RU145196U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU145196U1
RU145196U1 RU2014113705/06U RU2014113705U RU145196U1 RU 145196 U1 RU145196 U1 RU 145196U1 RU 2014113705/06 U RU2014113705/06 U RU 2014113705/06U RU 2014113705 U RU2014113705 U RU 2014113705U RU 145196 U1 RU145196 U1 RU 145196U1
Authority
RU
Russia
Prior art keywords
heat exchanger
connected via
steam turbine
heated medium
output
Prior art date
Application number
RU2014113705/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014113705/06U priority Critical patent/RU145196U1/en
Application granted granted Critical
Publication of RU145196U1 publication Critical patent/RU145196U1/en

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, а выход теплообменника-испарителя соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соедине�1. Thermal power plant, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters, connected via a heated medium between the supply and return pipelines of network water, and a heat exchanger-evaporator, connected via a heated medium in the return pipeline of network water in front of the lower network heater, and an oil supply system for bearings of a steam turbine, comprising a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium, the outlet of which is connected to a pressure pipe via a heated medium, characterized in that a closed-circuit heat engine is introduced into it, operating according to the organic Rankine cycle moreover, the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low-boiling working fluid containing a turboexpander with an electric generator, heat a heat exchanger, an air-cooled condenser and a condensate pump, wherein the condensate pump output is connected via a heated medium to the inlet of a heat exchanger-recuperator, which is connected via a heated medium to an oil cooler inlet, the oil cooler output is connected to a heated medium to an inlet of a heat exchanger, and the heat exchanger output is the evaporator is connected via a heated medium to the inlet of the turboexpander, the output of which is connected via a heating medium to a heat exchanger-recuperator, the output of the heat exchanger-recuperator is connected

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) when utilizing the low-grade heat of the oil supply system of the steam turbine bearings and utilizing the excess low-grade heat of the return network water for additional generation of electric energy.

Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2269014, МПК F01K 17/02, 27.01.2006).The prototype is a thermal power plant containing a cogeneration turbine with heating steam extraction, supply and return pipelines of the heating network, network heaters connected via a heated medium between the supply and return pipelines of the heating network and connected via heating medium to the heating selection, heat pump installation with an evaporator included in the return the heating pipeline, and a condenser, while the condenser of the heat pump installation is included in the supply pipe of the heating network after heating Ateliers, as well as an oil supply system for bearings of a steam turbine, containing a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium, the outlet of which is connected to a pressure pipe via a heated medium (patent RU No. 2269014, IPC F01K 17/02, 01/27/2006) .

Основным недостатком прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.The main disadvantage of the prototype is that the disposal of excess low potential heat return network water is carried out in order to generate additional thermal energy, and not for additional generation of electrical energy.

Кроме этого, недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки, а также из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.In addition, the disadvantage of the prototype is the relatively low efficiency of TPPs for the generation of electric energy, due to the cost of electric power to drive the heat pump installation, and also due to the lack of utilization of low-grade heat of the oil supply system of the steam turbine bearings for additional power generation.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.The objective of the utility model is to increase the efficiency of TPPs by utilizing the excess low potential heat of the return network water and utilizing the low potential heat of the oil supply system of the steam turbine bearings to generate additional electric energy.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, а выход теплообменника-испарителя соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.The technical result is achieved by the fact that in a thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters connected via a heated the medium between the supply and return pipelines of the network water, and the heat exchanger-evaporator included in the return pipeline of the network water through the heated medium Before the lower network heater, as well as the oil supply system for bearings of a steam turbine, containing a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium, the outlet of which is connected to a pressure pipe via a heated medium, according to this utility model, a closed-loop heat engine is introduced operating on the organic Rankine cycle, while the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low boiling fluid, soda neighing a turboexpander with an electric generator, a heat exchanger-recuperator, an air-cooled condenser and a condensate pump, the outlet of the condensate pump being connected via a heated medium to the inlet of the heat exchanger-recuperator, which is connected via a heated medium to the inlet of the oil cooler, the outlet of the oil cooler is connected through a heated medium to the inlet of the heat-exchanger-evaporator and the output of the heat exchanger-evaporator is connected via a heated medium to the inlet of a turbo-expander, the output of which is connected via a heating medium to a heat exchanger-recup Rathore, the output of the heat exchanger-recuperator is connected by the heating medium with air-cooled condenser, the output of which is connected by a heating medium inlet of the condensate pump, forming a closed cooling circuit.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе и теплообменнике-испарителе, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved by utilizing the low potential heat of the oil supply system of the steam turbine bearings and utilizing the excess low potential heat of the return network water to generate additional electric energy, which is carried out by sequential heating, respectively, in the oil cooler and heat exchanger-evaporator, of a low-boiling working fluid (liquefied propane c 3 H 8) of the heat engine with closed-loop circulation the working cycle of the organic P nkina.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с воздушным охлаждением, теплообменником-рекуператором, и теплообменник-испаритель.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having an air-cooled heat engine, a heat exchanger-recuperator, and a heat exchanger-evaporator.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор воздушного охлаждения,8 - air-cooled condenser,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-испаритель,14 - heat exchanger-evaporator,

