RU177475U1 - Индукционная индукторная тигельная печь с проволочным индуктором - Google Patents

Индукционная индукторная тигельная печь с проволочным индуктором Download PDF

Info

Publication number
RU177475U1
RU177475U1 RU2016148321U RU2016148321U RU177475U1 RU 177475 U1 RU177475 U1 RU 177475U1 RU 2016148321 U RU2016148321 U RU 2016148321U RU 2016148321 U RU2016148321 U RU 2016148321U RU 177475 U1 RU177475 U1 RU 177475U1
Authority
RU
Russia
Prior art keywords
inductor
crucible
furnace
induction
magnetic circuit
Prior art date
Application number
RU2016148321U
Other languages
English (en)
Inventor
Геннадий Егорович Левшин
Александр Геннадьевич Левшин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ)
Priority to RU2016148321U priority Critical patent/RU177475U1/ru
Application granted granted Critical
Publication of RU177475U1 publication Critical patent/RU177475U1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

Индукционная индукторная тигельная печь с проволочным индуктором предназначена для использования в металлургии и литейном производстве для выплавки различных сплавов, доведения расплава до необходимых свойств и выдержки его для порционной разливки. Печь содержит скрепленные вместе каркас с верхней и нижней плитами, футерованный тигель, охлаждаемый индуктор с электроизолированными витками и токоподводом, наружный наборный магнитопровод. Между тиглем и индуктором размещена цилиндрическая обечайка. Наборный магнитопровод выполнен в виде полого цилиндра. Витки индуктора выполнены из одно- или многопроволочного проводника. Обечайка и магнитопровод расположены между плитами с образованием замкнутой кольцевой полости для размещения индуктора и хладагента. Значительно расширяется сфера использования индукционных плавки и тигельной печи путем снижения энергоемкости плавки, уменьшения эксплуатационных расходов и занимаемой площади, повышения защищенности индуктора и работающих и надежности работы печи.

