RU107582U1 - MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF - Google Patents

MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF Download PDF

Info

Publication number
RU107582U1
RU107582U1 RU2010152990/06U RU2010152990U RU107582U1 RU 107582 U1 RU107582 U1 RU 107582U1 RU 2010152990/06 U RU2010152990/06 U RU 2010152990/06U RU 2010152990 U RU2010152990 U RU 2010152990U RU 107582 U1 RU107582 U1 RU 107582U1
Authority
RU
Russia
Prior art keywords
heat
heat exchanger
microchannel
nanorelief
cooling
Prior art date
Application number
RU2010152990/06U
Other languages
Russian (ru)
Inventor
Александр Николаевич Кирилин
Валерий Александрович Телегин
Олег Борисович Федосеев
Original Assignee
Александр Николаевич Кирилин
Валерий Александрович Телегин
Олег Борисович Федосеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Николаевич Кирилин, Валерий Александрович Телегин, Олег Борисович Федосеев filed Critical Александр Николаевич Кирилин
Priority to RU2010152990/06U priority Critical patent/RU107582U1/en
Application granted granted Critical
Publication of RU107582U1 publication Critical patent/RU107582U1/en

Links

Abstract

Микроканальный теплообменник с профилированными поверхностями теплообмена, отличающийся тем, что поверхности теплообмена имеют микрорельеф (рельеф первого порядка), на который нанесен нанорельеф (более мелкий рельеф второго порядка). A microchannel heat exchanger with profiled heat exchange surfaces, characterized in that the heat exchange surfaces have a microrelief (first-order relief), on which a nanorelief (smaller second-order relief) is applied.

Description

Полезная модель относится к теплообменной технике. Полезная модель направлена на повышение эффективности микроканальных теплообменников, в особенности работающих при колебательном движении рабочей среды. Указанный технический результат достигается путем нанесения нанорельефа на поверхности теплообмена микроканальных теплообменников.The utility model relates to heat transfer technology. The utility model is aimed at increasing the efficiency of microchannel heat exchangers, especially those working with the oscillatory movement of the working medium. The specified technical result is achieved by applying nanorelief on the heat exchange surface of microchannel heat exchangers.

Существующие способы повышение эффективности микроканальных теплообменников представлены в следующих базовых патентах:Existing methods for improving the efficiency of microchannel heat exchangers are presented in the following basic patents:

