PL396428A1 - Method for producing nanowires from palladium silicide - Google Patents

Method for producing nanowires from palladium silicide

Info

Publication number
PL396428A1
PL396428A1 PL396428A PL39642811A PL396428A1 PL 396428 A1 PL396428 A1 PL 396428A1 PL 396428 A PL396428 A PL 396428A PL 39642811 A PL39642811 A PL 39642811A PL 396428 A1 PL396428 A1 PL 396428A1
Authority
PL
Poland
Prior art keywords
palladium
temperature
exceeding
substrate
layer
Prior art date
Application number
PL396428A
Other languages
Polish (pl)
Other versions
PL219413B1 (en
Inventor
Elzbieta Czerwosz
Ewa Kowalska
Joanna Radomska
Halina Wronka
Original Assignee
Instytut Tele- I Radiotechniczny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Tele- I Radiotechniczny filed Critical Instytut Tele- I Radiotechniczny
Priority to PL396428A priority Critical patent/PL219413B1/en
Priority to PCT/PL2012/050031 priority patent/WO2013048270A1/en
Publication of PL396428A1 publication Critical patent/PL396428A1/en
Publication of PL219413B1 publication Critical patent/PL219413B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires

Abstract

Sposób wytwarzania, nanodrutów z krzemku palladu polega na tym, że w I etapie w procesie fizycznego odparowania w próżni prekursorów warstwy wyjściowej: fullerenu C60 i octanu palladu na podłoże Si nanosi się kompozytową warstwę węglowo-palladową zawierającą w matrycy węglowej nanoziarna Pd. Następnie w II etapie warstwę kompozytową modyfikuje się w procesie chemicznego osadzania z par, przy czym czynnikami modyfikującymi są ksylen i temperatura. W wyniku modyfikacji na podłożu Si w ograniczonych obszarach wyrastają nanodruty z krzemku palladu, które następnie separuje się poprzez wypalanie matrycy węglowej w powietrzu. Temperatura wypalania matrycy węglowej nie przekracza 750°C. Proces fizycznego odparowania w próżni prowadzi się w warunkach dynamicznej próżni o wartości co najmniej ~10-5 tor, z temperaturą podłoża Si nie przekraczającą 110°C z zastosowaniem dwóch oddzielnych źródeł dla prekursorów warstwy: fullerenu C60 i octanu palladu PdC4H6O. Proces chemicznego osadzania z par prowadzi się w ciśnieniu atmosferycznym i w przepływie argonu jako gazu nośnego dla par ksylenu z temperaturą modyfikacji nie przekraczającą 700°C i czasem trwania nie przekraczającym 60 minut.The method of producing palladium silicide nanowires consists in the fact that in the first stage, in the process of physical evaporation in a vacuum of the precursors of the starting layer: fullerene C60 and palladium acetate, a composite carbon-palladium layer containing Pd nanograins in a carbon matrix is deposited on the Si substrate. Then, in the second stage, the composite layer is modified in the process of chemical vapor deposition, with the modifying factors being xylene and temperature. As a result of modifications on the Si substrate, palladium silicide nanowires grow in limited areas, which are then separated by burning the carbon matrix in air. The carbon matrix firing temperature does not exceed 750°C. The process of physical evaporation in a vacuum is carried out in a dynamic vacuum of at least ~10-5 Torr, with the Si substrate temperature not exceeding 110°C, using two separate sources for the layer precursors: fullerene C60 and palladium acetate PdC4H6O. The chemical vapor deposition process is carried out at atmospheric pressure and in a flow of argon as the carrier gas for xylene vapor with a modification temperature not exceeding 700°C and a duration not exceeding 60 minutes.

