RU144957U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU144957U1
RU144957U1 RU2014109245/06U RU2014109245U RU144957U1 RU 144957 U1 RU144957 U1 RU 144957U1 RU 2014109245/06 U RU2014109245/06 U RU 2014109245/06U RU 2014109245 U RU2014109245 U RU 2014109245U RU 144957 U1 RU144957 U1 RU 144957U1
Authority
RU
Russia
Prior art keywords
steam turbine
steam
condenser
heat
heated medium
Prior art date
Application number
RU2014109245/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014109245/06U priority Critical patent/RU144957U1/en
Application granted granted Critical
Publication of RU144957U1 publication Critical patent/RU144957U1/en

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, и утилизации высокопотенциальной теплоты пара производственного отбора. Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду. Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, согласно настоящей полезной модели, введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара, конденсатный насос конденсатора паровой турбины с производственным отбором пара, и систему маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход конденсатора паровой турбины по нагреваемой среде соединен с входом маслоохладителя системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера, выход турбодетандера по греющей среде соединен с теплообменником-рекуператором, выход теплообменника-рекуператора по греющей среде соединен с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. 1 з.п. ф-лы, 1 ил. The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of low-grade waste heat in condensers of steam turbines of a TPP, utilization of low-grade heat of the oil supply system of steam turbine bearings with production steam extraction, utilization of excess low-grade heat of return network water, and utilization of high potential heat of steam production selection. The objective of the utility model is to increase the efficiency of TPPs due to the full use of waste low-grade heat and utilization of excess low-grade heat of return network water for additional generation of electric energy, increase the resource and reliability of the steam turbine condenser, and reduce thermal emissions into the environment. The technical result is achieved by the fact that in a thermal power station including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via heating medium to the upper and lower network heaters included according to the present utility model, a heat exchanger-cooler of network water is introduced through the heated medium between the supply and return pipelines of the network water, the entrance to which is connected via a heated medium to a return pipe of network water, and the outlet through a heated medium is connected to a lower network heater, a condensation unit comprising a steam turbine with production steam extraction connected in series, having an electric generator, a steam turbine condenser with production steam extraction, a steam condenser condensate pump steam production turbines, and an oil supply system for bearings of a steam turbine with production steam extraction, containing sequentially o a drain pipe connected to a heating medium, an oil tank, an oil pump and an oil cooler, the outlet of which is connected to a pressure pipe through a heated medium, as well as a closed-circuit heat engine operating on the organic Rankine cycle, while the closed loop of the heat engine circulation is made in the form of a loop with a low-boiling working fluid containing a turboexpander with an electric generator, a heat exchanger-recuperator, a water cooling condenser and a condensate pump, and the output of the condensate pump and connected through a heated medium to the inlet of a heat exchanger-recuperator, which is connected through a heated medium to the input of a steam turbine condenser, the output of a steam turbine condenser through a heated medium is connected to an oil cooler inlet of a steam turbine bearings oil supply system with production steam extraction, the output of which is connected through a heated medium to the input of the heat exchanger-cooler of the network water, and the output of the heat exchanger-cooler of the network water through the heated medium is connected to the input of the condenser of the steam turbine with steam extraction, the output of which is connected via a heated medium to the inlet of the turbo expander, the output of the turbo expander through a heating medium is connected to a heat exchanger-recuperator, the output of the heat exchanger-recuperator through a heating medium is connected to a water-cooled condenser, the output of which is connected via a heated medium to the inlet of a condensate pump, forming closed loop cooling. As a low-boiling working fluid, liquefied propane C 3 H 8 is used . Thus, the technical result is achieved due to the complete utilization of waste low-grade heat (latent heat of vaporization), utilization of low-grade heat of the oil supply system of bearings of a steam turbine with production steam extraction, utilization of excess low-potential heat of return network water and utilization of high-potential heat of steam of production selection from a steam turbine from a steam turbine production selection of steam, which is carried out by sequential heating, respectively , in a steam turbine condenser, oil cooler for a steam turbine bearings oil supply system with steam production, a network water heat exchanger-cooler, and a steam turbine condenser with production steam extraction, a low-boiling working fluid (liquefied propane C 3 H 8 ) of a closed-circuit heat engine on the organic Rankine cycle. 1 s.p. f-ly, 1 ill.

