PL231010B1 - Podłoże do bezglebowej uprawy roślin - Google Patents

Podłoże do bezglebowej uprawy roślin

Info

Publication number
PL231010B1
PL231010B1 PL410048A PL41004814A PL231010B1 PL 231010 B1 PL231010 B1 PL 231010B1 PL 410048 A PL410048 A PL 410048A PL 41004814 A PL41004814 A PL 41004814A PL 231010 B1 PL231010 B1 PL 231010B1
Authority
PL
Poland
Prior art keywords
substrate
cultivation
fraction
water
brown coal
Prior art date
Application number
PL410048A
Other languages
English (en)
Other versions
PL410048A1 (pl
Inventor
Paweł Mietlicki
Jacek Dyśko
Stanisław Kaniszewski
Original Assignee
Carbohort Spolka Z Ograniczona Odpowiedzialnoscia
Inst Ogrodnictwa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbohort Spolka Z Ograniczona Odpowiedzialnoscia, Inst Ogrodnictwa filed Critical Carbohort Spolka Z Ograniczona Odpowiedzialnoscia
Priority to PL410048A priority Critical patent/PL231010B1/pl
Priority to EP15460101.7A priority patent/EP3014985A1/en
Publication of PL410048A1 publication Critical patent/PL410048A1/pl
Publication of PL231010B1 publication Critical patent/PL231010B1/pl

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/28Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing peat, moss or sphagnum
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Description

