PL145417B1 - Method of continuously producing isopropyl alcohol or 2-nd order butyl alcohol - Google Patents

Method of continuously producing isopropyl alcohol or 2-nd order butyl alcohol Download PDF

Info

Publication number
PL145417B1
PL145417B1 PL1985253569A PL25356985A PL145417B1 PL 145417 B1 PL145417 B1 PL 145417B1 PL 1985253569 A PL1985253569 A PL 1985253569A PL 25356985 A PL25356985 A PL 25356985A PL 145417 B1 PL145417 B1 PL 145417B1
Authority
PL
Poland
Prior art keywords
ether
reaction
product
alcohol
reactor
Prior art date
Application number
PL1985253569A
Other languages
Polish (pl)
Other versions
PL253569A1 (en
Original Assignee
Texaco Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Ag filed Critical Texaco Ag
Publication of PL253569A1 publication Critical patent/PL253569A1/en
Publication of PL145417B1 publication Critical patent/PL145417B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

A method is provided for the continuous production of isopropanol and secondary butyl alcohol by catalytically hydrating the corresponding aliphatic olefin in an elongated reaction vessel in which co-product by-product dialkyl ether is separated from the reaction product and recycled to the reaction mixture being introduced therein at a point between the olefin feed inlet and the product outlet about 5 to 30 percent of the distance before the product outlet.