US 4516632 MicroChannel crossflow fluid heat exchanger and method for its fabrication May 14, 1985 US 4574876 Container with tapered walls for heating or cooling fluids Mar 11, 1986 US 4938280 Liquid-cooled, flat plate heat exchanger Jul 3, 1990 US 5099311 MicroChannel heat sink assembly Mar 24, 1992 US 5099910 MicroChannel heat sink with alternating flow directionsMar 31, 1992 US 5125451 Heat exchanger for solid-state electronic devices Jun 30, 1992 US 5218515 MicroChannel cooling efface down bonded chips Jun 8, 1993 US 5232047 Heat exchanger for solid-state electronic devices Aug 3, 1993 US 5263251 Method of fabricating a heat exchanger for solid-state electronic devices Nov 23, US 5269372 Intersecting flow network for a cold plate cooling system Dec 14, 1993 US 5427174 Method and apparatus for a self contained heat exchanger Jun 27, 1995 US 5459099 Method of fabricating sub-half-micron trenches and holes Oct 17, 1995 US 5508234 Microcavity structures, fabrication processes, and applications thereof Apr 16, 1996 US 5575929 Method for making circular tubular channels with two silicon wafers Nov 19, 1996 US 5579828 Flexible insert for heat pipe freeze protection Dec 3, 1996 US 5658831 Method of fabricating an integrated circuit package having a liquid metal-aluminum/copper joint Aug 19,1997 US 5675473 Apparatus and method for shielding an electronic module from electromagnetic radiation Oct 7, 1997 US 5692558 MicroChannel cooling using aviation fuels for airborne electronics Dec 2, 1997 US 5727618 Modular microchannel heat exchanger Mar 17, 1998 US 5763951 Non-mechanical magnetic pump for liquid cooling Jun 9, 1998 US 5774779 Multi-channel structures and processes for making such structures Jun 30, 1998 US 5801442 MicroChannel cooling of high power semiconductor devices Sep 1, 1998 US 5858188 Acrylic microchannels and their use in electrophoretic applications Jan 12, 1999 US 5880524 Heat pipe lid for electronic packages Mar 9, 1999 US 5901037 Closed loop liquid cooling for semiconductor RF amplifier modules May 4, 1999 US 5921087 Method and apparatus for cooling integrated circuits using a thermoelectric module Jul 13, 1999 US 5993750 Integrated ceramic micro-chemical plant Nov 30, 1999 US 5997713 Silicon etching process for making microchannel plates Dec 7, 1999 US 5998240 Method of extracting heat from a semiconductor body and forming microchannels therein Dec 7, 1999 US 6007309 Micromachined peristaltic pumps Dec 28, 1999 US 6068752 Microfluidic devices incorporating improved channel geometries May 30, 2000 US 6090251 Microfabricated structures for facilitating fluid introduction into microfluidic devices Jul 18, 2000 US 6096656 Formation of microchannels from low-temperature plasma-deposited silicon oxynitride Aug 1, 2000 US 6100541 Microfluidic devices and systems incorporating integrated optical elements Aug 8, 2000 US 6101715 Microcoding device and method of making it Aug 15, 2000 US 6176962 Methods for fabricating enclosed microchannel structures Jan 23, 2001 US 6186660 Microfluidic systems incorporating varied channel dimensions Feb 13, 2001 US 6206022 Integrated flow controller module Mar 27, 2001 US 6210986 Microfluidic channel fabrication method Apr 3, 2001 US 6216343 Method of making micro channel heat pipe having corrugated fin elements Apr 17, 2001 US 6238538 Controlled fluid transport in microfabricated polymeric substrates May 29, 2001 US 6253835 Isothermal heat sink with converging, diverging channels Jul 3, 2001 US 6257320 Heat sink device for power semiconductors Jul 10, 2001 US 6321791 Multi-layer microfluidic devices Nov 27, 2001 US 6322753 Integrated microfluidic element Nov 27, 2001 US 6324058 Heat-dissipating apparatus for an integrated circuit device Nov 27, 2001 US 6330907 Evaporator and loop-type heat pipe using the same Dec 18, 2001 US 6337794 Isothermal heat sink with tiered cooling channels Jan 8, 2002 US 6400012 Heat sink for use in cooling an integrated circuit Jun 4, 2002 US 6415860 Crossflow micro heat exchanger Jul 9, 2002 US 6437981 Thermally enhanced microcircuit package and method of forming same Aug 20, 2002 US 6444461 Microfluidic devices and methods for separation Sep 3, 2002 US 6457515 Two-layered micro channel heat sink, devices and systems incorporating same Oct1, 2002 US 6459581 Electronic device using evaporative micro-cooling and associated methods Oct 1, 2002 US 6536516 Finned plate heat exchanger Mar 25, 2003 US 6537437 Surface-micromachined microfluidic devices Mar 25, 2003 US 6543521 Cooling element and cooling apparatus using the same Apr 8, 2003 US 6553253 Method and system for electrokinetic delivery of a substance Apr 22, 2003 US 6591625 Cooling of substrate-supported heat-generating components Jul 15, 2003 US 6600220 Power distribution in multi-chip modules Jul 29, 2003 US 6632655 Manipulation of microparticles in microfluidic systems Oct 14, 2003 US 7161806 Heat sink and method for its production Jan 9, 2007 US 7233494 Cooling apparatus, cooled electronic module and methods of fabrication thereof employing an integrated manifold and a plurality of thermally conductive fins Jun 19, 2007 US 7371615 Heat sink and method for its production May 13, 2008 US 7528024 Dual work function metal gate integration in semiconductor devices May 5, 2009 US 7599184 Liquid cooling loops for server applications Oct 6, 2009 US 7715194 Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers May 11, 2010 US 7746634 Internal access mechanism for a server rack Jun 29, 2010 US 7806168 Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange Oct 5,2010US 