15 - система маслоснабжения подшипников паровой турбины,15 - oil supply system of bearings of a steam turbine,

16 - сливной трубопровод,16 - drain pipe

17 - маслобак,17 - oil tank

18 - маслонасос,18 - oil pump

19 - маслоохладитель,19 - oil cooler

20 - напорный трубопровод,20 - pressure pipe

21 - теплообменник-рекуператор.21 - heat exchanger-recuperator.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-испаритель 14, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11, а также систему 15 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20.The thermal power plant includes a steam turbine 1 connected in series, a steam turbine condenser 2 and a steam turbine condenser pump 3, a main electric generator 4 connected to the steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via the heated medium between the supply 12 and the return 13 pipelines of network water, and the heat exchanger-evaporator 14 connected through a heated medium in the return pipe 13 of the network water in front of the lower network heater 11 cm, and bearing oil supply system 15 of the steam turbine 1 comprising serially connected by the heating medium discharge pipe 16, the oil tank 17, oil pump 18 and oil cooler 19, the output of the heated medium connected to the pressure line 20.

Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.The difference of the proposed thermal power plant is that it introduced a heat engine 5 with a closed loop, operating on the organic Rankine cycle.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 21, конденсатор 8 воздушного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 21, который соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 соединен по нагреваемой среде с входом теплообменника-испарителя 14, а выход теплообменника-испарителя 14 соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 21, выход теплообменника-рекуператора 21 соединен по греющей среде с конденсатором 8 воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.The closed circuit of the circulation of the heat engine 5 is made in the form of a circuit with a low boiling fluid containing a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 21, an air-cooled condenser 8 and a condensate pump 9, and the output of the condensate pump 9 is connected via a heated medium to the input of the heat exchanger-recuperator 21, which is connected via a heated medium to the inlet of the oil cooler 19, the output of the oil cooler 19 is connected through a heated medium to the input of the heat exchanger-evaporator 14, and the output of the heat exchanger-evaporator 14 is connected via a heated medium to the inlet of a turboexpander 6, the output of which is connected via a heating medium to a heat exchanger-recuperator 21, the output of a heat exchanger-recuperator 21 is connected via a heating medium to an air-cooled condenser 8, the output of which is connected via a heated medium to the inlet of a condensate pump 9, forming closed loop cooling.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 is condensed on the surface of the condenser tubes. In this case, the condensate formed is sent via a condensate pump 3 of the steam turbine condenser to the regeneration system. The power of the steam turbine 1 is transmitted to the main generator 4 connected to one shaft.

Преобразование низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1 и избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.The conversion of low-grade thermal energy from the oil supply system of bearings 15 of the steam turbine 1 and the excess low-potential thermal energy of the return network water to mechanical and, further, to electrical energy takes place in a closed loop of the heat engine 5 operating on the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев в начале в теплообменник-рекуператор 21, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, а затем в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 К до 343,15 К.The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is subsequently sent for heating at the beginning to the heat exchanger-recuperator 21, where superheated gaseous propane C 3 H 8 from the turbine expander 6 enters, and then to the oil cooler 19, where it enters heated oil of the oil supply system of bearings 15 of a steam turbine 1 with a temperature in the range from 313.15 K to 343.15 K.

В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 21 и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 19, происходит нагрев сжиженного пропана C3H8 до температуры около 305,15 К при давлении в интервале от 1,14 МПа до 2,05 МПа, и далее его направляют на испарение и перегрев в теплообменник-испаритель 14, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.In the process of heat exchange of superheated gaseous propane C 3 H 8 with liquefied propane C 3 H 8 in heat exchanger-recuperator 21 and heat exchange of heated oil with liquefied propane C 3 H 8 in oil cooler 19, liquefied propane C 3 H 8 is heated to a temperature of about 305, 15 K at a pressure in the range from 1.14 MPa to 2.05 MPa, and then it is sent for evaporation and overheating to the heat exchanger-evaporator 14, where the return network water from the return pipe 13 enters. In this case, the temperature of the return network water can vary in the range from 313.15 K to 343.1 5 K.

В процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-испарителе 14, происходит испарение сжиженного пропана C3H8 и дальнейший его перегрев до температуры в интервале от 305,15 К до 333,15 К при давлении в интервале от 1,14 МПа до 2,05 МПа, который направляют в турбодетандер 6.In the process of heat exchange of return network water with liquefied propane C 3 H 8 in the heat exchanger-evaporator 14, the liquefied propane C 3 H 8 evaporates and then overheats to a temperature in the range from 305.15 K to 333.15 K at a pressure in the range from 1.14 MPa to 2.05 MPa, which is sent to a turboexpander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 21 для снижения температуры.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 having a superheated gas temperature of about 288 K is sent to a heat exchanger-recuperator 21 to reduce the temperature.