Description

Opis patentowy opublikowano: 89.05.31 145417 Int. Cl.4 C07C 29/10 C07C 31/10 C07C 31/12 Twórca wynalazku Uprawniony z patentuj Deutsche Texaco AG, Hamburg (R&ptiblika Federalna Niemiec) SPOSÓB CIAGLEGO WYTWARZANIA ALKOHOLU IZOPROPYLOWEGO ALBO ALKOHOLU II-RZED.-BUTYLOWEGO Niniejszy wynalazek dotyczy sposobu ciaglego wytwarzania alkoholu izopropylowego albo alkoholu II-rzed. butylowego przez bezposrednie katalityczne uwodnienie odpowiednich olefin za pomoca wody w obecnosci kwasnych katalizatorów w podwyzszonej temperaturze i pod zwiek¬ szonym cisnieniem i przy zawracaniu eteru utworzonego w reakcji jako produkt uboczny i wy¬ odrebnionego z produktu reakcji* Znane jest wytwarzanie nizszych drugorzedowych alkoholi w ten sposób, ze odpowiednie olefiny razem z woda poddaje sie reakoji pod zwiekszonym cisnieniem i w podwyzszonej tempe¬ raturze na kwasnych katalizatorach. Jako katalizatory nadaja sie w zasadzie organiczne zy¬ wice kwasu sulfonowego jak równiez nieorganiczne, naladowane kwasami porowate materialy nosników* Selektywnosc tych sposobów pogarsza tworzenie eterów, patrz np. Hydrocarbon Pro¬ cessing, listopad 1972, str. 113 - 116. Wiadomo równiez, ze w procesie ciaglym, tworzenie eteru mozna powstrzymac przez zawracanie ich do strumienia wsadu, na podstawie polozenia równowagi, patrz np. Chemical Engineering, wrzesien 4, 1972, str. 50, 51 albo opis patento¬ wy DE-OS nr 27 59 237 • Alternatywne mozliwosci zwiekszenia ogólnej selektywnosci ciaglego procesu powstaja przez oddzielne rozszczepianie utworzonego eteru albo w olefinie wyjscio¬ wej i alkoholu, patrz np. opis patentowy Stanów Zjednoczonych Ameryki nr 4 352 945 albo w dwóch czasteczkach alkoholu na mol eteru w obecnosci nadmiaru wody, zgloszenie patentowe RFN nr 33 36 644* Obydwie ostatnio wymienione mozliwosci maja miedzy innymi te wade, ze do ich realizacji jeat potrzebny dodatkowy reaktor* W przypadku pierwszej z wymienionych moz¬ liwosci, zawracania eteru do strumienia wejsciowego, nastepuje silny spadek wydajnosci re¬ aktora, jak wskazuja wlasne doswiadczenia (por. przyklady) porównawcze III. IV i VI .Zadaniem niniejszego wynalazku jest zwiekszenie selektywnosci tworzenia alkoholu bez ubytków wydajnosci wskutek powstrzymania tworzenia eteru albo zwiekszenia nakladu aparatu¬ rowego w postaoi dodatkowych reaktorów. Zadanie rozwiazano wedlug wynalazku w ten sposób, ze eter oddzielnie od substratów reakcji wprowadza sie do strefy reakoji w miejscu oddalo- 145 4172 145 417 nym o 5 - 30%, od konoa strefy reakcji, w odniesieniu do calkowitej dlugosci strefy reakcji.Wedlu* korzystnej postaci wykonania wprowadza sie eter w miejsou oddalonym o 10 - 20% od konca strefy reakcji. Mianowicie znaleziono nieoczekiwanie, ze wydajnosc reaktora zarówno w procesie z zastosowaniem reaktora ooiekowego jak równiez szlamowego w porównaniu z koncen- ojonalnym sposobem postepowania z zawracaniem eteru mozna zwiekszyc, jesli zwrócony produkt uboozny nie jest wprowadzany do strumienia wsadu, lecz dodaje sie go dopiero krótko przed konoem strefy reakcji. Pomimo bardzo krótkiej strefy reakcji wynoszaoej nawet tylko 5 - 10% ogólnej dlugosci strefy osiaga sie ilosciowe rozszczepienie eteru* Jest to dla specjalisty szozególnie nieoczekiwane.Zalaozone rysunki wyjasniaja przyklady wykonania sposobu wedlug wynalazku. Fig. 1 przed¬ stawia sohemat reaktora ooiekowego do uwodnienia olefin z zawracaniem eteru; fig. 2 przed¬ stawia sohemat reaktora szlamowego do uwodnienia olefin z zawracaniem eteru. Wedlug fig. 1 przez przewód 1 dozuje sie mieszanine olefiny i alkenu i przez przewód 2 wode reakcyjna do reaktora rurowego 4 napelnionego kwasnym katalizatorem. W celu lepszego opanowania ciepla reakcji mozna przeprowadzic dodawanie wody równiez jak przedstawiono odcinkami. W kwasno ka¬ talizowanej reakcji wielofazowej pod zwiekszonym oisnieniem i w podwyzszonej temperaturze tworzy sie wówczas zadany alkohol. Niepozadana reakcje uboczna lub nastepoza powstrzymuje sie przez dodawanie oddzielonego, zawróconego eteru. Dodawanie przeprowadza sie przy tym do ozesci reaktora polozonej w dól strumienia przez przewód 3.Produkt reakcji prowadzi sie przez przewód 5 do oddzielacza 6 i tam rozdziela sie na fa¬ ze organiczna, przewód 7, i faze wodna, przewód 8. Przeróbke obydwóch faz przeprowadza sie w znany sposób. Oddzielona olefine fazy organicznej mozna zawracac zaleznie od zadanego stopnia przemiany. Oddzielony eter zawraca sie do procesu przez przewód 3* Specyficzna wy¬ dajnosc reaktora, utworzony alkohol na objetosc katalizatora i jednostke czasu, jest równa albo wieksza od wydajnosoi odpowiedniego reaktora bez wprowadzania eteru. Jest ona wieksza niz wydajnosc reaktora z zawracaniem eteru przez przewód 1. Fig. 2 przedstawia przyklad za¬ stosowania dla reaktora szlamowego 14. Przez przewody 11 i 12 doprowadza sie olefine i wode reakcyjna do reaktora. Eter oddzielony od strumienia produktu zawraca sie przez przewód 13 do tylnej czesci reaktora. Rozdzielanie strumienia produktu na faze organiczna, strumien 17, i faze wodna, strumien 18, przeprowadza sie w oddzielaczu 16. Przeróbke przeprowadza sie w znany sposób. Zaleznie od wymagan mozna oddzielona olefine poddac ponownie reakcji. Odnos¬ nie wydajnosoi reaktora wazne jest to, co powiedziano w odniesieniu do reaktora ooiekowego.Jako katalizator stosuje sie katalizator przyjety dla procesów uwadniania olefin.Szozególnie korzystne sa do tego oelu odporne na temperature zywice wymieniaczy jonowych typu kwasu sulfonowego. Temperatura reakcji wynosi 100 - 200°C. Cisnienie w zakresie 40 - 120 • 10^ Pa. Stosunek molowy moli olefiny do moli wody wynosi 0,5 : 1 do 30 t 1. Ko¬ rzystnie reakcje przeprowadza sie dwufazowo z zastosowaniem olefiny w postaci pary i wody w stanie cieklym. Ilosc prowadzonego w obiegu