4,516,632 MicroChannel crossflow fluid heat exchanger and method for its fabrication May 14, 1985 US 4574876 Container with tapered walls for heating or cooling fluids Mar 11, 1986 US 4938280 Liquid-cooled, flat plate heat exchanger Jul 3, 1990 US 5099311 MicroChannel heat sink assembly Mar 24, 1992 US 5099910 MicroChannel heat sink with alternating flow directions Mar 31, 1992 US 5125451 Heat exchanger for solid-state electronic devices Jun 30, 1992 US 5218515 MicroChannel cooling efface down bonded chips Jun 8, 1993 US 5232047 Heat exchanger for solid- state electronic devices Aug 3, 1993 US 5263251 Method of fabricating a heat exchanger for solid-state electronic devices Nov 23, US 5269372 Intersecting flow network for a cold plate cooling system Dec 14, 1993 US 5427174 Method and apparatus for a self contained heat exchanger Jun 27, 1995 US 5459099 Method of fabricating sub-half-micron trenches and holes Oct 17, 1995 US 5508234 Microcavity structures, fabrication processes, and appl ications thereof Apr 16, 1996 US 5575929 Method for making circular tubular channels with two silicon wafers Nov 19, 1996 US 5579828 Flexible insert for heat pipe freeze protection Dec 3, 1996 US 5658831 Method of fabricating an integrated circuit package having a liquid metal-aluminum / copper joint Aug 19,1997 US 5675473 Apparatus and method for shielding an electronic module from electromagnetic radiation Oct 7, 1997 US 5692558 MicroChannel cooling using aviation fuels for airborne electronics Dec 2, 1997 US 5727618 Modular microchannel heat exchanger Mar 17, 1998 US 5763951 Non-mechanical magnetic pump for liquid cooling Jun 9, 1998 US 5774779 Multi-channel structures and processes for making such structures Jun 30, 1998 US 5801442 MicroChannel cooling of high power semiconductor devices Sep 1, 1998 US 5858188 Acrylic microchannels and their use in electrophoretic applications Jan 12, 1999 US 5880524 Heat pipe lid for electronic packages Mar 9, 1999 US 5901037 Closed loop liquid cool ing for semiconductor RF amplifier modules May 4, 1999 US 5921087 Method and apparatus for cooling integrated circuits using a thermoelectric module Jul 13, 1999 US 5993750 Integrated ceramic micro-chemical plant Nov 30, 1999 US 5997713 Silicon etching process for making microchannel plates Dec 7 , 1999 US 5998240 Method of extracting heat from a semiconductor body and forming microchannels therein Dec 7, 1999 US 6007309 Micromachined peristaltic pumps Dec 28, 1999 US 6068752 Microfluidic devices incorporating improved channel geometries May 30, 2000 US 6090251 Microfabricated structures for facilitating fluid introduction into microfluidic devices Jul 18, 2000 US 6096656 Formation of microchannels from low temperature plasma-deposited silicon oxynitride Aug 1, 2000 US 6100541 Microfluidic devices and systems incorporating integrated optical elements Aug 8, 2000 US 6101715 Microcoding device and method of making it Aug 15, 2000 US 6176962 Methods for fabricating enclosed microchannel st ructures Jan 23, 2001 US 6186660 Microfluidic systems incorporating varied channel dimensions Feb 13, 2001 US 6206022 Integrated flow controller module Mar 27, 2001 US 6210986 Microfluidic channel fabrication method Apr 3, 2001 US 6216343 Method of making micro channel heat pipe having corrugated fin elements Apr 17, 2001 US 6238538 Controlled fluid transport in microfabricated polymeric substrates May 29, 2001 US 6253835 Isothermal heat sink with converging, diverging channels Jul 3, 2001 US 6257320 Heat sink device for power semiconductors Jul 10, 2001 US 6321791 Multi-layer microfluidic devices Nov 27, 2001 US 6322753 Integrated microfluidic element Nov 27, 2001 US 6324058 Heat-dissipating apparatus for an integrated circuit device Nov 27, 2001 US 6330907 Evaporator and loop-type heat pipe using the same Dec 18, 2001 US 6337794 Isothermal heat sink with tiered cooling channels Jan 8, 2002 US 6400012 Heat sink for use in cooling an integrated circuit Jun 4, 2002 US 6415860 Crossflow micro heat exchanger Jul 9, 2002 US 6437981 Thermally enhanced microcircuit package and method of forming same Aug 20, 2002 US 6444461 Microfluidic devices and methods for separation Sep 3, 2002 US 6457515 Two-layered micro channel heat sink, devices and systems incorporating the same Oct1 , 2002 US 6459581 Electronic device using evaporative micro-cooling and associated methods Oct 1, 2002 US 6536516 Finned plate heat exchanger Mar 25, 2003 US 6537437 Surface-micromachined microfluidic devices Mar 25, 2003 US 6543521 Cooling element and cooling apparatus using the same Apr 8, 2003 US 6553253 Method and system for electrokinetic delivery of a substance Apr 22, 2003 US 6591625 Cooling of substrate-supported heat-generating components Jul 15, 2003 US 6600220 Power distribution in multi-chip modules Jul 29, 2003 US 6632655 Manipulation of microparticles in microfluidic systems Oct 14, 2003 US 7161806 Heat sink and method for its production Jan 9, 2007 US 7233494 Cooling apparatus, cooled elect ronic module and methods of fabrication its employing an integrated manifold and a plurality of thermally conductive fins Jun 19, 2007 US 7371615 Heat sink and method for its production May 13, 2008 US 7528024 Dual work function metal gate integration in semiconductor devices May 5, 2009 US 7599184 Liquid cooling loops for server applications Oct 6, 2009 US 7715194 Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers May 11, 2010 US 7746634 Internal access mechanism for a server rack Jun 29, 2010 US 7806168 Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange Oct 5,2010