Description

Полезная модель относится преимущественно к металлургии и литейному производству, в частности к конструкциям индукционных индукторных тигельных печей, имеющих по меньшей мере один наборный наружный магнитопровод из электротехнической стали и применяемых для выплавки различных сплавов, доведения расплава до необходимых свойств и выдержки его для порционной разливки.
Известна индукционная индукторная тигельная печь, содержащая скрепленные вместе металлический каркас с верхней и нижней плитами, стальной, чугунный или футерованный огнеупорный тигель, однослойный водоохлаждаемый электроизолированный индуктор из медного трубчатого проводника с токоподводом, неферромагнитный сплошной электропроводный экран. Футерованный тигель опирается на внутреннюю поверхность индуктора и создает вместе с расплавом давление на него, особенно при сливе расплава. Витки индуктора, охватывающие цилиндрический тигель с ванной, расположены максимально близко к тиглю преимущественно в горизонтальной плоскости соосно с вертикальной осью тигля и являются опорой для него. Витки выполнены полыми из специальной медной трубки, внутри которой под давлением до 0,2-0,7 МПа протекает со скоростью 1-1,5 м/с охлаждающая кондиционная вода: дистиллированная или с содержанием механических примесей до 80 г/м3, определенной жесткостью до 7 г-экв/м3, температурой 35-40°C и водородным показателем рН=7. Поверх трубки нанесен электроизоляционный слой. (Фарбман С.А. Индукционные печи для плавки металлов и сплавов / С.А. Фарбман, И.Ф. Колобнев. -М.: Металлургия, 1968. - С. 331, 335).
Основным недостатком индукционной индукторной тигельной плавильной печи является ограниченная сфера использования, обусловленная следующими причинами:
- повышенным расходом энергии на создание рабочего магнитного потока, так как, не смотря на требование размещения стенок тигля максимально близко к виткам индуктора, существенная часть рабочего магнитного потока с наибольшим значением индукции не используется, поскольку проходит по толстым неэлектропроводным стенкам футерованного тигля, а не по шихте или расплаву. Помимо рабочего магнитного потока индуктор создает и магнитный поток рассеяния такой же величины, не участвующий в нагреве шихты и расплава. Все это уменьшает полезное использование магнитного потока почти до 40%, а естественный коэффициент мощности cos ϕ - до 0,03-0,10, и повышает расход энергии;
- дополнительно повышенным расходом энергии, значительными габаритами и высокой стоимостью применяемого устройства для слива расплава из-за необходимости поворота всей тяжелой и громоздкой печи;
- пониженной удельной мощностью, особенно при малых частотах, из-за повышения интенсивности двухконтурного перемешивания и высоты мениска с ее увеличением и опасности газометаллических выбросов;
- пониженным электрическим КПД из-за практической невозможности выполнения индуктора из параллельных транспонированных трубчатых проводников вследствие конструктивной сложности, связанной с необходимостью расположения трубчатых витков более, чем в один слой, и подачи в них охлаждающей воды;
- повышенными эксплуатационными расходами на обеспечение безаварийной работы печи вследствие вытекания расплава на индуктор при образовании щелей в тигле;
- повышенными эксплуатационными расходами по кондиционированию воды и созданию повышенного давления вследствие охлаждения полых витков индуктора изнутри кондиционной водой;
- повышенным расходом кондиционной воды для охлаждения индуктора и воротниковой зоны футерованного тигля из-за повышенных скорости и давления ее в трубке индуктора, чтобы обеспечить ее температуру не выше 35-40°С;
- повышенными расходами на изготовление индуктора из специальной медной трубки и ручное нанесение электроизоляции для обеспечения его необходимой прочности и надежности, так как дорогая медь находится по завышенному периметру сечения трубки в излишнем количестве;
- повышенными габаритами и массой печи и увеличенной занимаемой производственной площадью, так как магнитный поток рассеяния вызывает нагрев близкорасположенных электропроводных частей каркаса, поэтому эти части и электропроводный экран удаляют от индуктора;
- пониженной защищенностью и надежностью работы тигля и индуктора печи вследствие размещения витков индуктора непосредственно вокруг тигля из-за склонности футеровки тигля к прогоранию и образованию трещин под воздействием вибрации индуктора и массы расплава и возможного повреждения индуктора расплавом, проникшим сквозь трещины к индуктору;
- вредным влиянием магнитного потока рассеяния на здоровье работников, так как трудно обеспечить величину индукции переменного магнитного поля ниже предельно допустимого уровня (ПДУ);
- повышенными вибрацией жестких трубчатых медных витков индуктора и, как следствие, шумом, вредно влияющими на всю конструкцию печи и работающих.
Наиболее близкой по технической сущности и достигаемому результату (прототипом) к предложенной полезной модели является индукционная индукторная тигельная печь, содержащая скрепленные вместе каркас с верхней и нижней плитами с центральным отверстием, футерованный огнеупорный тигель, однослойный водоохлаждаемый электроизолированный индуктор из медного трубчатого проводника с токоподводом, наружный ферромагнитный дискретный экран из нескольких, до 24, вертикальных стержневых пластинчатых наборных I-образных магнитопроводов, верхнюю и нижнюю охлаждающие катушки. Футерованный тигель опирается на внутреннюю поверхность индуктора и создает вместе с расплавом давление на него, особенно при сливе расплава. Водоохлаждаемые витки индуктора охватывают тигель и расположены максимально близко к тиглю преимущественно горизонтально и соосно с вертикальной осью тигля и являются опорой для него. Витки выполнены полыми из специальной медной трубки, внутри которой под давлением до 0,2-0,7 МПа протекает со скоростью 1-1,5 м/с охлаждающая кондиционная вода: дистиллированная или с содержанием механических примесей до 80 г/м3, жесткостью до 7 г-экв/м3, температурой 35-40°С и водородным показателем рН=7. Поверх трубки нанесен электроизоляционный слой. Вертикальные стержневые наборные I-образные магнитопроводы из электротехнической стали расположены с внешней стороны индуктора с заданным шагом по окружности и промежутками между ними, их полюса горизонтальны, размещены на нижнем и верхнем торцах магнитопровода и обращены в противоположные стороны. Это частично уменьшает поток рассеяния, но увеличивает массу и габариты печи (Современные плавильные агрегаты: вагранки, газо-кислородные печи, электрические дуговые и индукционные печи и устройства для внепечной обработки и разливки металла: сборник / Инженер. -технол. центр машиностроения ʺМеталлургʺ. - 2-я ред. с доп. и уточнениями. - М.: Металлург-консалтинг, - С. 182, 217, 220).
Основным недостатком индукционной индукторной тигельной печи с I-образными магнитопроводами является ограниченная сфера использования, обусловленная следующими причинами:
