PL124853B1 - Alloy steel - Google Patents

Alloy steel Download PDF

Info

Publication number
PL124853B1
PL124853B1 PL1980225693A PL22569380A PL124853B1 PL 124853 B1 PL124853 B1 PL 124853B1 PL 1980225693 A PL1980225693 A PL 1980225693A PL 22569380 A PL22569380 A PL 22569380A PL 124853 B1 PL124853 B1 PL 124853B1
Authority
PL
Poland
Prior art keywords
steel
content
weight
manganese
nickel
Prior art date
Application number
PL1980225693A
Other languages
Polish (pl)
Other versions
PL225693A1 (en
Inventor
Jevgenij Dolbenko
Anatolij Astafiev
Grigorij Kark
Vladimir Niecajev
Sergiej Harkov
Vladimir Sarukov
Jurij Sobolev
Nikolaj Popov
Valerij Bobkov
Valerij Litvak
Aleksandr Chodosevic
Edward Kolpison
Valentin Sobolev
Original Assignee
Proizvodstbiennoje Obiedinieni
Tsniitmash
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proizvodstbiennoje Obiedinieni, Tsniitmash filed Critical Proizvodstbiennoje Obiedinieni
Publication of PL225693A1 publication Critical patent/PL225693A1/xx
Publication of PL124853B1 publication Critical patent/PL124853B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Przedmiotem wynalazku jest stal stopowa. Stale stopowe znajduja szerokie zastosowanie w budowie maszyn, zwlaszcza w budowie urzadzen energetycz¬ nych do wytwarzania konstrukcji spawanych, pracu¬ jacych pod cisnieniem w temperaturach do 450 °C, na przyklad naczyn cisnieniowych atomowych zespo¬ lów energetycznych.W celu zapewnienia duzej niezawodnosci i bezpiecz¬ nej eksploatacji atomowych zespolów energetycznych, *tale na naczynia cisnieniowe powinny miec duza wy¬ trzymalosc i ciagliwosc w temperaturach roboczych oraz duza odpornosc na zwiekszajace kruchosc oddzia¬ lywanie podwyzszonych temperatur.Z opisu patentowego RFN nr 22 39 092 znana jest *tal, mogaca znalezc zastosowanie w budowie urzadzen -energetycznych i majaca nastepujacy sklad wagowy poszczególnych skladników: 0,02—0,15% wegla, 0,1— 2,5% manganu, do 2,0% molibdenu, 0,01—2,0% gli¬ nu, 0,1—1,0% krzemu, do 3,0% niklu, 0,01—0,2% wanadu, 0,002—0,02% azotu, reszta zelazo.Stal ta moze zapewnic odpowiedni poziom wlasci¬ wosci wytrzymalosciowych, wymagany przy wytwa¬ rzaniu naczyn cisnieniowych atomowych bloków ener¬ getycznych w temperaturach ekslpoatacji, jednak wraz ze zblizeniem zawartosci niklu i manganu w tej stali w temperaturach 350—450°C.Z opisu swiadectwa autorskiego ZSRR nr 554 702 :znana jest stal, która stosuje sie do wytwarzania na- 10 15 20 30 czyn cisnieniowych atomowych bloków energetycznych.Stal ta ma nastepujacy sklad wagowy poszczególnych skladników: 0,08—0,11% wegla, 0,17—0,37% krze¬ mu, 0,6—1,4% manganu, 1,7—2,7% niklu, 0,35—0,6% molibdenu, 0,03—0,07% wanadu, 0,02—0,07% gli¬ nu, 0,005—0,012% azotu, reszta zelazo.Stal moze zawierac wagowo w postaci domieszek do 0,3% chromu, do 0,2% miedzi, do 0,02% siarki, do 0,018% fosforu.Zarówno ta stal, jak i podana powyzej, zapewnia zadany poziom wlasciwosci wytrzymalosciowych, jed¬ nak wraz ze zblizeniem zawartosci w niej niklu i man¬ ganu do górnych granic znacznie wzrasta sklonnosc do zwiekszania sie kruchosci w procesie dlugotrwa¬ lych wygrzewan w temperaturach 350—450°C.Celem wynalazku jest opracowanie stali o zwiek¬ szonej odpornosci na wzrost kruchosci w procesie dlugotrwalych wygrzewan w temperaturach 350— 