Недостатками существующих способов повышения эффективности микроканальных теплообменников является необходимость использования сложных технологических процессов создания микрорельефа на тепло-обменной поверхности, что существенно повышает стоимость и резко сужает область их применения.The disadvantages of existing methods of increasing the efficiency of microchannel heat exchangers is the need to use complex technological processes for creating a microrelief on a heat-exchanging surface, which significantly increases the cost and drastically narrows their scope.

Прототипом полезной модели является патент US 6381846 "Microchan-neled active fluid heat exchanger method" (Способ микроканального теплообмена активных жидкостей) от 2002 г. Недостатком данного способа является технологическая сложность образования рельефа теплообмен-ной поверхности.The prototype of the utility model is US patent 6381846 "Microchan-neled active fluid heat exchanger method" (2002). The disadvantage of this method is the technological complexity of forming the relief of the heat-exchange surface.

Традиционный путь повышения эффективности теплообмена в микроканальных теплообменниках состоит в уменьшении размеров теплообменных каналов при увеличении их числа и создания микрорельефа (рельефа первого порядка) на поверхности каналов.The traditional way to increase the efficiency of heat transfer in microchannel heat exchangers is to reduce the size of the heat exchange channels with an increase in their number and create a microrelief (first-order relief) on the surface of the channels.

По сравнению с прототипом, в данной полезной модели увеличение площади рельефа теплообменной поверхности произведено путем перехода на рельеф второго порядка - нанорельеф.Compared with the prototype, in this utility model, the surface area of the heat exchange surface is increased by switching to a second-order topography — nanorelief.

Использование более мелкого рельефа теплообменной поверхности особенно эффективно для теплообменников, работающих при колебательном движении рабочей среды. Толщина температурного пограничного слоя на стенках микроканалов теплообменника при колебательном движении рабочей среды выражается зависимостьюThe use of a smaller relief of the heat exchange surface is especially effective for heat exchangers operating in the oscillatory movement of the working medium. The thickness of the temperature boundary layer on the walls of the microchannels of the heat exchanger during the oscillatory movement of the working medium is expressed by the dependence

где k - коэффициент теплопроводности газа, Ру - его плотность при данной температуре и давлении, со - круговая частота колебаний.where k is the coefficient of thermal conductivity of the gas, Ru is its density at a given temperature and pressure, and ω is the circular vibration frequency.

Из этой формулы видно, что толщина пограничного слоя уменьшается с увеличением частоты колебаний. Другими словами, с увеличением частоты колебаний эффективность теплопередачи во все большей степени определяется процессами в тонком пограничном слое газа вблизи поверхности микроканала теплообменника. Именно поэтому и важно обеспечить развитый нанорельеф теплообменной поверхности микроканального теплообменника.It can be seen from this formula that the thickness of the boundary layer decreases with an increase in the oscillation frequency. In other words, with an increase in the oscillation frequency, the heat transfer efficiency is increasingly determined by the processes in a thin boundary layer of gas near the surface of the microchannel of the heat exchanger. That is why it is important to provide a developed nanorelief of the heat exchange surface of a microchannel heat exchanger.

