RU140402U1 - Тепловая электрическая станция - Google Patents

Тепловая электрическая станция Download PDF

Info

Publication number
RU140402U1
RU140402U1 RU2013153810/06U RU2013153810U RU140402U1 RU 140402 U1 RU140402 U1 RU 140402U1 RU 2013153810/06 U RU2013153810/06 U RU 2013153810/06U RU 2013153810 U RU2013153810 U RU 2013153810U RU 140402 U1 RU140402 U1 RU 140402U1
Authority
RU
Russia
Prior art keywords
heat exchanger
condenser
heated medium
output
steam turbine
Prior art date
Application number
RU2013153810/06U
Other languages
English (en)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2013153810/06U priority Critical patent/RU140402U1/ru
Application granted granted Critical
Publication of RU140402U1 publication Critical patent/RU140402U1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, отличающаяся тем, что в нее введены теплообменник-охладитель, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя, выход теплообменника-охладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.2. Тепло

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС.
Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, для дополнительной выработки электроэнергии. Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, согласно настоящей полезной модели, введены теплообменник-охладитель, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя, выход теплообменника-охладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, которые осуществляют путем нагрева, соответственно, в конденсаторе паровой турбины и теплообменнике-охладителе, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным и воздушным охлаждением, теплообменником-рекуператором, и теплообменник-охладитель.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - конденсатор водяного и воздушного охлаждения,
9 - конденсатный насос,
10 - верхний сетевой подогреватель,
11 - нижний сетевой подогреватель,
12 - подающий трубопровод сетевой воды,
13 - обратный трубопровод сетевой воды,
14 - теплообменник-охладитель,
15 - теплообменник-рекуператор.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды.
Отличием предлагаемой тепловой электрической станции является то, что в нее введены теплообменник-охладитель 14 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Вход теплообменника-охладителя 14 по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 15, конденсатор 8 водяного и воздушного охлаждения, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 15, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14, выход теплообменника-охладителя 14 по нагреваемой среде соединен с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 15, выход теплообменника-рекуператора 15 соединен по греющей среде с конденсатором 8 водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.
Конденсатор 8 водяного и воздушного охлаждения состоит из конденсатора водяного охлаждения и конденсатора воздушного охлаждения (на чертеже условно не показаны схемы подключения конденсаторов между собой), которые могут как последовательно, так и параллельно охлаждать и сжижать газообразный пропан C3H8.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Предлагаемая тепловая электрическая станция работает следующим образом.
Пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, и избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на подогрев в теплообменник-рекуператор 15, а затем направляют на подогрев и испарение в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.
Температура кипения сжиженного пропана C3H8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние, далее его направляют на перегрев в теплообменник-охладитель 14. Температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.
В теплообменнике-охладителе 14 в процессе теплообмена обратной сетевой воды с газообразным пропаном C3H8 происходит перегрев газообразного пропана C3H8 до температуры в интервале от 308,15 К до 323,15 К. После теплообменника-охладителя 14 перегретый газообразный пропан C3H8 направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8 имеющий температуру перегретого газа, направляют в теплообменник-рекуператор 15 для снижения температуры.
В теплообменнике-рекуператоре 15 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов и вентиляторов.
Далее его температуру снижают и сжижают в конденсаторе 8 водяного и воздушного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К и воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.
После конденсатора 8 водяного и воздушного охлаждения в сжиженном состоянии пропан C3H8 сжимают в конденсатном насосе 9 и направляют на подогрев в теплообменник-рекуператор 15, а затем на подогрев и испарение в конденсатор 2 паровой турбины.
Применение конденсатора 8 водяного и воздушного охлаждения позволяет как последовательно, так и параллельно охлаждать и сжижать газообразный пропан C3H8. При последовательном охлаждении температуру газообразного пропана C3H8 снижают вначале в конденсаторе водяного охлаждения, а затем его сжижают в конденсаторе воздушного охлаждения. При параллельном охлаждении газообразный пропан C3H8 разделяют на два потока: первый поток охлаждается и сжижается в конденсаторе водяного охлаждения, а второй поток в конденсаторе воздушного охлаждения, и в процессе смешения двух выходных потоков возможно регулирование температуры сжиженного пропана C3H8.
Применение воздуха в качестве теплоотводящей среды конденсатора 8 позволяет резко сократить расходы воды и улучшить экологический баланс естественных водоемов.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, отличающаяся тем, что в нее введены теплообменник-охладитель, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя, выход теплообменника-охладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.
2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
RU2013153810/06U 2013-12-04 2013-12-04 Тепловая электрическая станция RU140402U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153810/06U RU140402U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153810/06U RU140402U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Publications (1)

Publication Number Publication Date
RU140402U1 true RU140402U1 (ru) 2014-05-10

Family

ID=50630101

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153810/06U RU140402U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Country Status (1)

Country Link
RU (1) RU140402U1 (ru)

Similar Documents

Publication Publication Date Title
RU140881U1 (ru) Тепловая электрическая станция
RU140802U1 (ru) Тепловая электрическая станция
RU145195U1 (ru) Тепловая электрическая станция
RU140801U1 (ru) Тепловая электрическая станция
RU140402U1 (ru) Тепловая электрическая станция
RU140389U1 (ru) Тепловая электрическая станция
RU140385U1 (ru) Тепловая электрическая станция
RU140247U1 (ru) Тепловая электрическая станция
RU140388U1 (ru) Тепловая электрическая станция
RU140399U1 (ru) Тепловая электрическая станция
RU140393U1 (ru) Тепловая электрическая станция
RU140396U1 (ru) Тепловая электрическая станция
RU140397U1 (ru) Тепловая электрическая станция
RU144897U1 (ru) Тепловая электрическая станция
RU144885U1 (ru) Тепловая электрическая станция
RU140782U1 (ru) Тепловая электрическая станция
RU140381U1 (ru) Тепловая электрическая станция
RU144923U1 (ru) Тепловая электрическая станция
RU144887U1 (ru) Тепловая электрическая станция
RU144922U1 (ru) Тепловая электрическая станция
RU144941U1 (ru) Тепловая электрическая станция
RU140405U1 (ru) Тепловая электрическая станция
RU144931U1 (ru) Тепловая электрическая станция
RU140382U1 (ru) Тепловая электрическая станция
RU144901U1 (ru) Тепловая электрическая станция

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20141205