Opis wynalazku
Przedmiotem wynalazku jest podłoże do bezglebowej uprawy roślin, przeznaczone do bezglebowej uprawy warzyw - zwłaszcza pomidorów, ogórków, papryki czy sałaty; owoców - chociażby truskawek i roślin ozdobnych, pod osłonami takimi jak szklarnie, tunele foliowe bądź daszki.
Od lat zaobserwować można coraz większe zainteresowanie producentów owoców, warzyw, grzybów (pieczarek, boczniaków) czy roślin ozdobnych, a także właścicieli prywatnych gospodarstw ogrodniczych przejściem z tradycyjnej uprawy w gruncie w kierunku nowoczesnych systemów upraw bezglebowych, zaliczanych do upraw hydroponicznych. Mówi się nawet o zdominowaniu produkcji ogrodniczej pod osłonami przez uprawę bezglebową. Powszechnie stosowane są na przykład podłoża mineralne (z wełny mineralnej, wełny szklanej, keramzytu, perlitu, zeolitu, żwiru czy piasku), a coraz częściej także podłoża wykonane z odpadów z przemysłu tekstylnego, powstających w czasie produkcji różnych tekstyliów - takich jak odpad wełny owczej i bawełny. Z uwagi na ukierunkowanie współczesnego rolnictwa na ochronę środowiska i z uwagi na powszechną dążność do wyeliminowania ze stosowanych technologii produkcji materiałów i środków mogących stanowić zagrożenie dla naturalnego środowiska i bezpieczeństwa żywności, wprowadza się wiele nowatorskich rozwiązań, dotyczących między innymi bezglebowych, biodegradowalnych podłoży do upraw roślin.
Znane i od kilkudziesięciu lat z powodzeniem stosowane w rolnictwie i ogrodnictwie są podłoża organiczne - takie jak torf wysoki, kora drzew iglastych bądź liściastych, trociny, włókno drzewne, włókno kokosowe (produkowane z okryw nasiennych orzechów palmy kokosowej) czy słoma (korzystnie słoma twarda, na przykład rzepakowa, żytnia, pszenna czy pszenżytnia, mająca lepsze właściwości od słomy miękkiej - przykładowo owsianej, której jednak poważną wadą jest to, że bardzo szybko traci strukturę). Stosuje się także zdrewniałe części łodyg roślin włóknistych takich jak len, czy konopie, połamane i oddzielone od włókna w procesie przetwarzania słomy lnianej lub konopnej na włókno (tak zwane paździerze konopne lub lniane). Znane są ponadto dwu-, trzy-, bądź czteroskładnikowe mieszanki różnych podłoży, chociażby mieszanki torfu i włókna kokosowego czy słomy twardej, drobno rozdrobnionej kory drzew iglastych, trocin drzew iglastych i torfu. Taka bezglebowa uprawa na podłożu organicznym pozwala ograniczyć wpływ niekorzystnych czynników, z jakimi wcześniej borykali się ogrodnicy - jak choćby problem pogarszających się właściwości powietrzno-wodnych gleby, kwestia spadku żyzności gleby (uprawy bezglebowe mają przewagę nad tradycyjnymi uprawami ziemnymi w postaci braku ograniczenia w zakresie zmianowania roślin - można bowiem uprawiać po sobie dowolne rośliny, w tym również w monokulturze, ponieważ nie występuje zjawisko zmęczenia gleby). Ponadto uprawa bezglebowa eliminuje problem wzrostu zasolenia gleby oraz nagromadzenia się w niej patogenów glebowych, trwałych, uporczywych do zwalczania, długo zalegających w glebie i wymagających coraz większych nakładów na dezynfekcję podłoża oraz ochronę roślin, co znacznie wpływa na opłacalność ekonomiczną całej uprawy. Uprawa bezglebowa pozwala także sterować wzrostem roślin.
Uprawa bezglebowa najczęściej prowadzona jest pod różnego rodzaju osłonami, przykładowo pod daszkami, w szklarniach czy w tunelach foliowych, na specjalnie przygotowanych do tego celu rynnach bądź stelażach, na których umieszcza się pojemniki (na ogół doniczki) lub opcjonalnie wypełnia się konkretnym substratem worki foliowe w postaci różnej długości mat uprawowych. Optymalne podłoże do rozwoju systemu korzeniowego to takie, które charakteryzuje się porowatością całkowitą w zakresie 70-90%, a objętość wolnych przestrzeni jest wypełniona w 50% wodą i w 50% powietrzem. Istotne jest bowiem, aby podłoże zachowywało stałe właściwości powietrzno-wodne przez cały okres uprawy. Ponadto podłoże do upraw bezglebowych powinno charakteryzować się łatwością w nawilżaniu oraz dobrą podsiąkliwością, która zapewnia równomierne rozmieszczenie wody w całej przestrzeni pojemnika lub maty, stwarzające dogodne warunki dla rozwoju systemu korzeniowego. Oprócz tego podłoże powinno być wolne od chorób i szkodników, łatwe do utylizacji i ekologiczne.