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, и утилизации высокопотенциальной теплоты пара производственного отбора.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of low-grade waste heat in condensers of steam turbines of a TPP, utilization of low-grade heat of the oil supply system of steam turbine bearings with production steam extraction, utilization of excess low-grade heat of return network water, and utilization of high potential heat of steam production selection.

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).The prototype is a thermal power plant containing a supply and return piping of network water, a steam turbine with heating steam extraction and a condenser, to which pressure and drain pipelines of circulation water are connected, network heaters connected through a heated medium between the supply and return pipelines of network water, and connected in the heating medium to the heating taps, a heat pump installation, the evaporator of which is connected in the heating medium to the drainage pipe of the circulation water, at m condenser heat pump system for heating medium is included in the feed conduit network water after the network heaters (patent RU №2268372, IPC F01K 17/02, 20.01.2006).

Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, для дополнительной выработки электроэнергии. Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.The main disadvantage of the prototype is the relatively low efficiency of thermal power plants for generating electric energy due to the lack of complete utilization of the latent heat of vaporization in the condenser of a steam turbine due to the presence of a secondary circuit (heat pump installation), as well as the lack of utilization of excess low potential heat of return network water, for additional electricity generation. In addition, the disadvantage is the low resource and reliability of the condenser of the steam turbine due to the use of technical (circulating) water, which pollutes the condenser of the steam turbine. Due to the increased thermal emissions of the circulation water into the cooling pond, its ecosystem is disturbed.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.The objective of the utility model is to increase the efficiency of TPPs due to the full use of waste low-grade heat and utilization of excess low-grade heat of return network water for additional generation of electric energy, increase the resource and reliability of the steam turbine condenser, and reduce thermal emissions into the environment.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, согласно настоящей полезной модели, введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара, конденсатный насос конденсатора паровой турбины с производственным отбором пара, и систему маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход конденсатора паровой турбины по нагреваемой среде соединен с входом маслоохладителя системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера, выход турбодетандера по греющей среде соединен с теплообменником-рекуператором, выход теплообменника-рекуператора по греющей среде соединен с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.The technical result is achieved by the fact that in a thermal power station including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via heating medium to the upper and lower network heaters included according to the present utility model, a heat exchanger-cooler of network water is introduced through the heated medium between the supply and return pipelines of the network water, the entrance to which is connected via a heated medium to a return pipe of network water, and the outlet through a heated medium is connected to a lower network heater, a condensation unit comprising a steam turbine with production steam extraction connected in series, having an electric generator, a steam turbine condenser with production steam extraction, a steam condenser condensate pump steam production turbines, and an oil supply system for bearings of a steam turbine with production steam extraction, containing sequentially o a drain pipe connected to a heating medium, an oil tank, an oil pump and an oil cooler, the outlet of which is connected to a pressure pipe through a heated medium, as well as a closed-circuit heat engine operating on the organic Rankine cycle, while the closed loop of the heat engine circulation is made in the form of a loop with a low-boiling working fluid containing a turboexpander with an electric generator, a heat exchanger-recuperator, a water cooling condenser and a condensate pump, and the output of the condensate pump and connected through a heated medium to the inlet of a heat exchanger-recuperator, which is connected through a heated medium to the input of a steam turbine condenser, the output of a steam turbine condenser through a heated medium is connected to an oil cooler inlet of a steam turbine bearings oil supply system with production steam extraction, the output of which is connected through a heated medium to the input of the heat exchanger-cooler of the network water, and the output of the heat exchanger-cooler of the network water through the heated medium is connected to the input of the condenser of the steam turbine with steam extraction, the output of which is connected via a heated medium to the inlet of the turbo expander, the output of the turbo expander through a heating medium is connected to a heat exchanger-recuperator, the output of the heat exchanger-recuperator through a heating medium is connected to a water-cooled condenser, the output of which is connected via a heated medium to the inlet of a condensate pump, forming closed loop cooling. As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved due to the complete utilization of waste low-grade heat (latent heat of vaporization), utilization of low-grade heat of the oil supply system of bearings of a steam turbine with production steam extraction, utilization of excess low-potential heat of return network water and utilization of high-potential heat of steam of production selection from a steam turbine from a steam turbine production selection of steam, which is carried out by sequential heating, respectively , in a steam turbine condenser, oil cooler for a steam turbine bearings oil supply system with steam production, a network water heat exchanger-cooler, and a steam turbine condenser with production steam extraction, a low-boiling working fluid (liquefied propane C 3 H 8 ) of a closed-circuit heat engine on the organic Rankine cycle.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным охлаждением и теплообменником-рекуператором, теплообменник-охладитель сетевой воды, и конденсационную установку.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having a heat engine with water cooling and a heat exchanger-recuperator, a heat exchanger-cooler network water, and a condensing unit.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор водяного охлаждения,8 - condenser water cooling