eteru wynosi 5 - 30% wagowych w odniesieniu do ilosci olefiny. Nastepujace przyklady wyjasniaja wynalazek, przy ozym powolano sie na zalaozone rysunki.Przyklad porównawczy I. Do reaktora ooiekowego 4 o dlugosci 9 m i sredni- oy 280 mm, który byl wypelniony 450 1 Amberlite 252, silnie kwasna zywioa kationitu, wpro¬ wadzano na godzine 74,1 kg 92%-«° propanu przez przewód 1 i 540 kg odmineralizowanej wody przez przewód 2. Obydwa strumienie doprowadzono przez podgrzewacz do temperatury reakcji i przy glowicy doprowadzono do reaktora ooiekowego 4. W celu sterowania temperatura odga- leziono czesc wody przed podgrzewaczem i doprowadzono w kilku miejscach do reaktora. Przez przewód 3 nie wprowadzono, w tym przebiegu doswiadczenia, eteru do reaktora. Strumien pro¬ duktu 5 rozdzielono w oddzielaczu 6 na faze wodna i organiczna. Przez przewód 7 otrzymywano na godzine 29t4 kg fazy organicznej o nastepujacym przecietnym skladzie: 62,5% propanu/pro- penu; 17f0% eteru dwuizopropylowego (DIPE); 20,4% alkoholu izopropylowego (TPA). Przez przewód 8 otrzymywano na godzine 583 kg wodnego IPA, o zawartosci IPA wynoszacej 11,5% i zawartosci DIPE 0,1%. Cisnienie reakcji wynosilo 100 • 10^ Pa, temperatura reakcji sred¬ nio 142 C. W tym przebiegu doswiadczenia otrzymywano na godzine przeoietnie 73tO kg IPA i 5f6 kg DIPE. Wydajnosc wynosila 2,70 moli/l kat • h, tworzenie eteru 7,1% (IPA? DIPE B 100%) 1 przemiana olefin okolo 80%.145 417 3 Przyklad porównawozy II. Powtórzono przyklad porównawozy I z tym, ze zamiast 9^-go propanu zastosowano teraz taka sama Ilosc 80*-go propanu. Wszystkie Inne warunki utrzymywano niezmienne* Otrzymywano na godzine 54,1 kg IPA i 7,5 kg DIPE. Wydajnosc wyno¬ sila 2,00 moli IPA/1 kat • h, tworzenie eteru 12,2* (IPA + DIPE n 100*).Przyklad porównawczy III. W oparciu o ww. opis patentowy Stanów Zjednoozonyeh Ameryki powtórzono przyklad porównawczy I z tym, ze w takich samyoh warunkach do strumie¬ nia 1 dodawano teraz 7,0 kg/h DIPE. Przemiana propenu obnizyla Bie do 59*. Otrzymano 54,1 kg/h IPA i 9,5 kg/h DIPE. Wydajnosc wynosila 2,00 mola IPA/1 kat • h, tworzenie eteru 4,4*.Przyklad porównawczy IV. Powtórzono przyklad porównawczy II z tym, ze do stru¬ mienia wsadowego wprowadzano dodatkowo 7,0 kg/h DIPB. Wszystkie inne warunki utrzymywano niezmienione. Otrzymywano na godzine 43,2 kg IPA i 10,1 kg DIPB. Wydajnosc wynosila 1,6 moli IPA/1 kat • h, tworzenie eteru wynosilo 6,7*.Przyklad I. Przyklad porównawczy III powtórzono w takich samyoh warunkach, tylko ze 7,0 kg/h DIPB wprowadzano dopiero 1 m przed koncem strefy reakoyjnej (zawieraja¬ cej katalizator), która miala dlugosc 9 m. Przemiana propenu wynosila teraz przeciet¬ nie 7Q*. Otrzymano 76,0 kg/h IPA i 7,0 kg/h DIPB. Wydajnosc wynosila 2,81 moli IPA/1 kat-h.W syntezie ogólem nie tworzyl sie zaden eter.Przyklad II. Przyklad I powtórzono z tym, ze wprowadzana ilosc eteru zwiek¬ szono do 9 kg/h. Otrzymano teraz 76,9 kg/h IPA i 7,1 kg/h DIPB. Wydajnosc wynosila te¬ raz 2,84 moli IPA/1 kat • h. Dodatkowo DIPB zostal ponownie rozszczepiony do IPA.Przyklad III. Przyklad porównawczy IV powtórzono w takich samych warunkaoh z tym, ze dodawano 7,0 kg eteru na godzine, na 1 metr przed koncem strefy reakcyjnej* Otrzymywano na godzine 58,5 kg IPA i 7,6 kg DIPE. Wydajnosc wynosila 2,15 moli IPA/1 kat«h.Tworzenie eteru wynosilo 1,0*.Przyklad IV. Przyklad III powtórzono z tym, ze wprowadzana ilosc dla DIPB zwiekszono z 7,0 kg/h do 9,0 kg/h. Otrzymano jak w przykladzie III 58,5 kg/h IPA i 7,6 kg/h DIPE. Dodatkowo eter dwuizopropylowy zostal rozszczepiony do IPA.Przyklad porównawczy V. Do reaktora szlamowego 14 o dlugosci 13,5 m i wolnej powierzchni przekroju 5 cm , który tyl wypelniony 6,75 I Amberlite 252, silnie kwasnej zy- wioy kationitu, dozowano przez przewód 12 na godzine 2000 g wody i przez przewód 11 527 g C^-zwiazków, zawierajaoyoh 98,9* n-butenów oraz 8270 g 90*-go zawracanego strumienia bute¬ nu. Cisnienie w reaktorze wynosilo 60 •10^ Pa. Ogrzewany plaszczowo reaktor jak równiez nie narysowany podgrzewacz wstepny utrzymywano w temperaturze 155 C. Strumien produktu 15 rozdzielano w oddzielaozu 16 na faze wodna i organiczna. Przez przewód 18 otrzymywano na godzine 1830 g roztworu wodnego, który zawieral 1,1* II-rzed.butanolu (SBA). Faze organicz¬ na rozdzielono za pomoca ciaglej destylacji. Oddzielono przy tym na godzine 58O g II-rzed. butanolu (SBA), 17 g eteru dwuizobutylowego (DIBB) i 40 g wody z cieklej fazy C^. Gaz ciek¬ ly otrzymywano na godzine 8330 g o zawartosci 90* n-butenu. Czesc tego gazu trzeba bylo od¬ dzielic z powodu zawartosci alkanów w gazie wsadowym, pozostale 8270 g, jak wspomniano wy¬ zej, zawracano do reaktora przez przewód 11. Ogólem otrzymywano na godzine 600 g SBA 1 17 g DIBE. Przemiana n-butenu wynosila 90*. Wydajnosc reaktora wyliozona wynosila 1,20 moli/l • h, zawartosc eteru 2f8* (SBA ? DIBE = 100*).Przyklad porównawczy VI. Przyklad porównawczy V powtórzono z tym, ze do stru¬ mienia gazowego C^ w przewodzie 11 dodawano na godzine 1140 g DIBB. W oelu utrzymania sta¬ lej przemiany trzeba bylo jednoczesnie odbierac strumien gazu swiezego na 189 g na godzine.W tym doswiadczeniu otrzymano ogólem na godzine 495 B SBA i 900 g DIBB. Zostalo rozszcze¬ pione zatem na godzine 240 g DIBB, przy czym jednoczesnie nastapilo zmniejszenie wydajnosci do 0,99 moli/l • h.Przyklad V. Przyklad porównawozy V powtórzono z tym, ze teraz dodatkowo przez przewód 13 wprowadzano 2,5 m przed koncem strefy reakcyjnej 690 g DIBB na godzine. Jedno- ozesnie, aby utrzymac Jednakowa przemiane butenu do SBA ustalono zasilanie swiezego gazu Ch na 527 g. Z faza wodna z oddzielacza 16 otrzymywano znowu na godzine 20 g SBA. Z fazy orga¬ nicznej obok 580 g SBA oddzielono teraz równiez 690 g DIBB, tak ze w syntezie ogólem nie zo¬ stal utworzony eter. Wydajnosc wynosila Jak w przykladzie porównawozym V 1,20 moli/l • h.4 145 417 Przyklad VI. Przyklad V powtórzono z t,/mt ze dozowana przez przewód 13 ilosc DIBE zwiekszono do 1140 g na godzine. Równolegle do itego mozna bylo cofnac zasilanie swie¬ zym gazem -na 437 g na godzine* Ilosc alkoholu pozostawala niezmieniona w porównania z przy¬ kladem Vf DIBB oddzielano w ilosci 990 g na godzine.W tyoh warunkach doswiadozenia uwodniono zatem, przy niezmienionej wydajnosci na godzi¬ ne, 150 g DIBB do alkoholu. PL PL PLPatent published: 89.05.31 145417 Int. Cl.4 C07C 29/10 C07C 31/10 C07C 31/12 Inventor Patent holder Deutsche Texaco AG, Hamburg (Federal Library of Germany) PROCESS FOR CONTINUOUSLY PRODUCING ISOPROPYL ALCOHOL OR SECONDARY ALCOHOL .