимо для воспроизведения эквивалентного перемещения (зазора) заданному физическому значению зазора в виде S=(|Skmax-Skmin|), мкм, по которым определяют действительное значение коэффициента Ns функции имитации перемещения в виде NS=US / S, В/мкм. Функция имитации перемещения (функция преобразования напряжения в перемещение) описывается выражением US=S NS, где US - величина функционального напряжения, задаваемого на входе функционального управления БЭ 24 линейного типа с ИК 19.
Кром того после осуществления градуировки БЭ 24 линейного типа представляется возможность оценить линейность характеристики ПНС посредством использования экспериментальных данных градуировки БЭ линейного типа и контроля статических MX ВТИП. Для этого задают ряд напряжений в виде USk=Sk NS от лабораторного источника
26 на входе функционального управления БЭ 24 и фиксируют соответствующий им ряд значений напряжения на выходе блока 32 НИП в виде UJ=Sk КS. Сравнивают UJ со значениями напряжения Uk, полученные в ходе поверки статических MX и оценивают линейность характеристики. Здесь Sk соответствуют значениям зазора, заданным значениям зазора в ходе определении статической MX ВТИП. Оценка линейности функции имитации перемещения необходима для принятия решения о пригодности БЭ привлекаемого ИВП для поверки. Этот контроль также будет способствовать обеспечению гарантированной точности имитирования перемещения, и способствовать обеспечению повышения качества поверки ЧМХ ВТИП без привлечения поверочной вибрационной установки. Полученный коэффициент NS функции имитации перемещения в процессе градуировки БЭ 24 линейного типа действителен для поверки ЧМХ только для испытуемого ВТИП и при данной установке ИК. При этом выполнение операций экспериментального определения действительного значения коэффициента NS функции имитации перемещения и контроля линейности характеристики преобразования должно соответствовать требованиями РМГ 54-2002 ГСИ.
После завершения процесса градуировки ЭБ 24 с ИК 19 и определения коэффициента Ns функции имитации перемещения в виде US=S NS, и оценки при необходимости линейности его характеристики преобразования, сохраняют схему Фиг. 1 собранной и не изменяют рабочее положение ИК 19, выполняют операции по поверке ЧМХ ВТИП.
Вначале на входе функционального управления БЭ 24 задают от лабораторного источника постоянного тока 26 напряжение по показаниям цифрового вольтметра 28 в виде US0=Sycт NS и фиксируют по показаниям цифрового вольтметра 33 напряжение на выходе блока 32 НИП в виде U0 и контролируют его соответствие Uk0. Это эквивалентно заданию установочного (рабочего) зазора в соответствии с его паспортным значением. Затем в соответствии с требованием методики стандартно осуществляют поверку ЧМХ, при этом выполняют операции поверки на базовой частоте и в рабочем диапазоне частот и амплитуд, и контролируют диапазон измерения значений виброперемещения, погрешность измерения виброперемещения и определяют неравномерность АЧХ. Это достигается посредством изменения амплитуды и частоты синусоидального напряжения НЧ измерительного генератора 27 на входе функционального управления БЭ 24 в виде USk(t)=Umk SinΩit, при этом его амплитудные значения Umk контролируют по вольтметру 28 в режиме измерения переменного напряжения. Амплитуды Umk синусоидального напряжения задают генератором 27 в соответствии с функцией имитации перемещений Umk=Smk⋅NS. Значения амплитуд виброперемещения Smk
выбирают в виде ряда значений в пределах рабочего диапазона измерения амплитуд (размаха) виброперемещения ВТИП, а частоту Ωk синусоидального напряжения задают в виде ряда значений в пределах рабочего диапазона частот, как того требует методика. Отклик ВТИП на воздействие имитатора виброперемещений регистрируют на выходе блока 32 НИП по показаниям вольтметру 33 в режиме измерения переменного напряжения в виде значения амплитуд Umk соответствующих амплитудам Smk. Выполняют обработку экспериментальных данных и оформляют результаты поверки частотных MX испытуемого ВТИП.
Всем этим подтверждается, что заявленное устройство поверки ВТИП обеспечивает повышение точности поверки его ЧМХ в широком амплитудном и частотном диапазоне без привлечения дополнительных образцовых средств испытания в лабораторных и рабочих условиях и применимо на этапах изготовления и эксплуатации.
Таким образом, выше изложенные сведения свидетельствуют о том, что техническое устройство, воплощенное в заявленной полезной модели, в том виде, как оно охарактеризовано в формуле и описании, осуществимо посредством означенных и доступных известных средств и технологий современного производства вихретоковых преобразователей и средств их испытания. А при его осуществлении способно обеспечить достижение заявленного технического результата. Следовательно, заявленное техническое устройство "промышленно применимо".