- повышенным расходом энергии, так как, не смотря на требование размещения стенок тигля максимально близко к виткам индуктора, существенная часть рабочего магнитного потока с наибольшим значением индукции не используется, поскольку проходит по толстым неэлектропроводным стенкам тигля, а не по шихте или расплаву. Помимо рабочего магнитного потока индуктор создает и магнитный поток рассеяния такой же величины, не участвующий в нагреве шихты и расплава. Все это уменьшает полезное использование магнитного потока почти до 40%, а естественный коэффициент мощности cos ϕ - до 0,03-0,10 и повышает расход энергии:
- дополнительно повышенным расходом энергии, значительными габаритами и высокой стоимостью применяемого устройства для слива расплава из-за необходимости поворота всей тяжелой и громоздкой печи;
- повышенными расходами на изготовление индуктора из специальной медной трубки и ручное нанесение электроизоляции для обеспечения его необходимой прочности и надежности, так как дорогая медь находится по завышенному периметру сечения трубки в излишнем количестве;
- пониженным электрическим КПД из-за практической невозможности выполнения индуктора из параллельных транспонированных трубчатых проводников вследствие конструктивной сложности, связанной с необходимостью расположения трубчатых витков более, чем в один слой, и подачи в них охлаждающей воды;
- пониженной удельной мощностью, особенно при малых частотах, из-за повышения интенсивности двухконтурного перемешивания и высоты мениска с ее увеличением и опасности газометаллических выбросов;
- повышенными эксплуатационными расходами на обеспечение безаварийной работы печи из-за вытекания расплава на индуктор при образовании щелей в тигле;
- повышенными эксплуатационными расходами по кондиционированию воды и созданию повышенного давления вследствие охлаждения полых витков индуктора изнутри кондиционной водой;
- повышенным расходом кондиционной воды для охлаждения индуктора и воротниковой зоны футерованного тигля из-за повышенных скорости и давления ее в трубке индуктора, чтобы обеспечить ее температуру не выше 35-40°С;
- повышенными габаритами и массой печи и увеличенной занимаемой производственной площадью, так как магнитный поток рассеяния вызывает нагрев близкорасположенных электропроводных частей каркаса, поэтому эти части удаляют от индуктора, а вокруг индуктора устанавливают толстые вертикальные магнитопроводы высотой, превышающей высоту индуктора примерно на четыре толщины футеровки, и которые, однако, не улавливают весь поток;
- вредным влиянием магнитного потока рассеяния на здоровье работников, так как очень трудно предотвратить его распространение в аксиальном направлении, а вертикальные магнитопроводы улавливают поток только частично и поэтому не обеспечивают величину индукции переменного магнитного поля ниже предельно допустимого уровня (ПДУ);
- пониженной защищенностью и надежностью работы тигля и индуктора печи вследствие размещения витков индуктора непосредственно вокруг тигля из-за склонности футеровки тигля к прогоранию и образованию трещин под воздействием вибрации индуктора и массы расплава и возможного повреждения индуктора расплавом, проникшим сквозь трещины к индуктору;
- повышенной вибрацией жестких трубчатых медных витков индуктора и, как следствие, шумом, вредно влияющими на всю конструкцию печи и работающих.
В основе полезной модели лежит техническая проблема обеспечения расширения сферы использования индукционных плавки и тигельной печи путем снижения энергоемкости плавки, уменьшения эксплуатационных расходов и занимаемой площади, повышения защищенности индуктора и работающих и надежности работы печи.
Решение этой технической проблемы достигается тем, что индукционная индукторная тигельная печь, содержащая скрепленные вместе каркас с верхней и нижней плитами, футерованный тигель, охлаждаемый индуктор с электроизолированными витками и токо-подводом, наружный наборный магнитопровод, согласно полезной модели дополнительно снабжена цилиндрической обечайкой, размещенной между тиглем и индуктором, наборный магнитопровод выполнен в виде полого цилиндра, витки индуктора выполнены из одно- или многопроволочного изолированного проводника, причем обечайка и магнитопровод расположены между плитами с образованием замкнутой кольцевой полости для размещения индуктора и хладагента.
Снижение энергоемкости плавки объясняется, во-первых, более полным улавливанием кольцевым магнитопроводом магнитного потока рассеяния, который намагничивает магнитопровод, тем самым, увеличивая значение магнитной индукции в рабочей полости индуктора; во-вторых, изготовлением витков индуктора из одно- или многопроволочного проводника.
Уменьшение эксплуатационных расходов объясняется устранением расхода кондиционной воды для охлаждения индуктора и воротниковой зоны футерованного тигля и снижения скорости и давления оборотной технической воды с одновременным увеличением ее температуры до 98-99°С за счет подачи хладагента в кольцевую полость.
Уменьшение занимаемой площади и повышение защищенности работающих обусловлены применением кольцевого сплошного магнитопровода вместо дискретного из отдельных магнитопроводов, который более эффективно улавливает поток рассеяния, что позволяет приближать электропроводные элементы каркаса печи к индуктору.
Повышение защищенности индуктора и работающих и надежности работы печи обеспечено установкой цилиндрической обечайки, предотвращающей проникновение расплава сквозь трещины в тигле к индуктору и, как следствие, аварийную ситуацию. Это снижает также расходы на обеспечение безаварийной работы печи.
Повышение защищенности работающих от воздействия шума достигается изготовлением индуктора менее жестким из одно- или многопроволочного проводника и размещением индуктора в кольцевой полости между цилиндрической обечайкой и кольцевым сплошным магнитопроводом, которые уменьшают распространение шума, особенно при заполнении полости водой.
Повышение надежности работы печи достигается также выполнением индуктора более гибким одно- или многопроволочным и размещением его в кольцевой полости между цилиндрической обечайкой и кольцевым сплошным магнитопроводом, которые уменьшают интенсивность вибрации и воздействие ее на тигель и образование трещин в нем, особенно при заполнении полости водой.
Полезная модель поясняется чертежом, где на фиг. 1 схематично показана индукционная индукторная тигельная печь с цилиндрическим кольцевым наборным магнитопроводом и проволочным индуктором, в разрезе; и на фиг. 2 то же, с дополнительными плоскими кольцевыми наборными магнитопроводами, в разрезе. Кроме того, полезная модель поясняется таблицей, в которой приведены значения электрического КПД ηэл индукторной печи в зависимости от количества n параллельных транспонированных проводников в индукторе при различных величинах ηэ реального КПД печи, когда n=1.