-BUTYL The present invention relates to a process for the continuous production of isopropyl alcohol or secondary alcohol. by direct catalytic hydration of the appropriate olefins with water in the presence of acidic catalysts at elevated temperature and pressure and recycling the ether formed as a by-product of the reaction and recovered from the reaction product. It is known to produce lower secondary alcohols in this manner that the corresponding olefins together with water are reacted under increased pressure and elevated temperature over acidic catalysts. In principle, organic sulfonic acid resins as well as inorganic, acid-charged porous support materials are suitable as catalysts. in a continuous process, ether formation can be suppressed by recycling them to the feed stream, based on the equilibrium position, see, for example, Chemical Engineering, Sep. 4, 1972, pp. 50, 51 or DE-OS Patent No. 27,59,237 • Alternative opportunities to increase the overall selectivity of the continuous process arise by separate splitting of the ether formed either in the starting olefin and the alcohol, see, for example, US Pat. No. 4,352,945, or in two molecules of alcohol per mole of ether in the presence of excess water, German Patent Application 33 36 644* Both of the last mentioned possibilities have, among other things, the disadvantage that for their implementation additional rea which* In the case of the first of the mentioned possibilities, the return of ether to the input stream, there is a strong decrease in reactor efficiency, as our own experience shows (cf. examples) comparative III. IV and VI. It is an object of the present invention to increase the selectivity of alcohol formation without loss of yield by inhibiting ether formation or by increasing the cost of additional reactors. According to the invention, the task is solved in such a way that the ether, separately from the reactants, is introduced into the reaction zone at a distance of 5 - 30% from the end of the reaction zone, in relation to the total length of the reaction zone. In one embodiment, the ether is introduced at a point 10 - 20% from the end of the reaction zone. Namely, it has surprisingly been found that the reactor efficiency of both the pan and sludge reactor process compared to the conventional ether recycling process can be improved if the recycled lean product is not introduced into the feed stream but is only added shortly before the end of the ether recycling process. reaction zone. Despite a very short reaction zone of as little as 5 - 10% of the total zone length, quantitative ether cleavage is achieved. This is generally unexpected for a person skilled in the art. The accompanying drawings illustrate embodiments of the process according to the invention. Fig. 1 shows a diagram of a tank reactor for olefin hydration with ether recycling; Fig. 2 shows a scheme of a slurry reactor for olefin hydration with ether recycling. According to FIG. 1, a mixture of olefin and alkene is metered via line 1 and reaction water via line 2 into a tubular reactor 4 filled with an acid catalyst. In order to better control the heat of reaction, the addition of water can also be carried out as shown in sections. In an acid catalyzed multiphase reaction under increased pressure and elevated temperature, the desired alcohol is then formed. An undesirable side reaction or aftermath is stopped by adding the separated, recycled ether. The addition is carried out to the downstream portion of the reactor via line 3. The reaction product is conducted via line 5 to a separator 6 where it is separated into an organic phase, line 7, and an aqueous phase, line 8. Both phases are worked up by in a known way. The separated olefin of the organic phase can be recycled depending on the desired degree of conversion. The separated ether is recycled to the process via line 3. The specific reactor capacity, alcohol formed per catalyst volume per unit time, is equal to or greater than the capacity of a suitable reactor without ether feed. This is greater than the capacity of the reactor with ether recycling via line 1. Fig. 2 illustrates an application example for slurry reactor 14. Through lines 11 and 12, olefin and reaction water are fed to the reactor. The ether separated from the product stream is recycled via line 13 to the rear of the reactor. Separation of the product stream into an organic phase, stream 17, and an aqueous phase, stream 18, is performed in separator 16. The work-up is performed in a known manner. Depending on the requirements, the separated olefin can be reacted again. With respect to reactor performance, what is said with respect to the tank reactor is valid. The catalyst used is a catalyst commonly used for olefin hydration processes. Temperature resistant ion exchange resins of the sulfonic acid type are particularly preferred for this purpose. The reaction temperature is 100 - 200°C. Pressure in the range of 40 - 120 • 10^ Pa. The molar ratio of moles of olefin to moles