Podstawowym problemem, z jakim spotykają się ogrodnicy, jest to, że większość ze znanych podłoży przeznaczonych do bezglebowej uprawy zbyt szybko traci swą strukturę, a tym samym przepuszczalność, sorpcyjność, zdolność pochłaniania składników pokarmowych oraz mikroelementów.
Z opisu patentowego polskiego wynalazku PL 190225 B1 znane jest bezglebowe podłoże uprawowe, mogące mieć zastosowanie w ogrodniczych uprawach szklarniowych. Bezglebowym podłożem jest słoma sprasowana w płyty, obciągnięte rękawem foliowym z wyciętymi otworami na jednej z powierzchni rękawa. Sposób przygotowania bezglebowego podłoża uprawowego polega na tym, że słomę
PL 231 010 B1 tnie się na sieczkę o długości elementów 8-18 mm lub rozdrabniania na elementy o długości 2-6 mm, a następnie prasuje w płyty o grubości 80-180 mm. Do stosowania sposobu wykorzystuje się prasę poziomego zgniotu.
Znane jest także podłoże z wełny mineralnej do uprawy roślin omówione w opisie patentow ym PL 190643 B1. Podłoże to ma spoistą hydrofilową matrycę z włókien wełny mineralnej wzajemnie związanych przy pomocy środka wiążącego na bazie żywicy furanowej.
Z kolei z polskiego opisu patentowego PL 204941 B1 znane jest bezglebowe podłoże do upraw, w szczególności warzyw. Podłoże charakteryzuje się tym, że z czterech składników w postaci grubo rozdrobnionej słomy żytniej lub pszennej, drobno rozdrobnionej kory drzew iglastych, trocin drzew iglastych i torfu wykonuje się mieszaniny dwuskładnikowe, trójskładnikowe i czteroskładnikowe z wykorzystaniem możliwości kojarzenia, przy czym w każdej mieszaninie występuje słoma. Tak uzyskane podłoża zagęszcza się do uzyskania gęstości objętościowej 0,48-0,66 g/cm3 i konfekcjonuje w postaci prostopadłościennych balotów obciągniętych rękawem foliowym, który od góry posiada otwory, a ścianki szczytowe i boczne folii do połowy wysokości są perforowane.
Celem niniejszego wynalazku było uzyskanie nowego, organicznego podłoża do bezglebowych upraw roślin, całkowicie biodegradowalnego, które zapewniłoby optymalne warunki do wzrostu roślin.
Podłoże do bezglebowej uprawy roślin, zwłaszcza do uprawy warzyw w szklarniach i tunelach foliowych, zawierające co najmniej 80% materii organicznej, charakteryzujące się porowatością całkowitą w zakresie 70-90%, obecnością wolnych przestrzeni wypełnionych wodą i powietrzem, podsiąkliwe i zachowujące stałe właściwości powietrzno-wodne, zgodnie z wynalazkiem stanowi naturalny węgiel brunatny, rozdrobniony do frakcji cząstek o średnicy od 1,0 do 20 mm i/lub do frakcji ziemistej o granulacji wynoszącej do 1,0 mm.
Frakcją ziemistą nazywana jest w środowisku naukowym frakcja węgla brunatnego o granulacji cząstek poniżej 1 milimetra. Zalicza się do niej miał węglowy, pyły oraz iły.
Przy tym proporcje powietrzno-wodne tego podłoża - zapewniające jego zasobność w składniki pokarmowe przez cały okres wzrostu roślin i stałe parametry, w tym odczyn słabo kwaśny pH 6-7 oraz bardzo niskie zasolenie wynoszące około 0,2 g NaCl/dm3, wysoką hydrofilność podłoża, mieszczącą się w przedziale od 0,5 pF do 1,5 pF, buforowość termiczną oraz dobre stosunki powietrzno-wodne, przy jednoczesnym zapewnieniu podłożu trwałej i jednorodnej struktury, ulegającej rozkładowi biologicznemu przez okres około 25 lat, a ostatecznie po upływie co najmniej 25 lat pełną biodegradowalność - są regulowane poprzez dobór uziarnienia i/lub dodanie frakcji ziemistej. I tak - właściwości wodne podłoża poprawia się przez większe rozdrobnienie węgla brunatnego, tj. w przypadku użycia frakcji węgla brunatnego o średnicy cząstek 2,5 mm podłoże powoduje zatrzymanie większej ilości wody (około 40%) niż w przypadku zastosowania frakcji węgla o średnicy cząstek 20 mm (około 30%), natomiast użycie frakcji ziemistej węgla brunatnego zwiększa zawartość wody w podłożu aż do około 70%. Z kolei pojemność powietrzną podłoża zwiększa się poprzez zwiększenie uziarnienia węgla brunatnego, a zmniejsza się przy zastosowaniu frakcji ziemistej. W przypadku zastosowania cząstek węgla w przedziale od 20 mm do 2,5 mm - pojemność powietrzna podłoża przy pf 1,0 oscyluje w granicach 45-42%, a przy zastosowaniu frakcji ziemistej węgla brunatnego pojemność powietrzna podłoża przy pf 1,0 wynosi około 7-10%.