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-охладитель сетевой воды,14 - heat exchanger-cooler network water,

15 - конденсационная установка,15 - condensation installation,

16 - паровая турбина с производственным отбором пара,16 - steam turbine with production steam extraction,

17 - электрогенератор паровой турбины с производственным отбором пара,17 - an electric generator of a steam turbine with production steam extraction,

18 - конденсатор паровой турбины с производственным отбором пара,18 is a condenser of a steam turbine with production steam extraction,

19 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,19 is a condensate pump of a condenser of a steam turbine with production steam extraction,

20 - система маслоснабжения подшипников паровой турбины с производственным отбором пара,20 - oil supply system for bearings of a steam turbine with production steam extraction,

21 - сливной трубопровод,21 - drain pipe

22 - маслобак,22 - oil tank

23 - маслонасос,23 - oil pump,

24 - маслоохладитель,24 - oil cooler

25 - напорный трубопровод,25 - pressure pipe

26 - теплообменник-рекуператор.26 - heat exchanger-recuperator.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of the steam turbine condenser, as well as a main electric generator 4 connected to the steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via heated medium between the supply 12 and return 13 pipelines of network water.

Отличием предлагаемой тепловой электрической станции является то, что в нее введены теплообменник-охладитель 14 сетевой воды, конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.The difference of the proposed thermal power station is that it has a heat exchanger-cooler 14 of the network water, a condensing unit 15 and a heat engine 5 with a closed circulation loop operating on the organic Rankine cycle.

Вход теплообменника-охладителя 14 по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.The input of the heat exchanger-cooler 14 through a heated medium is connected to the return pipe 13 of the network water. The output of the heat exchanger-cooler 14 through the heated medium is connected to the lower network heater 11.

Конденсационная установка 15 содержит последовательно соединенные паровую турбину 16 с производственным отбором пара, имеющую электрогенератор 17, конденсатор 18 паровой турбины с производственным отбором пара, конденсатный насос 19 конденсатора паровой турбины с производственным отбором пара, и систему 20 маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод 21, маслобак 22, маслонасос 23 и маслоохладитель 24, выход которого по нагреваемой среде соединен с напорным трубопроводом 25.The condensing unit 15 comprises a steam production turbine 16 connected in series with a steam production steam having an electric generator 17, a steam turbine condenser 18 with a steam production steam condensate pump 19 of a steam turbine condenser with a steam production steam, and an oil supply system 20 of steam turbine bearings with a steam production steam, comprising a drain pipe 21 connected in series through a heating medium, an oil tank 22, an oil pump 23, and an oil cooler 24, the outlet of which is via a heated medium e is connected to the discharge conduit 25.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 26, конденсатор 8 водяного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 26, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход конденсатора 2 паровой турбины по нагреваемой среде соединен с входом маслоохладителя 24 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 18 паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера 6, выход турбодетандера 6 по греющей среде соединен с теплообменником-рекуператором 26, выход теплообменника-рекуператора 26 по греющей среде соединен с конденсатором 8 водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.The closed circuit of the circulation of the heat engine 5 is made in the form of a circuit with a low boiling fluid containing a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 26, a condenser 8 of water cooling and a condensate pump 9, and the output of the condensate pump 9 is connected via a heated medium to the input of the heat exchanger-recuperator 26, which is connected through a heated medium to the inlet of a steam turbine condenser 2, the output of a steam turbine condenser 2 through a heated medium is connected to an input of an oil cooler 24 of the oil supply system I bearings of a steam turbine with production steam extraction, the output of which is connected via a heated medium to the input of the heat exchanger-cooler 14 of the network water, and the output of the heat exchanger-cooler 14 of the network water via the heated medium is connected to the input of the condenser 18 of the steam turbine with the production steam extraction, the output of which is connected in a heated medium with an inlet of a turbo-expander 6, the output of a turbo-expander 6 in a heating medium is connected to a heat exchanger-recuperator 26, the output of a heat exchanger-recuperator 26 in a heating medium is connected to a condensate 8 Oromo cooling water, whose output is connected by a heating medium inlet condensate pump 9, forming a closed cooling circuit.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The steam coming from the steam turbine 1 into the steam space of the condenser 2 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 1 is transmitted to the main electric generator 4 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 3 of a steam turbine condenser is sent to a regeneration system.

Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, низкопотенциальной тепловой энергии системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды, и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 16, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.Conversion of waste low-potential heat energy spent in the turbine 1 steam, low-potential heat energy of the oil supply system 20 of the bearings of the steam turbine 16 with production steam extraction, as well as excess low-potential heat energy of the return network water, and high-potential heat energy of the production steam from the steam turbine 16, into mechanical and, further, into an electric one, takes place in a closed circuit of the circulation of a heat engine 5 operating according to the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на подогрев в начале в теплообменник-рекуператор 26, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, далее в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, затем в маслоохладитель 24, куда поступает нагретое масло системы 20 маслоснабжения подшипников паровой турбины 16, а потом в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is subsequently sent for heating at the beginning to a heat exchanger-recuperator 26, where superheated gaseous propane C 3 H 8 from the turbine expander 6 enters, then to the condenser 2 of the steam turbine, where 1 steam spent in the turbine with a temperature in the range from 300 K to 313.15 K is supplied, then to the oil cooler 24, where the heated oil of the oil supply system 20 of the bearings of the steam turbine 16 enters, and then to the heat exchanger-cooler 14 of the network water, where feedback network water from the return conduit 13. The temperature of heated oil and return water may range from 313.15 K to 343.15 K

В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 26, в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 24, а также в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-охладителе 14 сетевой воды, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 308,15 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на подогрев и испарение в конденсатор 18 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 16 при температуре около 573 К.In the process of heat exchange of superheated gaseous propane C 3 H 8 with liquefied propane C 3 H 8 in a heat exchanger-recuperator 26, in the process of condensation of 1 steam spent in a turbine in a condenser 2 of a steam turbine and heat exchange of heated oil with liquefied propane C 3 H 8 in an oil cooler 24 as well as in the process of heat exchange of reverse network water with liquefied propane C 3 H 8 in a heat exchanger-cooler 14 of network water, liquefied propane C 3 H 8 is heated within a critical temperature range from 308.15 K to 338.15 K at supercritical pressure and from 4.2512 MPa to 8 MPa, and then it is sent for heating and evaporation into the condenser 18 of the steam turbine with production steam extraction, where the production steam from the steam turbine 16 is supplied at a temperature of about 573 K.

Пар, поступающий из производственного отбора паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.The steam coming from the production selection of the steam turbine 16 into the steam space of the condenser 18 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 16 is transmitted to the main electric generator 17 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 19 of a steam turbine condenser with production steam extraction is sent to the regeneration system.

В процессе конденсации пара производственного отбора в конденсаторе 18 паровой турбины, происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К, с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.In the process of condensation of production steam in the condenser 18 of the steam turbine, the liquefied propane C 3 H 8 is heated to a critical temperature of 369.89 K, followed by its evaporation and superheating to a supercritical temperature of 369.89 K to 420 K at a supercritical pressure of 4 , 2512 MPa to 8 MPa, which is sent to a turboexpander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 26 для снижения температуры.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 having a superheated gas temperature of about 288 K is sent to a heat exchanger-recuperator 26 to reduce the temperature.

В теплообменнике-рекуператоре 26 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов.In the heat exchanger-recuperator 26, in the process of heat removal for heating liquefied propane C 3 H 8, the load on the condenser 8 and the power consumption for the circulation pump drive are reduced.

Далее его температуру снижают и сжижают в конденсаторе 8 водяного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К.Next, its temperature is reduced and liquefied in a condenser 8 of water cooling, cooled by industrial ambient water in the temperature range from 278.15 K to 283.15 K.

После конденсатора 8 водяного охлаждения в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.After the condenser 8 of water cooling in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine 5.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Использование конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6 и, как следствие, повышению коэффициента полезного действия ТЭС по выработке электрической энергии.The use of condensation unit 15 makes it possible to increase the initial parameters of the low-boiling working fluid of a heat engine with a closed circulation loop to supercritical parameters, which leads to an increase in heat drop on the turbine expander 6 and, as a result, an increase in the efficiency of TPPs for generating electric energy.