В теплообменнике-рекуператоре 21 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод вентилятора воздушного охлаждения.In the heat exchanger-recuperator 21 in the process of heat removal for heating liquefied propane C 3 H 8, the load on the condenser 8 and the power consumption for driving an air-cooled fan are reduced.

Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в конденсаторе 8 воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.Further, with a decrease in the temperature of gaseous propane C 3 H 8 , it is liquefied in an air-cooled condenser 8 cooled by ambient air in the temperature range from 223.15 K to 283.15 K.

После конденсатора 8 воздушного охлаждения в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.After the condenser 8 of air cooling in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine 5.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Для решения проблемы излишнего потребления пресной воды настоящая полезная модель позволяет осуществить воздушное охлаждение теплового двигателя 5. Применение конденсатора 8 воздушного охлаждения позволяет его эксплуатировать в условиях холодного климата со средней температурой воздуха в наиболее холодный период не ниже 218 К. Конденсатор 8 воздушного охлаждения имеет более длительный срок службы по сравнению с конденсатором водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.To solve the problem of excessive fresh water consumption, this utility model allows air cooling of the heat engine 5. The use of air-cooled condenser 8 allows it to be operated in cold climates with an average air temperature in the coldest period of at least 218 K. The air-cooled condenser 8 has a longer service life compared to a water-cooled condenser due to less pollution and corrosion of the outer surface of the heat exchange.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, а выход теплообменника-испарителя соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.1. Thermal power plant, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters, connected via a heated medium between the supply and return pipelines of network water, and a heat exchanger-evaporator, connected via a heated medium in the return pipeline of network water in front of the lower network heater, and an oil supply system for bearings of a steam turbine, comprising a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium, the outlet of which is connected to a pressure pipe via a heated medium, characterized in that a closed-circuit heat engine is introduced into it, operating according to the organic Rankine cycle moreover, the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low-boiling working fluid containing a turboexpander with an electric generator, heat a heat exchanger, an air-cooled condenser and a condensate pump, wherein the condensate pump output is connected via a heated medium to the inlet of a heat exchanger-recuperator, which is connected via a heated medium to an oil cooler inlet, the oil cooler output is connected to a heated medium to an inlet of a heat exchanger, and the heat exchanger output is the evaporator is connected via a heated medium to the inlet of the turboexpander, the output of which is connected via a heating medium to a heat exchanger-recuperator, the output of the heat exchanger-recuperator is connected by heating the medium with air-cooled condenser, the output of which is connected by a heating medium inlet of the condensate pump, forming a closed cooling circuit. 2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3Н8.
Figure 00000001
2. Thermal power station according to claim 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
Figure 00000001
RU2014113705/06U 2014-04-08 2014-04-08 HEAT ELECTRIC STATION RU145196U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014113705/06U RU145196U1 (en) 2014-04-08 2014-04-08 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014113705/06U RU145196U1 (en) 2014-04-08 2014-04-08 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU145196U1 true RU145196U1 (en) 2014-09-10

Family

ID=51540718

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113705/06U RU145196U1 (en) 2014-04-08 2014-04-08 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU145196U1 (en)

Similar Documents

Publication Publication Date Title
RU145229U1 (en) HEAT ELECTRIC STATION
RU145196U1 (en) HEAT ELECTRIC STATION
RU145232U1 (en) HEAT ELECTRIC STATION
RU145218U1 (en) HEAT ELECTRIC STATION
RU145221U1 (en) HEAT ELECTRIC STATION
RU146400U1 (en) HEAT ELECTRIC STATION
RU144945U1 (en) HEAT ELECTRIC STATION
RU146405U1 (en) HEAT ELECTRIC STATION
RU145211U1 (en) HEAT ELECTRIC STATION
RU145226U1 (en) HEAT ELECTRIC STATION
RU145723U1 (en) HEAT ELECTRIC STATION
RU146349U1 (en) HEAT ELECTRIC STATION
RU145223U1 (en) HEAT ELECTRIC STATION
RU145214U1 (en) HEAT ELECTRIC STATION
RU145808U1 (en) HEAT ELECTRIC STATION
RU145767U1 (en) HEAT ELECTRIC STATION
RU144935U1 (en) HEAT ELECTRIC STATION
RU144948U1 (en) HEAT ELECTRIC STATION
RU146406U1 (en) HEAT ELECTRIC STATION
RU145813U1 (en) HEAT ELECTRIC STATION
RU145828U1 (en) HEAT ELECTRIC STATION
RU144939U1 (en) HEAT ELECTRIC STATION
RU145806U1 (en) HEAT ELECTRIC STATION
RU146339U1 (en) HEAT ELECTRIC STATION
RU145227U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150409