Wzrost rozdrobnienia węgla brunatnego stanowiącego podłoże powoduje wzrost jego masy objętościowej oraz pojemności wodnej, przy zmniejszeniu pojemności powietrza. Przy tym najkorzys tniejsze właściwości powietrzno-wodne przy pF 1,0 występują w podłożu o frakcji cząstek węgla o średnicy 2,5 mm.
Stopień rozdrobnienia wpływa również na odczyn pH podłoża, przy czym im większe rozdrobnienie, tym niższy odczyn pH.
Podłoże jest konfekcjonowane w postaci prostopadłościennych balotów obciągniętych rękawem foliowym, którego ścianki szczytowe i boczne są zgrzewane, wyposażone w otwory drenażowe i z których odsysane jest wolne powietrze.
Dzięki rozwiązaniu według wynalazku uzyskano nowe, w pełni ekologiczne podłoże organiczne do bezglebowej uprawy roślin, zwłaszcza do uprawy warzyw w uprawach szklarniowych i tunelach foliowych. Stanowi ono rozwiązanie korzystne z punktu widzenia ochrony środowiska, zwłaszcza rozwiązujące problem konieczności utylizacji podłoża po zakończeniu sezonu uprawowego roślin. Przy tym, z uwagi na właściwości organiczne podłoża według wynalazku, zawartości w jego strukturze znacznej ilości mikroelementów i makroelementów (np. cynku, boru, fosforu, wapnia, potasu), podłoże to okazało się doskonałym nośnikiem związków mineralnych, wpływających na polepszenie całego procesu wege4
PL 231 010 B1 tacji roślin, a w konsekwencji skutkujące uzyskaniem wyższych i lepszych jakościowo plonów, ze wzbogaconą zawartością składników mineralnych, a ponadto o dodatkowych walorach smakowych. Ważną zaletą nowego podłoża jest jego wysoka hydrofilność, gwarantująca jednakowe, stabilne warunki wilgotnościowe dla rośliny w całej przestrzeni podłoża. Podłoże to zapewnia wcześniejsze plonowanie oraz przedłużenie okresu uprawowego (ze względu na dużą zdrowotność i możliwości właściwego odżywienia roślin).
Przy tym okazało się, że jest to podłoże wolne od czynników chorobotwórczych i nie zawierające substancji szkodliwych dla roślin, za to posiadające właściwości bakteriobójcze i grzybobójcze, co zmniejsza niebezpieczeństwo porażenia roślin przez choroby i szkodniki odglebowe.
Podłoże do bezglebowej uprawy roślin według wynalazku odznacza się przede wszystkim stabilnością warunków powietrzno-wodnych, buforowością termiczną oraz dobrą przemianą wodno-gazową. Natomiast ze względu na wysoce skondensowaną substancję organiczną ma ono trwałą i jednorodną strukturę, bardzo wolno ulegającą rozkładowi (w znacznie powolniejszym tempie niż przykładowo czas pełnej mineralizacji słomy zbożowej - wynoszący 16 miesięcy, czy torfu - wynoszący w zależności od typu od 4 do 13 lat). Podłoże według wynalazku może być eksploatowane przez kilka, kilkanaście, a nawet kilkadziesiąt sezonów uprawowych, bez utraty właściwości swej struktury, co w konsekwencji może wpływać na poprawę sytuacji ekonomicznej właścicieli gospodarstw ogrodniczych, znacznie ograniczając koszty zakupu nowych podłoży oraz środków ochrony roślin.
Podłoże do bezglebowej uprawy roślin według wynalazku spełnia łącznie wszystkie warunki wymagane dla upraw bezglebowych. Taki nieoczekiwany efekt uzyskano znajdując nowe zastosowanie węgla brunatnego. Węgiel brunatny był dotychczas wykorzystywany w rolnictwie przede wszystkim do poprawy właściwości gleb lekkich, a w ogrodnictwie jako jeden z komponentów podłoży do upraw gruntowych lub jako jeden ze składników nawozów organicznych. Wieloletnie badania nad węglem brunatnym, rozpoczęte jeszcze przed drugą wojną światową, a kontynuowane przez wiele ośrodków naukowobadawczych do chwili obecnej, potwierdzają, że węgiel brunatny - będący osadową skałą palną, powstałą w wyniku karbonizacji, powstały w wyniku diagenezy torfu w podwyższonej temperaturze i ciśnieniu - ma bardzo dobre właściwości fizykochemiczne, do tej pory nie w pełni wykorzystywane w rolnictwie, a tym bardziej nie doceniane w ogrodnictwie. Tymczasem okazało się, że zawarte w węglu brunatnym substancje organiczne (kwasy huminowe, fulwowe, hymatometalowe, huminy, bituminy, fuzyt, lignina, celuloza), woda i substancje mineralne stwarzają możliwości doskonałego wykorzyst ania ich jako podłoże w bezglebowych uprawach roślin. Węgiel brunatny jako bogate źródło substancji humusowych, wpływających nie tylko na żyzność gleby, ale także na zaopatrywanie roślin w związki mineralne, jest najtrwalszym z dotąd znanych materiałem organicznym stosowanym w warunkach polowych, jak i szklarniowych. Ulega rozkładowi po upływie co najmniej 25 lat, odznacza się porowatością i chłonie wodę, ma odczyn słabo kwaśny pH 6-7 oraz bardzo niskie zasolenie 0,2 g/dm2 NaCl.