Claims (6)

1. Устройство для поверки вихретокового измерительного преобразователя (ВТИП), содержащее стенд статических калибровок, включающий основание (станину), на котором установлены узел задания эталонного перемещения ЭПО и узел крепления (УК) датчика, в котором при поверке MX ВТИП закреплен ВТД с измерительной обмоткой (ИО), подключенной на вход блока нормирующего измерительного преобразователя (НИП), и имитатор виброперемещения (ИВП) для поверки ЧМХ, включающий генератор периодического сигнала перестраиваемой частоты, блок электроники (БЭ) импульсного типа с переменным резистором и имитационную катушку (ИК), отличающееся тем, что согласно техническому решению в нем ИВП выполнен включающим БЭ линейного типа с функционально управляемым сопротивлением в виде преобразователя напряжение-сопротивление и оснащенным внешним соединителем имитационного выхода и внешним соединителем входа функционального управления, на последний подключены стандартные средства измеренной техники, по меньшей мере, измерительный НЧ генератор синусоидального сигнала, лабораторный источник питания постоянного тока и цифровой вольтметр, а его имитационная катушка (ИК) выполнена с диэлектрическим корпусом-каркасом с элементами крепления, оснащена соединительным кабелем, подключена соединительным кабелем к имитационному выходу БЭ линейного типа и для поверки ЧМХ ВТИП она установлена в рабочее положение на корпусе ВТД или на узле его крепления, причем ИВП с БЭ линейного типа непосредственно перед осуществлением поверки ЧМХ ВТИП градуируют по методике, включающей использование стенда статических калибровок в качестве рабочего эталона задания перемещения ЭПО, в котором ЭПО узла задания эталонного перемещения и УК датчика смонтированы на отдельных линейных каретках с возможностью их независимого перемещения посредством соответствующих винтов по общему линейному направляющему рельсу, закрепленному на основании стенда статических калибровок, в котором УК датчика выполнен оснащенным многоразовыми червячными хомутами, закрепленными в поперечных пазах съемной монтажной планки известным способом.
2. Устройство по п. 1, отличающееся тем, что имитационная катушка выполнена посредством навивки в виде кольца на трубчатом диэлектрическом корпусе-каркасе, зафиксирована компаундом или клеем и при установке в рабочее положение она свободно охватывает снаружи ИО датчика в осевом направлении.
3. Устройство по п. 1, отличающееся тем, что имитационная катушка выполнена в виде диска или кольца посредством печати или навивки, зафиксирована в
диэлектрическом корпусе-каркасе компаундом или клеем и при установке в рабочее положение она своей плоскостью контактна с торцом ИО датчика.
4. Устройство по п. 1, отличающееся тем, что диэлектрический корпус-каркас с имитационной катушкой для ее установки в рабочее положение на узле крепления датчика выполнен с крепежным ушком.
5. Устройство по п. 1, отличающееся тем, что диэлектрический корпус-каркас с имитационной катушкой для ее установки в рабочее положение на корпусе датчика выполнен с внутренней резьбой под резьбу корпуса датчика и с радиальным резьбовым отверстием под стопорный винт в корпусе-каркасе.
RU2017129662U 2017-08-21 2017-08-21 Устройство для поверки вихретокового измерительного преобразователя RU182826U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017129662U RU182826U1 (ru) 2017-08-21 2017-08-21 Устройство для поверки вихретокового измерительного преобразователя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017129662U RU182826U1 (ru) 2017-08-21 2017-08-21 Устройство для поверки вихретокового измерительного преобразователя

Publications (1)

Publication Number Publication Date
RU182826U1 true RU182826U1 (ru) 2018-09-04

Family

ID=63467709

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017129662U RU182826U1 (ru) 2017-08-21 2017-08-21 Устройство для поверки вихретокового измерительного преобразователя

Country Status (1)