of water is 0.5:1 to 30 tons 1. Preferably, the reactions are carried out in two phases using the olefin in the form of vapor and liquid water. The amount of circulated ether is 5 - 30% by weight based on the amount of olefin. The following examples illustrate the invention, in which reference is made to the accompanying drawings. .1 kg of 92% propane via line 1 and 540 kg of demineralized water via line 2. Both streams were led through the preheater to the reaction temperature and at the head were led to the tank reactor 4. In order to control the temperature, part of the water before the preheater and fed into the reactor at several points. No ether was introduced into the reactor through line 3 in this run of the experiment. The product stream 5 was separated in a separator 6 into an aqueous and an organic phase. Through line 7, 29t4 kg of organic phase was obtained per hour with the following average composition: 62.5% propane/prope; 17f0% diisopropyl ether (DIPE); 20.4% isopropyl alcohol (TPA). Through line 8, 583 kg of aqueous IPA was obtained per hour, having an IPA content of 11.5% and a DIPE content of 0.1%. The reaction pressure was 100 bar, the reaction temperature averaged 142°C. In this run of experiments, an average of 73.0 kg of IPA and 5.6 kg of DIPE was obtained per hour. The yield was 2.70 mol/l cat.h, ether formation 7.1% (IPA-DIPE B 100%) and olefin conversion about 80%. Comparative Example II. Comparison example I was repeated except that the same amount of 80% propane was now used instead of 9' propane. All other conditions were kept constant* 54.1 kg of IPA and 7.5 kg of DIPE were obtained per hour. The yield was 2.00 moles IPA/1 cat.h, ether formation 12.2* (IPA + DIPE n 100*). Comparative Example III. Based on the above US Patent Comparative Example 1 was repeated except that 7.0 kg/h of DIPE was now added to stream 1 under the same conditions. Propene conversion lowered Bie to 59*. 54.1 kg/h of IPA and 9.5 kg/h of DIPE were obtained. The yield was 2.00 mol IPA/1 cat.h, ether formation 4.4*. Comparative Example IV. Comparative Example II was repeated except that an additional 7.0 kg/hr of DIPB was introduced into the feed stream. All other conditions were kept unchanged. 43.2 kg of IPA and 10.1 kg of DIPB were obtained per hour. The yield was 1.6 moles of IPA/1 cat.h, the ether formation was 6.7*. (containing the catalyst) which was 9 m long. The propene conversion now averaged 70*. 76.0 kg/h of IPA and 7.0 kg/h of DIPB were obtained. The yield was 2.81 moles of IPA/1 kat-h. No ether was formed in the overall synthesis. Example II. Example 1 was repeated except that the ether feed rate was increased to 9 kg/h. 76.9 kg/h of IPA and 7.1 kg/h of DIPB were now obtained. The yield was now 2.84 moles of IPA/1 cat.h. In addition, DIPB was recleaved to IPA. Example III. Comparative Example IV was repeated under the same conditions except that 7.0 kg of ether was added per hour, 1 meter before the end of the reaction zone. 58.5 kg of IPA and 7.6 kg of DIPE were obtained per hour. The yield was 2.15 moles of IPA/1 cat.h. Ether formation was 1.0*. Example IV. Example III was repeated except that the input amount for DIPB was increased from 7.0 kg/h to 9.0 kg/h. As in Example III, 58.5 kg/h of IPA and 7.6 kg/h of DIPE were obtained. In addition, diisopropyl ether was cleaved to IPA. Comparative Example V. A 13.5 m long slurry reactor 14 with a free cross-sectional area of 5 cm, which was filled with 6.75 L of Amberlite 252, a strongly acidic cation exchanger element, was dosed via line 12 at the hourly 2,000 g of water and 11,527 g of C 2 -compounds via line, containing 98.9% n-butenes and 8,270 g of 90% butene recycle stream. The pressure in the reactor was 60 bar. The jacket-heated reactor as well as the non-drawn preheater were maintained at 155°C. The product stream 15 was separated in the separator 16 into an aqueous and an organic phase. Through line 18, 1830 g of an aqueous solution containing 1.1% of secondary butanol (SBA) were obtained per hour. The organic phase was separated by continuous distillation. 580 g of the second order were separated per hour. butanol (SBA), 17 g of diisobutyl ether (DIBB) and 40 g of water from the C 2 liquid phase. The liquefied gas obtained per hour was 8330 g with a content of 90% n-butene. Some of this gas had to be separated due to the alkane content of the feed gas, the remaining 8,270 g, as mentioned above, was recycled to the reactor via line 11. A total of 600 g of SBA and 17 g of DIBE was obtained per hour. The n-butene conversion was 90*. The calculated reactor yield was 1.20 mol/l·h, ether content 2f8* (SBA·DIBE=100*). Comparative Example VI. Comparative Example 5 was repeated except that 1140 g of DIBB was added per hour to the C 2 gas stream in line 11. In order to maintain constant conversion, a fresh gas stream of 189 grams per hour had to be taken off simultaneously. In this experiment, a total of 495 B SBA and 900 g DIBB per hour were obtained. Thus, 240 g of DIBB were split per hour, at the same time reducing the yield to 0.99 mol/l.h. reaction zone 690 g DIBB per hour. At the same time, in order to maintain the same conversion of butene to SBA, the fresh gas feed of Ch was set at 527 g. With the water phase from the separator 16, 20 g of SBA were again obtained per hour. In addition to 580 g of SBA, 690 g of DIBB were now separated from the organic phase, so that no ether was formed in the synthesis. The yield was as in Comparative Example V 1.20 mol/l.h.4 145 417 Example VI. Example 5 was repeated with t/mt and the amount of DIBE dispensed through line 13 was increased to 1140 g per hour. In parallel to this, the fresh gas feed could be switched back to 437 g/h. May ne, 150 g DIBB for alcohol. PL PL PL