PL396428A 2011-09-26 2011-09-26 Method for producing nanowires from palladium silicide PL219413B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL396428A PL219413B1 (en) 2011-09-26 2011-09-26 Method for producing nanowires from palladium silicide
PCT/PL2012/050031 WO2013048270A1 (en) 2011-09-26 2012-09-23 Method for forming palladium silicide nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL396428A PL219413B1 (en) 2011-09-26 2011-09-26 Method for producing nanowires from palladium silicide

Publications (2)

Publication Number Publication Date
PL396428A1 true PL396428A1 (en) 2013-04-02
PL219413B1 PL219413B1 (en) 2015-04-30

Family

ID=47143248

Family Applications (1)

Application Number Title Priority Date Filing Date
PL396428A PL219413B1 (en) 2011-09-26 2011-09-26 Method for producing nanowires from palladium silicide

Country Status (2)

Country Link
PL (1) PL219413B1 (en)
WO (1) WO2013048270A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613859B2 (en) 2015-01-09 2017-04-04 Applied Materials, Inc. Direct deposition of nickel silicide nanowire
US10016752B1 (en) * 2017-09-25 2018-07-10 King Saud University Method of making palladium nanoparticles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776832A (en) 1980-10-31 1982-05-14 Toshiba Corp Method for forming palladium silicide
US4687537A (en) 1986-04-15 1987-08-18 Rca Corporation Epitaxial metal silicide layers
US5624867A (en) 1995-05-24 1997-04-29 National Science Council Low temperature formation of palladium silicided shallow junctions using implant through metal/silicide technology
US6376342B1 (en) 2000-09-27 2002-04-23 Vanguard International Semiconductor Corporation Method of forming a metal silicide layer on a source/drain region of a MOSFET device
US6534402B1 (en) 2001-11-01 2003-03-18 Winbond Electronics Corp. Method of fabricating self-aligned silicide
US20070221993A1 (en) 2006-03-27 2007-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method for making a thermally stable silicide
US7803707B2 (en) * 2006-08-17 2010-09-28 Wisconsin Alumni Research Foundation Metal silicide nanowires and methods for their production
US20080315430A1 (en) * 2007-06-22 2008-12-25 Qimonda Ag Nanowire vias
KR100883531B1 (en) 2007-10-24 2009-02-12 한국기계연구원 The field emission with silicide nanowires and the device fabrication method

Also Published As

Publication number Publication date
WO2013048270A1 (en) 2013-04-04
PL219413B1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
In et al. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions
TW200603225A (en) Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing thereof
WO2009103925A3 (en) Growth of carbon nanotubes on carbon or metal substrates
GB2516372A (en) High quality large scale single and multilayer graphene production by chemical vapor deposition
GB0509499D0 (en) Use of thermal barrier for low temperature growth of nanostructures using top-down heating approach
WO2011126748A3 (en) Depositing conformal boron nitride films
CN102491315A (en) Method for preparing graphene
MY156300A (en) A chemical vapour deposition system and process
GB0624376D0 (en) A universal method for selective area growth of organic molecular by vapour deposition
WO2012021677A3 (en) Large-scale graphene sheet: articles, compositions, methods and devices incorporating same
WO2010045153A3 (en) Method for depositing conformal amorphous carbon film by plasma-enhanced chemical vapor deposition (pecvd)
WO2010068419A3 (en) Production of single crystal cvd diamond rapid growth rate
WO2011034751A3 (en) Hot wire chemical vapor deposition (cvd) inline coating tool
WO2009122113A3 (en) Method for producing nanostructures on a metal oxide substrate and thin film device
TW200739727A (en) Semiconductor processing system and vaporizer
WO2008096699A1 (en) Apparatus and process for production of oriented carbon nanotube
WO2012175334A3 (en) Deposition method and device
CN102180439A (en) Carbon microtructure with graphene integrated on surface and preparation method thereof
WO2008078502A1 (en) Film deposition apparatus and film deposition method
WO2011116273A3 (en) System and method for polycrystalline silicon deposition
WO2007112394A3 (en) Method for purifying metal carbonyl precursors
WO2015038267A3 (en) Graphene synthesis by suppressing evaporative substrate loss during low pressure chemical vapor deposition
WO2012112334A3 (en) Method of operating filament assisted chemical vapor deposition system
PL396428A1 (en) Method for producing nanowires from palladium silicide
TW200833886A (en) Method for manufacture of III-V family chemical compound semiconductor