Сечение рабочего канала микроканального теплообменника с нанорельефом в соответствии с данным полезная модель представлено на Фиг.1. Стенки канала теплообменника имеют микрорельеф (рельеф первого порядка), на который нанесен нанорельеф (более мелкий рельеф второго порядка). Данное сочетание микро и нанорельефов обеспечивает значительное увеличение коэффициента теплоотдачи при том же падении давления, что и в обычных микроканальных теплообменниках.The cross section of the working channel of a microchannel heat exchanger with nanorelief in accordance with this utility model is presented in figure 1. The walls of the heat exchanger channel have a microrelief (first-order relief), on which a nanorelief (a smaller second-order relief) is applied. This combination of micro and nanoreliefs provides a significant increase in heat transfer coefficient at the same pressure drop as in conventional microchannel heat exchangers.

Claims (1)

Микроканальный теплообменник с профилированными поверхностями теплообмена, отличающийся тем, что поверхности теплообмена имеют микрорельеф (рельеф первого порядка), на который нанесен нанорельеф (более мелкий рельеф второго порядка).
Figure 00000001
A microchannel heat exchanger with profiled heat exchange surfaces, characterized in that the heat exchange surfaces have a microrelief (first-order relief), on which a nanorelief (smaller second-order relief) is applied.
Figure 00000001
RU2010152990/06U 2010-12-23 2010-12-23 MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF RU107582U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010152990/06U RU107582U1 (en) 2010-12-23 2010-12-23 MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010152990/06U RU107582U1 (en) 2010-12-23 2010-12-23 MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF

Publications (1)

Publication Number Publication Date
RU107582U1 true RU107582U1 (en) 2011-08-20

Family

ID=44756089

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152990/06U RU107582U1 (en) 2010-12-23 2010-12-23 MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF

Country Status (1)

Country Link
RU (1) RU107582U1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584081C1 (en) * 2015-06-08 2016-05-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Micro channel heat exchanger
CN110220402A (en) * 2019-05-30 2019-09-10 哈尔滨工业大学(深圳) It is a kind of with micropin rib-nanowire structure micro-channel heat exchanger and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584081C1 (en) * 2015-06-08 2016-05-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Micro channel heat exchanger
CN110220402A (en) * 2019-05-30 2019-09-10 哈尔滨工业大学(深圳) It is a kind of with micropin rib-nanowire structure micro-channel heat exchanger and its manufacturing method

Similar Documents

Publication Publication Date Title
Chainer et al. Improving data center energy efficiency with advanced thermal management
Yin et al. Design of AlN-based micro-channel heat sink in direct bond copper for power electronics packaging
Kandlikar Review and projections of integrated cooling systems for three-dimensional integrated circuits
Iradukunda et al. A review of advanced thermal management solutions and the implications for integration in high-voltage packages
Sekar et al. A 3D-IC technology with integrated microchannel cooling
Jung et al. Microchannel cooling strategies for high heat flux (1 kW/cm 2) power electronic applications
Zhang et al. 3D stacked microfluidic cooling for high-performance 3D ICs
TW200425441A (en) Electro-osmotic pumps and micro-channels
CN104465562A (en) Chain type staggered micro-channel structure
Han et al. Thermal management of hotspots using diamond heat spreader on Si microcooler for GaN devices
US20070151275A1 (en) Methods and apparatus for microelectronic cooling using a miniaturized vapor compression system
Ansari et al. A silicon-diamond microchannel heat sink for die-level hotspot thermal management
US20160218048A1 (en) Microfluidic channels for thermal management of microelectronics
JP2006518100A (en) 3D high performance heat sink
Park et al. Evaluation of Si liquid cooling structure with microchannel and TSV for 3D application
Peng et al. Cooling chip on PCB by embedded active microchannel heat sink
Tang et al. Development of a compact and efficient liquid cooling system with silicon microcooler for high-power microelectronic devices
RU107582U1 (en) MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF
Yu et al. Hotspot thermal management of silicon-based high power hetero-integration
Xu et al. Optimization of the thermal performance of multi-layer silicon microchannel heat sinks
Al-Neama Serpentine minichannel liquid-cooled heat sinks for electronics cooling applications
Yuruker et al. Integration of micro-contact enhanced thermoelectric cooler with a FEEDS manifold-microchannel system for cooling of high flux electronics
US20220049905A1 (en) Oscillating heat pipe channel architecture
Yuruker et al. A vertically enhanced manifold microchannel system for thermal management of power electronics
Han et al. Thermal analysis of microfluidic cooling in processing-in-3D-stacked memory

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20121224