Podłoże uprawowe w postaci węgla brunatnego charakteryzuje się ponadto tym, że rozdrobnienie cząstek węgla brunatnego zmienia jego odczyn pH, zasolenie oraz koncentrację S-SO4, w takiej zależności, że im większe rozdrobnienie, tym niższy odczyn pH, ale wzrost powierzchni objętościowej węgla oraz tym większa ekstrakcja soli, przede wszystkim siarczanowych i tym samym większa koncentracja składników mineralnych.
Bardzo korzystną cechą podłoża uprawowego według wynalazku jest to, że po skończonym cyklu uprawowym może ono być nadal eksploatowane, korzystnie wykorzystywane jako samodzielne podłoże lub w mieszance z innymi podłożami, do produkcji innych gatunków roślin, korzystnie w uprawach pod osłonami lub wykorzystywane do prowadzenia upraw na zielonych dachach, czy tarasach przeznaczonych pod zazielenienie i wszędzie tam, gdzie utrudnione jest nawadnianie, nawożenie, czy zasilanie środkami ochrony roślin.
Przedmiot wynalazku jest dokładniej wyjaśniony w poniższym przykładzie jego wykonania.
Podłoże do bezglebowej uprawy roślin w postaci maty uprawowej wykonano z pochodzącego z zagłębia bełchatowskiego, węgla brunatnego zawierającego 61,5% suchej masy, 87,5% substancji organicznej, 12,5% popiołu i 43,7% węgla. Wykorzystano je w szklarni do uprawy mięsistego pomidora szklarniowego odmiany Growdena F1. Bryły węgla brunatnego rozdrobnione na rozdrabniaczu bijakowym i przesiane na odpowiednich sitach miały następujące frakcje cząstek węgla : średnicy 20 mm, średnicy 10 mm, średnicy 2,5 mm oraz frakcję ziemistą. Z poszczególnych frakcji i ich mieszanin (jedna z mieszanek stanowiła kombinację 50% frakcji 20 mm + 50% frakcji ziemistej, a druga mieszanka kombinację 33,3% frakcji 2,5 mm + 33,3% frakcji 10 mm + 33,3% frakcji ziemistej) zostały wykonane maty
PL 231 010 B1 uprawowe o długości 100 cm, szerokości 20 cm i wysokości 7 cm, opakowane dwuwarstwową białoczarną folią.
Nasiona pomidora zostały wysiane w połowie lutego i uprawiane w cyklu przedłużonym do połowy listopada, przy czym uprawiano 3 rośliny w każdym rodzaju maty, w podwieszanych rynnach uprawowych, w szklarni wyposażonej w trójobwodowy system grzewczy, komputerowy system sterowania warunkami mikroklimatu oraz dozownik nawozowy. Wszelkie zabiegi pielęgnacyjne prowadzone były zgodnie z zasadami integrowanej uprawy pomidora pod osłonami. Zaobserwowano, że im większe rozdrobnienie, tym niższy odczyn pH. Frakcja węgla brunatnego o średnicy 20 mm charakteryzowała się odczynem wyższym - pH 5,8, natomiast frakcja ziemista miała odczyn bardziej kwaśny - pH 5,0. Większe rozdrobnienie powodowało wzrost powierzchni aktywnej węgla oraz większą ekstrakcję soli, przede wszystkim siarczanowych. Największa koncentracja dostępnych składników mineralnych występowała w podłożu wykonanym z frakcji ziemistej węgla brunatnego, natomiast najmniejsza w frakcji węgla o średnicy 20 mm. Rozdrobnienie węgla nie miało wpływu na dostępność azotu (N) - wahała się od 1,0 do 2,3 mg/dm3, potasu (K) - wahała się od 9,0 do 12 mg/dm3, fosforu (P) - wahała się od 9,0 do 14 mg/dm3, magnezu (Mg) - wahała się od 69 do 76 mg/dm3 i wapnia (Ca) - wahała się od 1430 do 1550 mg/dm3. Zawartość tych składników w podłożach wykonanych z węgla brunatnego była na zbliżonym poziomie. Stwierdzono, że podłoże wytworzone z węgla brunatnego charakteryzowało się przeciętnie 5,5 razy większą masą objętościową w porównaniu z wełną mineralną, którą dotychczas stosowano w tej szklarni do bezglebowej uprawy pomidorów. Przy tym największą masę objętościową posiadało podłoże wytworzone z najdrobniejszej frakcji węgla brunatnego, tzw. frakcji ziemistej. Im grubsza frakcja węgla, tym mniejsza gęstość objętościowa. Zmieszanie poszczególnych frakcji węgla nieznacznie obniżało gęstość objętościową w stosunku do frakcji ziemistej. I tak - gęstość objętościowa podłoża wytworzonego z frakcji o średnicach 20 mm, 10 mm i 2,5 mm wynosiło nieco ponad 300 kg/m3, podczas gdy przy podłożu z frakcji ziemistej wynosiło nieco ponad 400 kg/m3 (przy wcześniejszej uprawie, z użyciem mat uprawowych z wełny mineralnej odnotowano gęstość objętościową na poziomie nieco ponad 50 kg/m3).