Country Link
RU (1) RU182826U1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252001A (zh) * 2021-12-17 2022-03-29 重庆国科医工科技发展有限公司 一种简易多通道电涡流微位移传感器并行标定装置
CN114518065A (zh) * 2022-01-26 2022-05-20 重庆国科医工科技发展有限公司 大行程且可调的多通道电涡流微位移传感器并行标定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755753A (en) * 1986-07-23 1988-07-05 General Electric Company Eddy current surface mapping system for flaw detection
SU1679179A2 (ru) * 1989-06-27 1991-09-23 Харьковский филиал Центрального конструкторского бюро Союзэнергоремонта Устройство дл калибровки измерител линейных перемещений
RU163307U1 (ru) * 2016-02-02 2016-07-10 Акционерное общество "Вибро-прибор" Вихретоковый датчик перемещений
RU172091U1 (ru) * 2016-06-27 2017-06-28 Дмитрий Сергеевич Крюков Вихретоковый измерительный преобразователь

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755753A (en) * 1986-07-23 1988-07-05 General Electric Company Eddy current surface mapping system for flaw detection
SU1679179A2 (ru) * 1989-06-27 1991-09-23 Харьковский филиал Центрального конструкторского бюро Союзэнергоремонта Устройство дл калибровки измерител линейных перемещений
RU163307U1 (ru) * 2016-02-02 2016-07-10 Акционерное общество "Вибро-прибор" Вихретоковый датчик перемещений
RU172091U1 (ru) * 2016-06-27 2017-06-28 Дмитрий Сергеевич Крюков Вихретоковый измерительный преобразователь

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252001A (zh) * 2021-12-17 2022-03-29 重庆国科医工科技发展有限公司 一种简易多通道电涡流微位移传感器并行标定装置
CN114252001B (zh) * 2021-12-17 2024-07-05 重庆国科医创科技发展有限公司 一种简易多通道电涡流微位移传感器并行标定装置
CN114518065A (zh) * 2022-01-26 2022-05-20 重庆国科医工科技发展有限公司 大行程且可调的多通道电涡流微位移传感器并行标定装置
CN114518065B (zh) * 2022-01-26 2024-05-28 重庆国科医创科技发展有限公司 大行程且可调的多通道电涡流微位移传感器并行标定装置

Similar Documents

Publication Publication Date Title
US3718855A (en) Eddy current flaw detection system
CN100439929C (zh) 压电材料准静态法横向压电应变常数测量方法和***
CN201247077Y (zh) 线性传感器测试标定仪
RU172091U1 (ru) Вихретоковый измерительный преобразователь
RU182826U1 (ru) Устройство для поверки вихретокового измерительного преобразователя
CN104459588A (zh) 电流传感器测试***和方法
TW201500747A (zh) 自動化測量系統及方法
KR20150108788A (ko) 철심형 리니어 모터에서 힘 교정, 힘 계산, 및 힘 한정을 위한 방법
RU2456541C1 (ru) Датчик линейных перемещений и вибраций
CN205482773U (zh) 全自动电涡流位移传感器静态特性测试***
CN112325763B (zh) 用于安装后应变计安装质量检测的检查装置及检查方法
US20160216333A1 (en) System and method for induction motor rotor bar magnetic field analysis
CN106931897B (zh) 减振挠性接管变形测量装置
CN203811126U (zh) 一种应力环变形检测装置
CN106052956B (zh) 一种力锤灵敏度自动校准装置及其校准方法
Veldman Implementation of an accelerometer transverse sensitivity measurement system
KR940002724B1 (ko) Ic테스터의 ac평가장치 및 그를 이용한 평가방법
JP6516063B2 (ja) 測定装置および材料試験機
CN105091724A (zh) Lvdt测量头快速标定工装及标定方法
CN211013057U (zh) 一种比例伺服阀的检测设备
CN208432264U (zh) 磁性编码器的校准装置
RU179359U1 (ru) Вихретоковый измерительный преобразователь
CN205192992U (zh) 一种单缝衍射测量金属线膨胀系数的装置
CN206891361U (zh) 一种圆柱体直线度检测装置
CN104792444A (zh) 基于涡流阻抗的金属构件应力测量方法及***

Legal Events

Date Code Title Description
MM9K Utility model has become invalid (non-payment of fees)

Effective date: 20190822