Claims (2)

1. Zastrzezenia patentowe 1. Sposób oiaglego wytwarzania alkoholu izopropylowego albo alkoholu Il-rzed.-butylo- wego przez bezposrednie katalityczne uwodnienie odpowiednich olefin za pomoca wody w obeo- nosoi kwasnych katalizatorów w podwyzszonej temperaturze i pod zwiekszonym cisnieniem 1 przy zawracaniu eteru utworzonego w reakcji jako produkt uboczny i wyodrebnionego z produk¬ tu reakcji 9 znamienny tym, ze eter, oddzielnie od substratów reakcji, wprowa¬ dza sie do strefy reakojl w miejscu oddalonym 05-- 30* od konca strefy reakcji, w od¬ niesieniu do ogólnej dlugosci strefy reakcji. 2. Sposób wedlug zastrz. 1, znamienny tym, ze eter, wprowadza sie do stre¬ fy reakcji w miejscu oddalonym o 10 - 20% od konoa strefy reakcji, w odniesieniu do ogólnej dlugosci strefy reakcji. F i g.1 t ^145 417 F i g. 1. Claims 1. Process for batchwise production of isopropyl alcohol or tert-butyl alcohol by direct catalytic hydration of the appropriate olefins with water in a presence of acidic catalysts at elevated temperature and pressure, and with recycling of the ether formed in the reaction as a by-product and isolated from the reaction product 9, characterized in that the ether, separately from the reactants, is introduced into the reaction zone at a point 05-30* from the end of the reaction zone with respect to the total length of the zone reaction. 2. The method of claim A process as claimed in claim 1 wherein the ether is introduced into the reaction zone at a point 10-20% from the end of the reaction zone, relative to the total length of the reaction zone. F and g.1 t ^145 417 F and g. 2. O 13 c^- irO 11. 11 O PL PL PL2. O 13 c^- irO 11. 11 O PL PL PL
PL1985253569A 1984-05-24 1985-05-23 Method of continuously producing isopropyl alcohol or 2-nd order butyl alcohol PL145417B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3419392A DE3419392C1 (en) 1984-05-24 1984-05-24 Process for the continuous production of isopropyl alcohol or sec. Butyl alcohol