Rozdrabnianie węgla brunatnego poprawiło właściwości wodne podłoży. Frakcja węgla brunatnego o średnicy cząstek 2,5 mm zatrzymywała więcej wody w porównaniu z frakcją o średnicy 20 mm. Zmieszanie grubszych frakcji węgla z frakcją ziemistą zwiększyło w nich zawartość łatwo dostępnej wody. Podłoża o średnicy ziaren węgla od 20 mm do 2,5 mm posiadały większą pojemność powietrzną w porównaniu do pozostałych podłoży wykonanych z węgla brunatnego, jak również w stosunku do wcześniej stosowanej wełny mineralnej.
Badano także prawidłowość odczynu pH strefy korzeniowej nasadzeń pomidorów, co ma ścisły związek z prawidłowym pobieraniem składników pokarmowych. Pożywka przeznaczona do fertygacji pomidorów powinna mieć pH na poziomie 5,3-6,0. W ciągu całego okresu uprawy stwierdzono, że pH podłoży z węgla brunatnego wynosiło średnio 6,0, i było zbliżone do pH podłoży wcześniej stosowanych, tj. z wełny mineralnej (średnie pH 6,4). Węgiel brunatny nie powodował alkalizacji roztworu nawozowego w obrębie ryzosfery, co jest często spotykane w uprawie pomidora na innych podłożach organicznych i stanowi bardzo niekorzystne zjawisko, bowiem wzrost pH w strefie korzeniowej powoduje zakłócenia w pobieraniu niektórych składników, zwłaszcza fosforu i mikroelementów (stwierdzono alkalizację pożywki przeznaczonej do fertygacji pomidora, w obrębie strefy korzeniowej, przy uprawie pomidorów prowadzonej na takich podłożach jak maty kokosowe, słoma zbożowa, trociny czy włókno drzewne).
Przewodnictwo elektryczne właściwe (EC) jest podstawowym wskaźnikiem fizycznym, określającym stężenie wszystkich składników mineralnych znajdujących się w roztworze. Pożywka, dostarczana roślinom przez cały okres uprawy miała stabilne EC, które wahało się od 2,2 do 3,3 mS/cm-1. Większa koncentracja składników pokarmowych występowała na wszystkich stosowanych podłożach z węgla brunatnego i była zbliżona do wartości EC w stosowanej we wcześniejszej uprawie z wełny mineralnej. Wzrost koncentracji składników pokarmowych w podłożach, związany był z większą transpiracją wody przez rośliny w miesiącach letnich, przy dobrych warunkach świetlnych i termicznych oraz selektywnym pobieraniem jonów.
Zawartość N-NO3 w strefie systemu korzeniowego zlokalizowanego w matach uprawowych z węgla brunatnego, podobnie zresztą jak w wełnie mineralnej, wahała się od 200 do 675 mg dm3. W podłożu z węgla brunatnego nie stwierdzono biologicznej sorpcji azotu, która występuje w początkowym okresie uprawy na wszystkich wcześniej znanych podłożach organicznych.
PL 231 010 B1
Podłoże z węgla brunatnego istotnie wpłynęło na plonowanie pomidora szklarniowego odmiany Growdena Fi. Najwyższy plon uzyskano w uprawie pomidora na macie uprawowej z rozdrobnionym węglem brunatnym o średnicy ziaren 2,5 mm, a najniższy w uprawie pomidora na frakcji ziemistej węgla brunatnego. Jednak na wszystkich matach, bez względu na zastosowaną średnicę ziaren węgla, uzyskano owoce o bardzo dobrej jakości, przewyższającej jakość pomidorów uprawianych na wełnie mineralnej i na dotąd stosowanych innych podłożach organicznych - przede wszystkim dobrze wypełnione, twarde, zawierające więcej suchej masy, białka, cukrów prostych, błonnika czy magnezu oraz mające dobre wybarwienie wewnętrzne jak i zewnętrzne.
Powyższy przykład nie wyczerpuje możliwości zastosowania podłoża do bezglebowej uprawy roślin według wynalazku. Z równym powodzeniem i pozytywnymi skutkami może on być zastosowany ponownie, po zakończonym cyklu uprawowym, jako samodzielne podłoże lub w mieszance z innymi podłożami, do produkcji innych gatunków roślin, na przykład rozsad warzywnych, doniczkowych roślin ozdobnych, czy w szkółkarstwie roślin ozdobnych. Nie zaleca się po jednorocznym cyklu uprawiania w dalszym ciągu tego samego gatunku roślin, chociaż właściwości fizyczne podłoża według wynalazku w zasadzie się nie zmieniają, gdyż istnieje obawa przed przeniesieniem patogenów chorobotwórczych w obrębie tego samego gatunku roślin, dlatego też zaleca się zastosowanie zmiany gatunku roślin.
Ponadto pouprawowe podłoże według wynalazku można wykorzystać w rolnictwie - przykładowo rozsypać na polu, przyorać i w ten sposób wzbogacić glebę w substancję organiczną.