Предлагаемая индукционная индукторная тигельная печь с проволочным индуктором содержит соединенные вместе футерованный тигель 1, опирающийся на подину 2, цилиндрическую обечайку 3, охватывающую тигель 1, охлаждаемый трубчатый индуктор 4 с токоподводами (не показаны), электроизолированные витки которого охватывают обечайку 3, наружный вертикальный цилиндрический наборный магнитопровод 5, охватывающий индуктор 4, нижнюю 6 и верхнюю 7 плиты с центральным отверстием для размещения подины 2 и «воротника» тигля, соответственно, скрепленные стяжками 8. Цилиндрическая обечайка 3 размещена между тиглем 1 и индуктором 4. Магнитопроводом 5, плитами 6 и 7, обечайкой 3 образована замкнутая кольцевая полость 9 для размещения индуктора 4 и хладагента с подводящим и отводящим патрубками (не показаны). Для герметизации полости 9 предусмотрены эластичные уплотнения 10 по стыкам и слой 11 электроизоляционного материала на ее внутренней поверхности.
Цилиндрической обечайкой 3 и вертикальным кольцевым наборным магнитопроводом 5, зажатыми с помощью стяжек 8 между нижней 6 и верхней 7 плитами, образован каркас печи. В зависимости от размеров печи плиты 6 и 7 могут быть выполнены в плане кольцевой, квадратной или прямоугольной формы и разной толщины из электропроводного или неэлектропроводного материала, например жароупорного бетона, аустенитной стали или чугуна, низкоуглеродистой стали. Количество стяжек 8 может быть три - четыре и более. Каркас печи может быть смонтирован в цилиндрическом корпусе или пространственной раме и снабжен механизмом поворота (не показаны). Размещение подины 2, изготовленной, например, из огнеупорного бетона или шамотного фасонного блока, в центральном отверстии плиты 6 позволяет использовать ее для выталкивания изношенной футеровки тигля 1.
Цилиндрическая обечайка 3 своей внутренней поверхностью служит опорой для тигля 1, в том числе с шихтой или расплавом, и одновременно ее наружная поверхность является внутренней стенкой кольцевой полости 9. Ее целесообразно изготовлять по возможности тонкостенной из достаточно прочного материла. Для повышения конструкционной прочности и обеспечения возможности равномерного размещения теплоизолирующего материала 12 по внутренней поверхности обечайки она может быть выполнена с ребрами на этой поверхности. Ребра одновременно образуют углубления для размещения теплоизолирующего материала 12 с теплопроводностью менее 0,06-0.08 Вт/(м К) в сухом состоянии, т.е. меньше, чем у футеровки тигля 1, например, минеральной ваты, базальтового волокна и др. Без углублений трудно удержать равномерным по толщине слой теплоизолирующего материала 12 во время изготовления футеровки тигля 1. Материал обечайки 3 должен быть неферромагнитным и неэлектропроводным или иметь высокое электрическое сопротивление, чтобы не шунтировать магнитный поток и не сильно нагреваться вихревыми индукционными токами, например аустенитные сталь и чугун, углепластики, высокотемпературные пластмассы. Применение обечайки 3 позволяет увеличить прочность тигля 1 с одновременным уменьшением толщины стенки и освобождает индуктор 4 от механического воздействия на него тигля 1, особенно при наклоне печи для слива расплава, и он может быть изготовлен менее прочным. При этом возможно крепление индуктора 4 к обечайке 3 или к плите 6.
Наружный вертикальный цилиндрический наборный магнитопровод 5, выполненный в виде полого цилиндра, имеет высоту, близкую к высоте индуктора 4. Магнитопровод 5 может быть изготовлен наиболее просто из рулона электротехнической стали необходимой высоты путем намотки определенного количества слоев для получения требуемой его толщины. При этом магнитопровод 5 может быть получен из одного элемента, который охватывает многократно индуктор 4 по окружности полностью и не имеет стыков. Магнитопровод 5 может быть набран также и из большего количества элементов, например лент, листов, пластин, каждый из которых охватывает индуктор 4 по окружности полностью или только частично, но не на всю суммарную длину совокупности слоев. Однако при этом образуются стыки между элементами. Наиболее целесообразно вертикальное направление стыков и разное их расположение в слоях. Поверхности элементов покрываются тонким слоем электроизоляционного лака.
При прочих равных условиях толщина полого цилиндрического магнитопровода 5 становится меньше, чем толщина наборных I-образных магнитопроводов устройстве, выбранном в качестве прототипа. Так, в печи ИЧТ-31, имеющей 24 I-образных магнитопровода толщиной 130 мм, их замена одним цилиндрическим магнитопроводом 5 уменьшит толщину до 72 мм без изменения массы. Выполнение высоты магнитопровода 5 равной высоте индуктора 4 позволяет снизить и его массу по сравнению с прототипом. Магнитопровод 5 располагается по возможности ближе к индуктору 4 в зоне действия поля рассеяния с наибольшей индукцией.
Наружный вертикальный цилиндрический наборный магнитопровод 5 может быть дополнен одним или двумя плоскими кольцевыми магнитопроводами 13, набранными из элементов в виде плоских разрезных или неразрезных кольцевых пластин, изготовленных из листов электротехнической стали и расположенных у его верхнего торца. Наружный вертикальный цилиндрический наборный магнитопровод 5 может быть дополнен одним или двумя плоскими кольцевыми магнитопроводами 13, набранными из элементов в виде плоских разрезных или неразрезных кольцевых пластин, изготовленных из листов электротехнической стали и расположенных у его нижнего торца. При этом наружный диаметр кольца магнитопровода 13 близок к наружному диаметру магнитопровода 5, а внутренний диаметр кольца магнитопровода 13 близок к внутреннему диаметру обечайки 3. Они могут быть вырублены из листа, например, в виде кольца, полукольца, трети или четверти кольца и уложены слоями с перекрытием стыков для образования плоского кольца необходимой высоты магнитопровода 13.
Выполнение основного магнитопровода 5 вместо нескольких стержневых I-образных магнитопроводов в прототипе набранным слоями из элементов, например пластин, ленты, листов электротехнической стали, охватывающих полностью или частично индуктор 4, позволяет:
- предотвратить или значительно уменьшить распространение поля рассеяния за его пределы в радиальном направлении за счет исключения воздушных промежутков;
- намагнитить его для увеличения магнитной индукции и потока в рабочей полости индуктора и тигля.
Дополнение магнитопровода 5 двумя плоскими кольцевыми магнитопроводами 13, расположенными у его верхнего и/или нижнего торца, позволяет:
- значительно уменьшить распространение поля рассеяния за пределы печи в аксиальном направлении как сверху, так и снизу тигля 1 за счет поворота вектора магнитной индукции на 90° и безусловного изменения направления магнитного потока во всем магнитопроводе 5 с вертикального на горизонтальное;
- еще более намагнитить весь магнитопровод 5 для увеличения магнитной индукции и потока в рабочей полости 9 индуктора 4 и тигля 1;