450°C.Cel ten osiagnieto dzieki temu, ze w stali wedlug wynalazku, zlozonej z wegla, krzemu, manganu, ni¬ klu, molibdenu, wanadu, glinu, azotu, fosforu, zelaza zawarty jest równiez arsen, cyna i wapn przy nastepu¬ jacej zawartosci wagowej poszczególnych skladni¬ ków: 0,08—0,14% wegla, 0,10—0,37% krzemu, 0,6— ¦lj4% manganu, 1,7—2,7% niklu, 0,4—0,7% molib¬ denu, 0,03—0,07% wanadu, 0,02—0,07% glinu, 0,005— 0,012% azotu, 0,008—0,015% fosforu, 0,003—0,008% arsenu, 0,001—0,005% cyny, 0,005—0,15% wapnia, reszta zelazo, przy czym sumaryczna zawartosc ni- 124 853124 853 klu i manganu je6t powiazana z zawartoscia fosforu nastepujaca zaleznoscia (w procentach wagowych): (Ni + Mn)xP<0,037 Podane skladniki i ich ilosci procentowe zapewniaja niezbedny zespól cech stali. Na przyklad przyjeta górna granica zawartosci wagowej wegla, równa 0,14%, wiaze sie z tym, ze dalsze zwiekszenie zawartosci wegla w stili Mn-NI-Mo-Y pogarsza spawalnosc i zwiekiza sklonnosc do kruchosci. Przy zawartosci wagowej wega ojpnizej 0y©8% nie jest zapewniony wymagany ^ppzjjom- wlasciwosci wytrzymalosciowych w duzych przekrojach.Przy zawartosci wagowej krzemu ponizej 0,10% nie*/uzyskuje sie nalezytego odtlenienia stali, co po¬ garsza jej- jakosc/ Zwiekszenie zawartosci wagowej krzemu powyzej 0,37% przyczynia sie-do~zmniejsze-^ nia ciagliwosci stali i zwiekszenia jej sklonnosci do wzrostu kruchosci po procesie odpuszczania.Przy zawartosci wagowej manganu ponizej 0,6% nie jest zapewniony wymagany poziom wlasciwosci wytrzymalosciowych ftatt W duzych prwkróJaCh. Zwiek¬ szenie zawartosci wagowej manganu powyzej 1—4% zmniejsza udarnosc stali oraz powoduje wzrost kru¬ chosci po procesie odpuszczania.Dolna granica zawartosci wagowej niklu, równa 1,7% zapewnia przy zawartoici wagowej manganu w wysokosci 0,8—1,4% tizytkanie Odpowiedniego poziomu wlasciwosci wytrzymalosciowych, wymaga¬ nego dla naczyn cisnieniowych atomowych bloków energetycznych. Zwiekszenie zawartosci wagowej ni¬ klu powyzej 2,7% znacznie zwieksza sklonnosc stali do zwiekszenia kruchosci po procesie odpuszczania i pogarsza spawalnosc.Przy zawartosci wagpwej molibdenu ponizej 0,4% wzrasta sklonnosc tftali do zwiekszania sie kruchosci w podwyzszonych temperaturach, a takze jej sklonnosc do amniejezenia wytrzymalosci przy odpuszczaniu.Przy zawartosci wagowej molibdenu powyzej 0,7% pogarsza sie ciagliwosc i spawalnosc stali.Dolna granica zawartosci wagowej Wanadu* równa 0*03%i zapewnia dostateczne odtlenlenie i odgaioWa- nle stali oni struktur* drobnoziarnista. Przy zawar¬ tosci wagowej wanadu powyzej 0,07% pogarsza sie spawalnosc itali* Ztanfejazante zawartosci wagowej glinu ponizej 0,02% nie pozwala oiiagnaó calkowitego odtlcnienif i iwtaaafua azotu w azotki glinowe. Pizy zawartosci wagowej glinu powyzej 0*07% stal zanieczyszcza sie tlenkami gliaowymi* zmniejszajacymi ciagliwusc i ptes- tycaaosc stali* 10 15 25 30 35 40 Przy zawartosci wagowej azotu* nie mniejszej od 0,005%, w stali powstaje dostateczna ilosc azotków glinowych, zapewniajacych uzyskanie struktury drob¬ noziarnistej. Przy zawartosci wagowej azotu powyzej 0,012% Stal i polaczenia Spawane z niej moga byc sklonne do starzenia odksztalceniowego i cieplnego.Przewidziane zakresy zawartosci wagowej arsenu. (0,003—0,008%) i cyny (0,001—0,005%)* przy gór¬ nej granicy zawartosci Wagowej fosforu* nie przekra¬ czajacej 0,015%, umozliwiaja zwiekfzenie odpornosci stali na Wfctort kruchosci w procesie dlugotrwalych wygrzewan w podwyzszonych temperaturach, a przy tym Wytapianie stali ze zwyklych materialów wsado¬ wych.Aby zwiekszenie zawartosci niklu i manganu w stali w granicach proponowanego skladu nie powodowalo wzrostu¦¦-- knreheseH uw*fUnko»e**j—miedzyztofeewa segregacja fosforu przy dlugotrwalych wygrzewaniach, sumaryczna zawartosc niklu i manganu powinna byc powiazana z zawartoscia fosforu zaleznoscia; (Ni +Mn)xP<0,037 (w procentach wagowych) Zaleznosc ta okresla dopuszczalna zawartosc niklu i manganu w zaleznosci od osiagalnej w danych wa¬ runkach technologicznych czystosci stali w zakresie zawartosci fosforu lub odwrotnie, determinuje górna granice zawartosci fosforu w stali w zaleznosci od za¬ wartosci niklu I manganu, wymaga lej dla zapewnienia odpowiednich wlasciwosci mechanicznych.Stal wedlug wynalazku zawiera dodatkowo wapn w ilosci wagowej 0,005—0,15%, co zmniejsza kru¬ chosc stali przy wygrzewaniu wskutek zmniejszenia niekorzystnego wplywu na kruchosc zjawiska anizo¬ tropii ciagliwosci stali w kierunku podluznym i po¬ przecznym, dzieki wiazaniu siarki, wystepujacej w stali w postaci domieszki* we wtracenia niemetalowe.Sposób otrzymywania stali wedlug wynalazku jest bardzo prosty i jest realizowany nastepujaco: Stal wytapia sie w glównych piecach lukowych.Jako materialy wsadowe stosuje sie wolne od fosforu, arsenu i cyny: zlom stalowy* specjalne zeliwo* zelazo¬ stopy (zelazowanad, zelazomolibden* zelazokrzem)* metakrzemian wapniowy i czysta metale (mangan nikiel i glin).Proces technologiczny wytopu stali obejmuje nas¬ tepujace operacje: wsad (zlom stalowy i stluczke elek¬ trodowa) laduje sie do pieca i topi sie go; dodaje sie wapno, fluoryt i rude zelaza; przeprowadza sie proces gotowania* odfosforowywania i nagrzewania metalu; odnawia sie zuzel utleniajacy* odtknia sie ciekla stal i zuzel za pomoca zelazokrzemu i zelazomanganu; 1 Mumer J przykladu | 1 2 5 4 5 0 [ n»i rmiT-iiiiimi- Tablica 1 Stiad ehemicany stali wedlug wynalazku (w procentach wagowych) C 0,00 0,10 '«,». 0,11 0,1* o,* Si 0,10 W 0,37 0,15 0,1* 0*31 Ma 1 0,00 00l 1,40 0,70 0,0* i 0»ttj -- - i Ni 1 w ** 2*7 2,07 a,3 3,38 Mo M 0,63 : 0,70 0,40 0,62 V \ 0,05 047 0,06 0,03 i 0,04 Al 0,0* ^0,05 0,<# 0,00 0,03 0,01 J n ; 0,005 0,000 ! 0,012 0,000 0,005 0,0071 - —--* P I 0,014 0,011 0,008 o^oia 0,010 0,000 ag i i imi - As 0,003 0*006 o,oos 0,000 0,003 Sn 0,001 0,003 0,003 0,002 0,005 0,003 09 i 0,005 0,00 0,15 0,06 I 0,11 0,03 (Ni+Mn)xP 0,036 | 0,016 f 0,033 l 0,034 j 0,033 i 0,020 1124 853 CJ * 2 tn io CJ J3 o li ^8 O O in o cn »-i CJ .« i<= o ^h + O I O 111 3 , d bp rt tj CO 4- a N *C I co 51 © i-H ^H i-H r; x x x x t^ 11^ co i cn tn i ^ t^Ii-h m^H cn i-h cno mlo i-hIcm i-h I cn i-h I cn ¦^ I cn iniin h it^ t^l"^ uS \o\ cn |»n ^_ ' — - ' — "3! ^ ^1^ cni^o t^ivo voo ^ n< cn cn w h I cn h Id i—i I cm «-i Icn X X X X t I v© C*» I v© L*-|VO h- | v© ^oo cno ^o\ cno\ i-l|i-l i—I | CN H |H t—I I i-H cN in t^ i ^ O 00 CN 1 t^ t- i cn cn \*£ CN 1 f- I CN O T}H O r- t cn -H t ^h 1 C| 00 oó o cn vo 1 t vO i cn o i cn o i y-t cn ih oo \Q\ Oio o i cn I ^ O I CN 00 I CN I \© ITi I v© in