Конденсатор 8 водяного охлаждения обладает большей эффективностью теплопередачи по сравнению с воздушным охлаждением и не требует больших площадей теплообменной поверхности. При этом затраты мощности на привод циркуляционных насосов конденсатора 8 водяного охлаждения меньше, чем на привод вентиляторов конденсатора воздушного охлаждения.The condenser 8 water cooling has a higher heat transfer efficiency compared to air cooling and does not require large areas of the heat exchange surface. In this case, the power consumption for the drive of the circulation pumps of the water-cooled condenser 8 is less than for the drive of the fans of the air-cooled condenser.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, отличающаяся тем, что в нее введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара, конденсатный насос конденсатора паровой турбины с производственным отбором пара, и систему маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход конденсатора паровой турбины по нагреваемой среде соединен с входом маслоохладителя системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера, выход турбодетандера по греющей среде соединен с теплообменником-рекуператором, выход теплообменника-рекуператора по греющей среде соединен с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters connected via a heated medium between the supply and return pipelines of network water, characterized in that heat-exchanger-cooler of network water is introduced into it, the input of which is connected to the return pipe via a heated medium with a network water supply, and the outlet through the heated medium with a bottom network heater, a condensing unit comprising a steam turbine with production steam extraction connected in series, having an electric generator, a steam turbine condenser with production steam extraction, a condenser pump of a steam turbine condenser with production steam extraction, and oil supply system for bearings of a steam turbine with production steam extraction, containing a drain pipe connected in series through a heating medium, an aslobak, an oil pump and an oil cooler, the outlet of which is connected to a pressure pipe through a heated medium, as well as a closed-loop heat engine operating on the organic Rankine cycle, while the closed loop of the heat engine is made in the form of a circuit with a low boiling fluid containing a turboexpander with an electric generator, a heat exchanger-recuperator, a water cooling condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the heat exchange input an ica-recuperator, which is connected via a heated medium to the input of a steam turbine condenser, the output of a steam turbine condenser is connected to a steam turbine oil supply system with an industrial production of steam, the output of which is connected via a heated medium to the input of the network water heat exchanger, and the outlet of the heat exchanger-cooler of the network water through the heated medium is connected to the inlet of the condenser of the steam turbine with production steam extraction, the output of which is connected in a heated medium with an inlet of a turbo-expander, the outlet of a turbo-expander in a heating medium is connected to a heat exchanger-recuperator, the output of a heat exchanger-recuperator in a heating medium is connected to a water cooling condenser, the output of which is connected through a heated medium to the inlet of a condensate pump, forming a closed cooling circuit. 2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
Figure 00000001
2. Thermal power station under item 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
Figure 00000001
RU2014109245/06U 2014-03-11 2014-03-11 HEAT ELECTRIC STATION RU144957U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109245/06U RU144957U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109245/06U RU144957U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU144957U1 true RU144957U1 (en) 2014-09-10

Family

ID=51540481

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109245/06U RU144957U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU144957U1 (en)

Similar Documents

Publication Publication Date Title
RU145190U1 (en) HEAT ELECTRIC STATION
RU145185U1 (en) HEAT ELECTRIC STATION
RU144911U1 (en) HEAT ELECTRIC STATION
RU140801U1 (en) HEAT ELECTRIC STATION
RU140428U1 (en) HEAT ELECTRIC STATION
RU144957U1 (en) HEAT ELECTRIC STATION
RU144882U1 (en) HEAT ELECTRIC STATION
RU144963U1 (en) HEAT ELECTRIC STATION
RU144899U1 (en) HEAT ELECTRIC STATION
RU144893U1 (en) HEAT ELECTRIC STATION
RU145206U1 (en) HEAT ELECTRIC STATION
RU144910U1 (en) HEAT ELECTRIC STATION
RU144883U1 (en) HEAT ELECTRIC STATION
RU144905U1 (en) HEAT ELECTRIC STATION
RU144879U1 (en) HEAT ELECTRIC STATION
RU144889U1 (en) HEAT ELECTRIC STATION
RU144908U1 (en) HEAT ELECTRIC STATION
RU144926U1 (en) HEAT ELECTRIC STATION
RU144887U1 (en) HEAT ELECTRIC STATION
RU144933U1 (en) HEAT ELECTRIC STATION
RU144896U1 (en) HEAT ELECTRIC STATION
RU140386U1 (en) HEAT ELECTRIC STATION
RU144892U1 (en) HEAT ELECTRIC STATION
RU144930U1 (en) HEAT ELECTRIC STATION
RU144890U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150312