Publications (2)

Publication Number Publication Date
PL253569A1 PL253569A1 (en) 1986-02-11
PL145417B1 true PL145417B1 (en) 1988-09-30

Family

ID=6236759

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1985253569A PL145417B1 (en) 1984-05-24 1985-05-23 Method of continuously producing isopropyl alcohol or 2-nd order butyl alcohol

Country Status (19)

Country Link
US (1) US4579984A (en)
EP (1) EP0162362B1 (en)
JP (1) JPS60260530A (en)
AT (1) ATE30711T1 (en)
AU (1) AU576243B2 (en)
CA (1) CA1246620A (en)
CS (1) CS266569B2 (en)
DD (1) DD234665A5 (en)
DE (2) DE3419392C1 (en)
DK (1) DK173271B1 (en)
ES (1) ES543053A0 (en)
FI (1) FI82679C (en)
IN (1) IN164716B (en)
NO (1) NO159720C (en)
PL (1) PL145417B1 (en)
RO (1) RO91490B (en)
SU (1) SU1417792A3 (en)
YU (1) YU43595B (en)
ZA (1) ZA853297B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3512518A1 (en) * 1985-04-06 1986-10-09 Deutsche Texaco Ag, 2000 Hamburg METHOD FOR THE CONTINUOUS PRODUCTION OF LOW ALCOHOLS
DE3628008C1 (en) * 1986-08-19 1987-11-05 Deutsche Texaco Ag, 2000 Hamburg, De
AU598845B2 (en) * 1986-08-19 1990-07-05 Rwe-Dea Aktiengesellschaft Fur Mineraloel Und Chemie Process for the production of isopropanol and tertiary alcohols with 4 to 5 carbon atoms
DE3628007C1 (en) * 1986-08-19 1987-11-05 Deutsche Texaco Ag, 2000 Hamburg, De
IN170837B (en) * 1987-11-17 1992-05-30 Council Scient Ind Res
US4935552A (en) * 1989-01-12 1990-06-19 Mobil Oil Corporation Dual stage process for the production of ethers
WO1992001661A1 (en) * 1990-07-25 1992-02-06 Mobil Oil Corporation Reactor quenching for catalytic olefin hydration in ether production
US5162591A (en) * 1990-07-25 1992-11-10 Mobil Oil Corporation Catalytic olefin hydration for ether production
US5444168A (en) * 1994-05-16 1995-08-22 Mobil Oil Corporation Process for the production of symmetrical ethers from secondary alcohols
US5569789A (en) * 1994-12-01 1996-10-29 Mobil Oil Corporation Multistage indirect propylene hydration process for the production of diisopropyl ether and isopropanol
CN1101799C (en) * 1999-12-13 2003-02-19 孙业茂 Multiple-section water circulation resin process of preparing para-butanol
US20040236158A1 (en) * 2003-05-20 2004-11-25 Collin Jennifer Reichi Methods, systems and catalysts for the hydration of olefins
US6887798B2 (en) 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
US7037794B2 (en) 2004-06-09 2006-05-02 International Business Machines Corporation Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain
US6991998B2 (en) 2004-07-02 2006-01-31 International Business Machines Corporation Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US7432553B2 (en) 2005-01-19 2008-10-07 International Business Machines Corporation Structure and method to optimize strain in CMOSFETs
US7946907B2 (en) 2005-04-20 2011-05-24 Saint-Gobain Abrasives, Inc. Saw blade gullet configuration
US7202513B1 (en) 2005-09-29 2007-04-10 International Business Machines Corporation Stress engineering using dual pad nitride with selective SOI device architecture
WO2011014309A2 (en) * 2009-07-30 2011-02-03 Exxonmobil Chemical Patents Inc. Olefin hydration process
US20110136926A1 (en) * 2009-12-08 2011-06-09 Jianguo Cai Catalysts for Olefin Hydration and Method of Preparation
RU2453526C2 (en) * 2010-05-04 2012-06-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Method of producing tertiary butyl alcohol
US8558036B2 (en) 2010-11-15 2013-10-15 Saudi Arabian Oil Company Dual phase catalysts system for mixed olefin hydrations
US8629080B2 (en) 2011-03-21 2014-01-14 Saudi Arabian Oil Company Hydrated niobium oxide nanoparticle containing catalysts for olefin hydration
US8865950B2 (en) 2011-08-10 2014-10-21 Saudi Arabian Oil Company Olefin hydration process with an integrated membrane reactor
RU2462447C1 (en) * 2011-08-26 2012-09-27 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Method of producing tertiary butyl alcohol
KR101876612B1 (en) 2011-12-05 2018-07-09 사우디 아라비안 오일 컴퍼니 Hydrophilic Membrane Integrated Olefin Hydration Process