lvO O i 00 O I »T vO|CN vOiO V© 00 tO N* CN ki CNlTi CNlCN CN I CN CNlCN CNlcN h ioo i-h i o oo i cn tn i oo ^ O CN 0\ i-h 00 CN CN I CN i-H I CN i-i CNicn miON in i'* ooivo CNl^ 00 M XIO h IO CNlcN r-ilcN ^hIcn ^hIcn co g O On in 1 °° o vO On m in 1 ^ m in r^ cn in in ^ m o On ^ 1 o cn 1 in On v© 1 °° cn 1 v© ¦^ 00 in i 00 TJH i o i O CN l I v© in in i^ oi m cn tf i-h V© V© I V© O I I h- 00 11^ O h^ t^ Uh cn I v© \f\ I v© in 00 On I 00 oo ^ h in m lin CN Ph g.'2 u oo v© i cq v© i r- cn i i-h in r- cn hn cn ^ cn I cn cn l cn cn I cn i on inio ^icn ^ | m <3< in on ^h \^ \o\ v© oo ^ I ^ cn I ^ cnlcn cnlcn 11^ 00 I CN O cn t o\ v© I ir ^ I tj< ^ cn o o CN O o Q Q O CN US O O in O CN O m cn o o ^ o m "^ i-i I i-h cnicn cnicN cnicn ^h© ooi-h moo mv© ^1"^ cnl^ cnlcn cnlcn q o q o cn in o in cn ^ "^ ^ .H S U4 i "s a + o CN T3 O (U N Tl O £ £ 0) C tow f-l e« o 650 .N »H Uh U G OJ N O N co dpu o « + o 0\ TJ O (U N TJ O ^ CJ o tn V© rl N I-I Cm •if o o CN ON TJ O N Tl O ^ £ u G c« tow i-i U o O m V© N 1-4 Ph (U G ca N O N co ndp o B +124 853 en i—i cn i—i i—i o On 00 r- vO in Uf cn 01 i-t O 1 O i-H CN o i in i—i i—i o 1 o m i tI° t Tf t Tf o o o o i-H t-H i—1 i—1 X X X X t^ivo iivo r-ivo o|vo en ^ in^H cn © cn on H|H .-H | CN i-H 1 CN rH l i-H CM 1 "^ © 1 -^ © 1 CN (^ IH \£lvO vo|v© volv© ITll^O om o\ ih oo io on i ^h CN 1 CN .-h l CN «-h 1 CN i-h 1 CN t^l^O 00 1 l"- On 1 00 On 1 00 in t on h-n m oo ^ho volx inl^o inlm in lin '-HIO CN 1 -h CN 1 CN d IM vo on on cn r-o r^ on -tf l^ en 1 <3< en 1 ^ en len o o o o cn in o m en -^ ^ o T3 m O vO odzie przy artowanie w w odpuszczanie X + | 200 m 1 o © CM 1 O O o 1 o in 1 1 m l + ¦* o »-H X 00 I t*- \o\ ^ o 1 in t- Ib- "* [ O CN 1 CS 00 1 t^ o co V© | V© CM ^ ^ 1 ^ O CN U cm U 0\ ° •o 8 O V© ¦ Si ^ N N artowanie w w odpuszczanie W + 200 vO ¦t O i-H X 00 1 v© O On i-H | i—1 vO 1 —i vO 1 l cn i in CN IcN ON 1 00 m co in 1 in CNJ | CM cc o en l en o in en ¦* o i-H X h- 1 v© CN h ^H | CN ^ 1 O vO 1 l i-H 1 ^ CM 1 CN On I 00 en o in 1 m en 1 cn V© ON en 1 en o o ^ -* o X 00 o 1—1 en vo On O en in en in en o ITi ¦^ vO o CN X v© vO CN On sn .m CNJ t^ en O I O m oo m i in CN htf O 1 O nh ©im CN i-h 1 1 + "* © i-H X ^ 1 vO in on 1 —i CNI 1 O o? oo in 1r- ^ i CN On i- «-h 1 CN ^ I © CO t<- in 1 o © I O © © ^ Im © CN O o CN O ON O. rr-. O O v© • ^ ^ N N o a artowanie w w odpuszczanie X + 200 rt •M znana s •* © i-H X 00 100 en h^ ^h Icn en 11-* 00 CN in 1 o ^ i vO uo en «-" 1 CN CN 1 CN en en in I vo On I ^ in in en 1^ © m en © 1—1 X © 1 © en cn «-! Icn "tf |00^ I ^H in 11 Os | © i ^ i-h 1 CN ON I-H -H -H in 1 v© © 1 CN ^ en 1 ^< © © ^ ¦* ^ i-H X l^ 1 CN CN -h —i 1 CN *~k i °i oo © in 11^- © l en l^ en '—' 1 CN vO IO © ON m \ in On I ^ -h CN en 1 ^ o in "*124 853 9 10 wprowadza sie do stali skladniki stopowe; ostatecznie odtlenia sie stal za pomoca aluminium a modyfikuje za pomoca wapnia.W celu umozliwienia lepszego zrozumienia istoty wynalazku, przytacza sie nastepujace konkretne przy* klady.Przyklad I. Wytapia sie stal o nastepujacym skladzie wagowym: 0,08% wegla, 0,10% krzemu, 0,60% manganu, 1,7% niklu, 0,4% molibdenu, 0,03% wanadu, 0,02% glinu, 0,005% azotu, 0,014% fosforu, 0,003% arsenu, 0,001% cyny, 0,005% wapnia.Stal wytapia sie w piecu lukowym. W charakterze materialów wyjsciowych