Claims (3)

  1. Zastrzeżenia patentowe
    1. Podłoże do bezglebowej uprawy roślin, zwłaszcza do uprawy warzyw w uprawach szklarniowych i tunelach foliowych, zawierające co najmniej 80% materii organicznej w stosunku do suchej masy, charakteryzujące się porowatością całkowitą w zakresie 70-90%, obecnością wolnych przestrzeni wypełnionych wodą i powietrzem, podsiąkliwe i zachowujące stałe właściwości powietrzno-wodne, znamienne tym, że stanowi je naturalny węgiel brunatny, rozdrobniony do frakcji cząstek o średnicy od 1,0 do 20 mm i/lub do frakcji ziemistej o granulacji wynoszącej do 1,0 mm.
  2. 2. Podłoże uprawowe według zastrz. 1, znamienne tym, że węgiel brunatny jest rozdrobniony do frakcji cząstek o średnicy 2,5 mm.
  3. 3. Podłoże uprawowe według zastrz. 1, znamienne tym, że jest konfekcjonowane w postaci prostopadłościennych balotów obciągniętych rękawem foliowym, którego ścianki szczytowe i boczne są zgrzewane, wyposażone w otwory drenażowe i z których odsysane jest wolne powietrze.
PL410048A 2014-11-03 2014-11-03 Podłoże do bezglebowej uprawy roślin PL231010B1 (pl)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL410048A PL231010B1 (pl) 2014-11-03 2014-11-03 Podłoże do bezglebowej uprawy roślin
EP15460101.7A EP3014985A1 (en) 2014-11-03 2015-10-27 Substrate for soilless cultivation of plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL410048A PL231010B1 (pl) 2014-11-03 2014-11-03 Podłoże do bezglebowej uprawy roślin