- уменьшить неоднородность магнитного поля в рабочей полости индуктора 4 и величину градиентов его индукции, что может снизить интенсивность двухконтурного перемешивания, высоту мениска и опасность газометаллических выбросов и повысить удельную мощность печи.
Магнитопровод 5 может быть дополнен и только одним плоским кольцевым магнитопроводом 13, расположенным у его верхнего торца, что позволяет значительно уменьшить распространение поля рассеяния за пределы печи в аксиальном направлении сверху тигля 1, где в большей степени находятся плавильщики.
Магнитопровод 5 может быть дополнен и только одним плоским кольцевым магнитопроводом 13, расположенным у его нижнего торца с таким же эффектом, что и при расположении магнитопровода 13 у верхнего торца.
Поверхности слоев основного цилиндрического магнитопровода 5 и его дополнительного плоского кольцевого магнитопровода 13 покрываются тонким слоем жидкого электроизоляционного лака, например поливинилформалевого, полиамимидимидного, эпоксидного, кремнийорганического с высокой рабочей температурой 120-600°С, а сами слои плотно прижимаются друг к другу известным способом. Изоляция уменьшает нагрев вихревыми токами, а сжатие - еще и шум, издаваемый магнитопроводом 5 при его пере-магничивании. При склеивании сжатых слоев шум становится гораздо ниже допустимых 80 Дб.
Расположение обечайки 3 и магнитопровода 5 между плитами 6 и 7 позволяет образовать замкнутую кольцевую полость 9, в которой размещен индуктор 4 и при необходимости дополнительный плоский магнитопровод 13 и хладагент для охлаждения индуктора 4, обечайки 3, магнитопроводов 5 и 13 и плит 6 и 7.
Витки индуктора 4 могут быть выполнены из медного, латунного или алюминиевого одно- или многопроволочного изолированного проводника вместо медного трубчатого проводника в устройстве, выбранном в качестве прототипа. Это предполагает охлаждение индуктора 4 жидким или газообразным хладагентом с внешней его поверхности, а не с внутренней поверхности, как представлено в устройстве, выбранном в качестве прототипа. Поэтому для исключения электрического пробоя изоляции при охлаждении электропроводящей жидкостью, например технической водой, и повышения надежности электроснабжения желательно использовать проводники с двойной изоляцией, например, выпускаемые промышленностью. При этом первый слой может быть выполнен из поливинилформалевого, полиамимидимидного, эпоксидного, кремнийорганического лака или клея, а второй - из теплостойких и гибких резины или пластмасс.
Выполнение витков индуктора 4 из однопроволочного гибкого изолированного проводника позволяет более эффективно охлаждать все его сечение. Однако его толщина δ должна быть примерно равна двойной глубине Δ0,01 проникновения переменного магнитного поля в этот проводник, а именно δ≈Δ0,01. Глубину проникновения Δ0,01 в материал с удельным электрическим сопротивлением ρ и абсолютной магнитной проницаемостью μ0μi на которой волна поля частотой f практически полностью затухает и в ней остается 1% энергии, можно оценить по формуле:
Figure 00000001
,
При промышленной частоте f=50 Гц средняя глубина проникновения Δ0,01 для меди - ≈1 см, латуни - 1,77 см, алюминия - 1,2 см, стали - 0,295 см.
Поэтому целесообразен плоский проводник, позволяющий использовать ток большой величины. Если сечение витков и их количество окажется недостаточным для обеспечения необходимой магнитодвижущей силы витки индуктора располагаются в 2-3 и более слоев. Между витками и слоями должны быть зазоры для прохождения хладагента. Слои могут быть выполнены из одного длинного проводника или из соответствующего количества коротких проводников. Во втором случае они могут быть подключены последовательно или параллельно к источнику электрического напряжения. Последовательное подключение увеличивает активное и индуктивное сопротивление индуктора 4, но уменьшает ток, а параллельное - уменьшает активное сопротивление и увеличивает ток при одинаковом напряжении. Возможно независимое подключение слоев для регулирования величины индукции и режима работы печи.
Кроме того, если n параллельных изолированных проводников выполнить транспонированными, то можно получить для них одинаковую самоиндукцию, сопротивление, а также расположение их по отношению к садке. В этом случае сопротивление, а следовательно, и потери мощности в индукторе уменьшатся в 1/n0,5 раз. Это приводит к увеличению электрического КПД печи ηэл.
При выполнении индуктора из n параллельных транспонированных проводников повышенное значение электрического КПД печи ηэл равно
Figure 00000002
где ηэп - реальный КПД печи;
n - количество параллельных проводников.
Как следует из таблицы, при реальном КПД печи ηэ=0,5 увеличение числа n проводников с 1 до 4 повышает ηэл в 1,3 раза, а до 9 - в 1,5 раза и так далее.
Выполнение витков индуктора 4 из многопроволочного изолированного проводника устраняет необходимость соблюдения условия δ≈2Δ0,01 так как каждая проволочка и, следовательно, весь проводник пронизывается полем на всю их толщину. К простейшим многопроволочным изолированным проводникам относятся жилы, состоящие из двух и более скрученных проволок. Из таких электроизолированных жил также возможно изготовление индуктора 4 с различным числом слоев и с применением транспонирования жил. Для крупных печей возможно изготовление индуктора 4 также из одно- или многожильных электроизолированных кабелей и проводов, в том числе транспонированных. В этом случае уже имеется по меньшей мере двойная электроизоляция, в т.ч. резиновая, пластмассовая, а именно: на каждой жиле и на кабеле или проводе.
Во всех случаях изготовления индуктора 4 возможно разделение его на секции, в том числе путем тщательно изолированной отпайки, для расширения возможности регулирования электрического и плавильного режима.
Наиболее просто изготовить предлагаемый индуктор 4 путем навивки однопроволочного или многопроволочного электроизолированного проводника, например жилы, кабеля или провода, в том числе транспонированного, на внешнюю электроизолированную цилиндрическую поверхность обечайки 3 с последующим закреплением первого слоя на ней. Во время навивки возможно транспонирование проводников, например с шагом 100-200 мм в зависимости от высоты и диаметра печи, сечения проводника. При этом многопроволочный проводник обладает часто большей гибкостью, чем однопроволочный при равном сечении. Вполне возможны другие варианты изготовления индуктора 4 и закрепления его витков внутри кольцевой полости 9. В любом случае его изготовление гораздо проще и дешевле, чем в изготовление индуктора в устройстве, выбранном в качестве прототипа прототипе.
Индукционная индукторная тигельная печь с проволочным индуктором работает следующим образом.