stosuje sie wolne od fosfo¬ ru, arsenu i cyny: zelazo Armco, stluczke elektrodowa, specjalne zeliwo, zelazostopy, metakrzemian wapnio¬ wy o zawartosci wapnia 15—30%, czysty metaliczny mangan, nikiel i glin. Wsad laduje sie do pieca, to¬ pi sie i nagrzewa do temperatury 1530—1580°C. Po stopieniu dodaje sie rude zelaza i wapno, a powstajacy zuzel utleniajacy miesza sie dokladnie z ciekla stala.Nastepnie usuwa sie zuzel i ponownie dodaje sie do kapieli rude zelaza i wapno, po czym laduje sie nikiel i zelazomolibden.Proces gotowania przeprowadza sie dopóty, dopóki zawartosc wagowa wegla w stali nie osiagnie 0,08%.Z kolei usuwa sie z pieca zuzel utleniajacy, dodaje wapno, fluoryt, aluminium, zelazokrzem, mangan, zelazowanad. Ciekla stal nagrzewa sie do tempera¬ tury 1610—1640 °C i spuszcza z pieca. W kadzi do stali dodaje sie metakrzemian wapniowy.Przyklady II—VI. W tablicy 1 podane sa sklady stali, wytopionej w sposób, analogiczny do sposobu, przedstawionego w przykladzie I.W tablicy 2 podane sa wlasciwosci mechaniczne sta- 0 li wedlug wynalazku (przyklady 1—6) i stali znanej, o zawartosci wagowej niklu 1,7—2,7%, po optymalnej obróbce cieplnej.Jak wynika z tablicy 2, stal wedlug wynalazku ma przy analogicznym ze znana stala poziomie wlasci- 10 wosci wytrzymalosciowych wieksza w porównaniu z nia odpornosc na wzrost kruchosci przy dlugotrwa¬ lym wygrzewaniu. I tak o ile w znanej stali zwieksze¬ nie krytycznej temperatury kruchosci po 10000-go- dzinnym wygrzewaniu w temperaturach 350, 400 i w 450°C wynosi 10—20. 25—45 i 50—70°C, o tyle w przypadku stali wedlug wynalazku zmiana krytycznej temperatury kruchosci nie przekracza odpowiednio 20°C po takim samym wygrzewaniu w temperaturach do 450 °C. 20 Zastrzezenie patentowe Stal, zawierajaca 0,08—0,14% wegla, 0,10—0,37% krzemu, 0,6—1,4% manganu, 1,7—2,7% niklu, 0,4— 0,7% molibdenu, 0,03—0,07% wanadu, 0,02—0,07% 25 glinu, 0,005—0,012% azotu, 0,008—0,015% fosforu, reszta zelazo, znamienna tym, ze zawiera 0,C03— 0,008% arsenu, 0,001—0,005% cyny, 0,005—0,15% wapnia, przy czym sumaryczna zawartosc niklu i man¬ ganu jest powiazana z zawartoscia fosforu nastepu- 30 jaca zaleznoscia wyrazona w procentach wagowych (Ni+Mn)xP<0,037 PL PL PL The subject of the invention is alloy steel. Alloy steels are widely used in machine construction, especially in the construction of power equipment for the production of welded structures operating under pressure at temperatures up to 450 ° C, for example, pressure vessels of nuclear power units. In order to ensure high reliability and safety ¬ operation of nuclear power plants, *plates for pressure vessels should have high strength and ductility at operating temperatures and high resistance to the impact of increased temperatures increasing brittleness. From the German patent description No. 22 39 092 it is known *thallium, which can be found used in the construction of energy devices and having the following weight composition of individual components: 0.02-0.15% carbon, 0.1-2.5% manganese, up to 2.0% molybdenum, 0.01-2.0% aluminum ¬ nu, 0.1-1.0% silicon, up to 3.0% nickel, 0.01-0.2% vanadium, 0.002-0.02% nitrogen, the rest iron. This steel can provide the appropriate level of properties strength, required in the production of pressure vessels