Publications (2)

Publication Number Publication Date
PL410048A1 PL410048A1 (pl) 2016-05-09
PL231010B1 true PL231010B1 (pl) 2019-01-31

Family

ID=55066522

Family Applications (1)

Application Number Title Priority Date Filing Date
PL410048A PL231010B1 (pl) 2014-11-03 2014-11-03 Podłoże do bezglebowej uprawy roślin

Country Status (2)

Country Link
EP (1) EP3014985A1 (pl)
PL (1) PL231010B1 (pl)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108651214B (zh) * 2018-06-27 2020-07-21 钟桂冰 利用煤泥制备种植砖的方法及其用途
CN114315453A (zh) * 2020-09-30 2022-04-12 惠州市四季鲜绿色食品有限公司 一种用于大棚种植的青瓜沙培营养液
WO2022112146A1 (en) 2020-11-24 2022-06-02 Enkev Polska S.A. A biodegradable substrate for plant cultivation
CN113024307B (zh) * 2021-03-17 2023-11-10 承德市艺风园林绿化工程有限公司 种植用有机基质及其制备方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9100276D0 (en) * 1991-01-07 1991-02-20 E J Godwin Peat Ind Limited Plant growth medium
JP3051345B2 (ja) * 1995-09-19 2000-06-12 みかど化工株式会社 植物育成方法
PL190225B1 (pl) 1999-09-08 2005-11-30 Inst Warzywnictwa Im Emila Chr Sposób wytwarzania bezglebowego podłoża uprawowego urządzenie do wytwarzania bezglebowego podłoża uprawowego
PL204941B1 (pl) 2003-01-20 2010-02-26 Inst Warzywnictwa Im Emila Chr Bezglebowe podłoże do upraw

Also Published As

Publication number Publication date
EP3014985A1 (en) 2016-05-04
PL410048A1 (pl) 2016-05-09

Similar Documents

Publication Publication Date Title
Bunt Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants
Raviv et al. Substrates and their analysis
Kitir et al. Peat use in horticulture
US20130212943A1 (en) Compressed coconut coir pith granules and methods for the production and use thereof
Aklibasinda et al. Effects of different growing media on Scotch pine (Pinus sylvestris) production.
Krishnapillai et al. Locally produced cocopeat growing media for container plant production
Sachin et al. Use of alternative growing media in ornamental plants
PL231010B1 (pl) Podłoże do bezglebowej uprawy roślin
KR20130068290A (ko) 화단용 국화의 식재를 위한 매트 시스템
KR102173970B1 (ko) 원예용 상토 조성물 및 그 제조 방법
IE41491B1 (en) Process for preparing peat bodies especially suitable as substrates for growing seeds and plant
JP2000073372A (ja) 法面等の植生基盤材及び緑化工法
Esringü et al. Effects of Different Growing Media on Growth Parameters of Zinnia (Zinnia elegans)
US20220204847A1 (en) Method of Biopolymer Soil Additive
Peyvast et al. Effect of substrate on greenhouse cucumber production in soilless culture
Fields et al. Developments in inorganic materials, synthetic organic materials and peat in soilless culture systems
Benoit et al. Growing cucumber on ecologically sound substrates
Natarajan et al. Standardization of Growbag Media with Nutriseed Pack Fertilization for Tomato Crop under Matric Suction Irrigation.
Farag et al. Utilization of rice straw and vermicompost in vegetable production via soilless culture
JPH01312934A (ja) 植物栽培用培地
Mridha et al. Prospects of natural fibre crop based plant growth substrate in soilless crop production system: A Review
Sahoo et al. Artificial Media for Soilless Cultivation
KR102668817B1 (ko) 양파 기계 정식용 상토 조성물
Tolessa Review of different propagation media for potato mini tuber production under screen house
Arumugam et al. Soilless Media for Nurseries