Из-за больших выделений Джоулева тепла в материале индуктора 4 при прохождении по виткам тока с плотностью более ~3 А/мм2 его целесообразно охлаждать принудительно каким-либо хладагентом в виде жидкости или газа. При плотности тока 3-5 А/мм2 это возможно осуществить подачей дешевого хладагента в виде сжатого воздуха в полость 9 для охлаждения индуктора 4 только снаружи витков, что исключает расходы на кондиционную воду. При большей плотности тока до 20 А/мм2 целесообразна подача другого дешевого хладагента: холодной водопроводной или «умягченной» технической оборотной воды. Хладагент подается снизу, поднимается вверх, контактируя с наружной поверхностью витков индуктора 4 перемешивается и охлаждает их. Скорость движения и давление хладагента в полости 9 гораздо меньше, а объем гораздо больше, чем в трубке, что снижает энергозатраты на его подачу. При использовании в качестве хладагента воды ее температура на выходе из полости 9 может достигать 98-99°С вместо 35-40°С в в устройстве, выбранном в качестве прототипа. Это повышает эффективность использования воды и снижает ее расход. При этом также охлаждается обечайка 3 и, как следствие, теплоизолирующий материал 12, футеровка тигля 1, а также магнитопроводы 5 и 13 и плиты 6 и 7.
После включения охлаждения индуктора 4 и загрузки в тигель 1 электропроводной шихты на токоподводы одно- или многопроволочного индуктора 4 подается переменное электрическое напряжение, которое создает в его витках электрический ток. Под его действием в полости индуктора 4 и тигля 1 появляется рабочее электромагнитное поле, а за его пределами - поле рассеяния, которое локализуется вертикальным кольцевым магнитопроводом 5. Он намагничивается и усиливает рабочее поле в полости индуктора 4 и тигле 1.
При этом происходит плавный поворот на 90° вектора индукции, что значительно уменьшает распространение поля рассеяния за пределы индуктора 4 в радиальном направлении, так как магнитный поток замыкается через магнитопровод 5. Это позволяет приблизить электропроводные стяжки 8 к магнитопроводу 5, не опасаясь их чрезмерного нагрева. Однако при таком повороте магнитный поток распространяется и в радиальном направлении. При оснащении же печи дополнительным плоским кольцевым магнитопроводом 13 поворот на 90° вектора индукции происходит преимущественно в магнитопроводе 13. Это существенно уменьшает неоднородность рабочего магнитного поля в полости индуктора 4 и распространение потока рассеяния в радиальном направлении и, следовательно, нагрев верхней 7 и нижней 6 плит в случае изготовления их из электропроводного материала. Заметно уменьшаются размеры печи в плане и вредное воздействие поля рассеяния на рабочих.
Применение обечайки 3 с ребрами на ее внутренней поверхности, образующими углубления для размещения теплоизолирующего материала 12 с теплопроводностью менее 0,06-0,08 Вт/(м К), то есть меньше, чем у футеровки, позволяет уменьшить общую толщину слоя между садкой и индуктором 4 и, следовательно, потери рабочего магнитного потока, проходящего по футеровке. Это снижает расход электроэнергии.
Усиленное и увеличенное электромагнитное поле индуцирует в кусках шихты вихревые токи, которые нагревают их до расплавления. При этом печь, как правило, работает на полной мощности с подключением всех имеющихся витков и секций. В случае необходимости изменения режима плавки возможно отключение или переключение секций или параллельных проводников индуктора 4. При оснащении печи дополнительными плоскими кольцевыми магнитопроводами 13 уменьшается неоднородность магнитного поля в рабочей полости индуктора 4 и величина градиентов его индукции, что может снизить интенсивность двухконтурного перемешивания, высоту мениска и опасность газометаллических выбросов и повысить удельную мощность печи.
При изготовлении индуктора 4 из транспонированных проводов или проводников возникают следующие преимущества: увеличение КПД за счет снижения потерь в индукторе; улучшение охлаждения проводников; уменьшение габаритов индуктора и общее снижение себестоимости за счет экономии материалов и уменьшения трудозатрат.
После расплавления шихты и проведения необходимых металлургических операций печь наклоняется для слива расплава из тигля 1 и давление расплава и тигля 1 передается не на индуктор 4, а на обечайку 3. Поэтому требования к высокой прочности индуктора 4 отпадают, что удешевляет его.
Тепло от расплава может передаваться через стенку тигля 1 и слой теплоизолирующего материала 12 в углублениях обечайки 3 к самой обечайке 3, а затем от нее через воздух или жидкость к виткам индуктора 4, находящегося в замкнутой кольцевой полости 9. Наличие слоя более эффективного теплоизолирующего материала 12 уменьшает теплопередачу. Предлагаемая подача жидкого хладагента в полость 9 обеспечивает более эффективный отвод от печи тепла расплава, индуктора 4 и магнитопроводов 5 и 13, которые нагреваются при перемагничивании. Это уменьшает воздействие теплового излучения на работающих.
При прохождении переменного тока частотой f по виткам однопроволочного индуктора 4 они могут вибрировать с удвоенной частотой 2f. При изготовлении однопроволочного индуктора 4 из толстой медной проволоки большого сечения, имеющей повышенную жесткость, возможен слабый шум. При изготовлении же однопроволочного индуктора 4 из толстой алюминиевой проволоки шум уменьшается из-за ее пониженной жесткости. В случае многопроволочного индуктора 4 его вибрация имеет иные характеристики, а шум практически отсутствует из-за гибкости проводников и их изоляции. Наличие магнитопровода 5 в виде полого цилинлра, окружающего индуктор 4, уменьшает в любом случае распространение шума, издаваемого индуктором 4, за пределы печи. Расположение же индуктора 4 в полости 9 с водой также уменьшает распространение шума из-за его поглощения водой.
По сравнению с прототипом предложенное техническое решение позволяет расширить сферу применения индукционных плавки и тигельной печи путем использования нижеперечисленных преимуществ:
- снижения энергоемкости плавки за счет повышения КПД проволочного индуктора, более полного улавливания магнитопроводами магнитного потока рассеяния, увеличения магнитной индукции в рабочей полости индуктора и уменьшения ее градиентов;
- уменьшения эксплуатационных расходов устранением расхода кондиционной воды за счет подачи дешевого хладагента в кольцевую полость;
- уменьшения габаритов и массы печи и занимаемой производственной площади путем применения обечайки, цилиндрического магнитопровода, позволяющих уменьшить общую толщину футеровки тигля, цилиндрического магнитопровода и его высоту и приблизить к индуктору электропроводные части каркаса печи;
- повышения защищенности индуктора и работающих и надежности работы печи установкой цилиндрической обечайки, препятствующей доступу расплава к индуктору;
- повышения защищенности работающих от воздействия шума путем изготовления индуктора из гибкого одно- или многопроволочного проводника и размещения его в кольцевой полости, в том числе заполненной жидким хладагентом;
- повышение защищенности работающих от вредного влияния электромагнитного поля путем более эффективного улавливания потока рассеяния;
- снижение стоимости и трудоемкости изготовления печи вследствие повышения экономичности и уменьшения трудоемкости изготовления проволочного индуктора.
Figure 00000003