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533808A (en) * 1950-12-12 Manufacture of isopropyl alcohol
DE1065398B (en) * 1959-09-17
US2050445A (en) * 1932-06-20 1936-08-11 Air Reduction Manufacture of ethyl alcohol
DE2233967A1 (en) * 1972-07-11 1974-01-31 Texaco Ag PROCESS FOR THE CONTINUOUS PRODUCTION OF LOW ALCOHOLS, IN PARTICULAR ISOPROPANOL
DE2404329C3 (en) * 1974-01-30 1981-03-19 Deutsche Texaco Ag, 2000 Hamburg Method for filling and commissioning or restarting a fixed bed reactor designed as a trickle column
DE2429770C3 (en) * 1974-06-21 1981-04-16 Deutsche Texaco Ag, 2000 Hamburg Process for the production of lower alcohols by direct catalytic hydration of lower olefins
US4087471A (en) * 1977-05-20 1978-05-02 Petro-Tex Chemical Corporation Fixed bed process for the production of t-butanol
US4182920A (en) * 1977-07-11 1980-01-08 The Dow Chemical Company Process for hydration of olefins to produce alcohols
DE2759237A1 (en) * 1977-12-31 1979-07-12 Huels Chemische Werke Ag PROCESS FOR THE PRODUCTION OF ALCOHOLS WITH 2 - 4 C-ATOMS BY CATALYTIC HYDRATION OF OLEFINS
DE3024146C2 (en) * 1980-06-27 1983-07-21 Deutsche Texaco Ag, 2000 Hamburg Process for the continuous production of alcohols having 3 to 5 carbon atoms
US4405822A (en) * 1981-10-30 1983-09-20 Chevron Research Company Diisopropyl ether hydration in isopropanol production
US4352945A (en) * 1981-10-30 1982-10-05 Chevron Research Company Diisopropyl ether reversion in isopropanol production
DE3336644A1 (en) * 1983-10-08 1985-05-23 Deutsche Texaco Ag, 2000 Hamburg METHOD FOR THE CONTINUOUS PRODUCTION OF ALCOHOLS
DE3512518A1 (en) * 1985-04-06 1986-10-09 Deutsche Texaco Ag, 2000 Hamburg METHOD FOR THE CONTINUOUS PRODUCTION OF LOW ALCOHOLS

Also Published As

Publication number Publication date
DD234665A5 (en) 1986-04-09
AU4264785A (en) 1985-11-28
CA1246620A (en) 1988-12-13
NO159720C (en) 1989-02-01
IN164716B (en) 1989-05-13
ZA853297B (en) 1985-12-24
AU576243B2 (en) 1988-08-18
RO91490B (en) 1987-05-01
RO91490A (en) 1987-04-30
ATE30711T1 (en) 1987-11-15
CS340885A2 (en) 1989-04-14
DE3560944D1 (en) 1987-12-17
PL253569A1 (en) 1986-02-11
DK231785A (en) 1985-11-25
SU1417792A3 (en) 1988-08-15
JPS60260530A (en) 1985-12-23
DK231785D0 (en) 1985-05-23
EP0162362B1 (en) 1987-11-11
YU43595B (en) 1989-08-31
ES8603165A1 (en) 1986-01-01
NO159720B (en) 1988-10-24
US4579984A (en) 1986-04-01
FI851681A0 (en) 1985-04-29
FI82679C (en) 1991-04-10
FI851681L (en) 1985-11-25
EP0162362A1 (en) 1985-11-27
DE3419392C1 (en) 1985-12-05
CS266569B2 (en) 1990-01-12
FI82679B (en) 1990-12-31
YU84885A (en) 1987-06-30
ES543053A0 (en) 1986-01-01
NO852001L (en) 1985-11-25
DK173271B1 (en) 2000-06-05
JPH0118061B2 (en) 1989-04-03

Similar Documents

Publication Publication Date Title
PL145417B1 (en) Method of continuously producing isopropyl alcohol or 2-nd order butyl alcohol
US7002050B2 (en) Process for preparing tert-butanol from isobutene-containing hydrocarbon mixtures
KR100278082B1 (en) Method for alkylation of amylene with isobutane
US4423251A (en) Process employing sequential isobutylene hydration and etherification
CA2265777A1 (en) Alkylation and acylation reactions
JPS6366287A (en) Continuous catalytic method for converting oxygen-containing compound to heavy liquid hydrocarbon and control system
US4413150A (en) Two product process for methyl tertiary butyl ether production
IE43301B1 (en) Process for producing tertiary alkyl ethers
US4456776A (en) Process for the production of a lower aliphatic alcohol
CA2040152A1 (en) Conversion of light hydrocarbons to ether rich gasoline
US4405822A (en) Diisopropyl ether hydration in isopropanol production
GB2024812A (en) Process for producing tert-butanol from a mixture of isobutylene and n-butene
US6028239A (en) Process for the production of tertiary olefin(s) by decomposition of the corresponding ether using a particular catalyst
US7034189B1 (en) Preparation of dialkyl peroxides
US3970721A (en) Alkylation process for production of motor fuels utilizing sulfuric acid catalyst with trifluoromethane sulfonic acid
CS264322B2 (en) Process for continuous preparing alcohols
US5345027A (en) Alkylation process using co-current downflow reactor with a continuous hydrocarbon phase
US4546206A (en) Process for producing methyl tert. alkyl ether
KR102283565B1 (en) Multi-compartment continuous stirring hydration reactor and method for preparating 2-Butyl alchol using the same
US4761504A (en) Integrated process for high octane alkylation and etherification
EP0266047A2 (en) Process for the preparation of gasoline components from olefins
US5434325A (en) Process for the production of tertiary butylethylbenzene
JPH0342250B2 (en)
US4954660A (en) Process for the direct hydration of linear olefins
CA2007861C (en) Flexible process for the production of di and trialkylamines