Claims (3)

1. Индукционная индукторная тигельная печь с проволочным индуктором, содержащая соединенные вместе футерованный тигель, подину, охлаждаемый индуктор с электроизолированными витками и токоподводом, охватывающий его наружный вертикальный наборный магнитопровод и каркас с верхней и нижней плитами, соединенными стяжками и выполненными с центральными отверстиями для размещения подины и воротниковой зоны футерованного тигля, отличающаяся тем, что она снабжена цилиндрической обечайкой, размещенной между тиглем и индуктором, а упомянутый магнитопровод выполнен в виде полого цилиндра, при этом витки индуктора выполнены из гибкого изолированного проводника, а обечайка и магнитопровод расположены между плитами с образованием замкнутой герметичной кольцевой полости для размещения индуктора и хладагента с подводящим и отводящим патрубками хладагента.
2. Печь по п. 1, отличающаяся тем, что на внутренней поверхности обечайки выполнены ребра с образованием углублений для размещения теплоизолирующего материала.
3. Печь по п. 1, отличающаяся тем, что витки индуктора выполнены из многопроволочного проводника.
RU2016148321U 2016-12-08 2016-12-08 Индукционная индукторная тигельная печь с проволочным индуктором RU177475U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148321U RU177475U1 (ru) 2016-12-08 2016-12-08 Индукционная индукторная тигельная печь с проволочным индуктором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148321U RU177475U1 (ru) 2016-12-08 2016-12-08 Индукционная индукторная тигельная печь с проволочным индуктором

Publications (1)

Publication Number Publication Date
RU177475U1 true RU177475U1 (ru) 2018-02-26

Family

ID=61259020

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148321U RU177475U1 (ru) 2016-12-08 2016-12-08 Индукционная индукторная тигельная печь с проволочным индуктором

Country Status (1)

Country Link
RU (1) RU177475U1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU709940A1 (ru) * 1978-05-10 1980-01-15 Предприятие П/Я В-2780 Индукционна плавильна печь
SU1109569A1 (ru) * 1983-07-12 1984-08-23 Научно-Исследовательский Институт Специальных Способов Литья Многосекционный магнитопровод индукционной тигельной печи
JP2004108666A (ja) * 2002-09-19 2004-04-08 Fuji Electric Systems Co Ltd るつぼ形誘導炉
RU2390700C2 (ru) * 2008-04-16 2010-05-27 Закрытое акционерное общество "РЭЛТЕК" Турбоиндукционная тигельная печь

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU709940A1 (ru) * 1978-05-10 1980-01-15 Предприятие П/Я В-2780 Индукционна плавильна печь
SU1109569A1 (ru) * 1983-07-12 1984-08-23 Научно-Исследовательский Институт Специальных Способов Литья Многосекционный магнитопровод индукционной тигельной печи
JP2004108666A (ja) * 2002-09-19 2004-04-08 Fuji Electric Systems Co Ltd るつぼ形誘導炉
RU2390700C2 (ru) * 2008-04-16 2010-05-27 Закрытое акционерное общество "РЭЛТЕК" Турбоиндукционная тигельная печь

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Современные плавильные агрегаты: вагранки, газо-кислородные печи, электродуговые и индукционные печи и устройства для внепечной обработки и разливки металла. Сборник. Инженерно-технологический центр машиностроения "Металлург", 2-я ред. М., Металлург-консалтинг, 2011, с.182, 217, 220. *

Similar Documents

Publication Publication Date Title
DE60038224D1 (de) Induktives hochleistungsschmelzsystem.
CN202316942U (zh) 连铸大圆坯在线加热装置
CN203966735U (zh) 一种新型变压器
RU2669030C2 (ru) Индукционная индукторная тигельная печь с проволочным индуктором
CN201688691U (zh) 感应器无水冷的中频炉
RU177475U1 (ru) Индукционная индукторная тигельная печь с проволочным индуктором
CN204594214U (zh) 垂直式浸渍熔保一体炉
US2286481A (en) Induction furnace
RU2666395C2 (ru) Индукционная индукторная тигельная печь с кольцевым наборным магнитопроводом
CN107326152B (zh) 一种性能稳定的磁场热处理炉
CN102927816A (zh) 感应加热炉
RU177465U1 (ru) Индукционная индукторная тигельная печь с кольцевым наборным магнитопроводом
CN109128122A (zh) 一种通道式感应加热钢包装置及加热方法
RU2550983C1 (ru) Рудно - термическая электропечь с горячей подиной и сильноточным токоподводом
CN204923852U (zh) 高效感应节能熔炼炉
RU2011106576A (ru) Способ и канал для расплава для прерывания и возобновления потока расплавленного железа и других металлов в выпускных каналах доменных печей и сточных каналах плавильных печей
KR102607986B1 (ko) 유도가열기용 가열효율 증대장치
CN203432309U (zh) 一种用于贵金属熔炼的中频感应炉
RU2598421C1 (ru) Электродуговая печь постоянного тока
CN102802293A (zh) 具有不需要冷却的感应线圈
Levshin Improving Induction Crucible Furnaces
CN202885526U (zh) 一种中频无芯感应排放阀
RU2522097C2 (ru) Способ прогрева бетона, электронагреватель для осуществления способа, индукционный нагревательный элемент электронагревателя и способ изготовления индукционного нагревательного элемента
CN207308907U (zh) 一种短铁芯可以移动的电磁搅拌器
CN207563367U (zh) 便携式钢管3pe剥离机

Legal Events

Date Code Title Description
MM9K Utility model has become invalid (non-payment of fees)

Effective date: 20181209