of atomic power units at operating temperatures, but with the approximate content of nickel and manganese in this steel at temperatures of 350-450°C. From the description of the USSR author's certificate No. 554,702: a steel is known that is used used for the production of pressure vessels for atomic energy blocks. This steel has the following weight composition of individual components: 0.08-0.11% carbon, 0.17-0.37% silicon, 0.6-0.6% 1.4% manganese, 1.7-2.7% nickel, 0.35-0.6% molybdenum, 0.03-0.07% vanadium, 0.02-0.07% aluminum, 0.005- 0.012% nitrogen, the rest iron. The steel may contain admixtures by weight of up to 0.3% chromium, up to 0.2% copper, up to 0.02% sulfur, up to 0.018% phosphorus. Both this steel and the one given above provide the desired level of strength properties, however, as the content of nickel and manganese in it approaches the upper limits, the tendency to increase brittleness in the process of long-term heating at temperatures of 350-450°C increases significantly. The aim of the invention is to develop a steel with ¬ increased resistance to the increase in brittleness in the process of long-term heating at temperatures of 350-450°C. This goal was achieved thanks to the fact that in the steel according to the invention, composed of carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminum, nitrogen, phosphorus, iron, arsenic, tin and calcium are also contained with the following weight content of individual components: 0.08-0.14% carbon, 0.10-0.37% silicon, 0.6-14% manganese , 1.7-2.7% nickel, 0.4-0.7% molybdenum, 0.03-0.07% vanadium, 0.02-0.07% aluminum, 0.005-0.012% nitrogen, 0.008 —0.015% phosphorus, 0.003—0.008% arsenic, 0.001—0.005% tin, 0.005—0.15% calcium, the rest iron, while the total content of phosphorus and manganese is related to the phosphorus content in the following relationship (in percent by weight): (Ni + Mn)xP<0.037 The given ingredients and their percentages provide the necessary set of steel properties. For example, the adopted upper limit of the carbon content by weight, equal to 0.14%, is due to the fact that a further increase in the carbon content in the Mn-NI-Mo-Y steel worsens the weldability and increases the tendency to brittleness. With a weight content of less than 0.8%, the required strength properties in large cross-sections are not provided. With a silicon content below 0.10%, proper deoxidation of the steel is not achieved, which deteriorates its quality. Increasing the content silicon by weight above 0.37% contributes to a reduction in the ductility of the steel and an increase in its tendency to increase brittleness after the tempering process. With a manganese content below 0.6% by weight, the required level of strength properties is not ensured in large samples. Increasing the weight of manganese content above 1-4% reduces the impact strength of steel and causes an increase in brittleness after the tempering process. The lower limit of the weight of nickel, equal to 1.7%, ensures a weight content of manganese of 0.8-1.4%. ensuring the appropriate level of strength properties required for the pressure vessels of nuclear power units. Increasing the nickel content by weight above 2.7% significantly increases the steel's tendency to become brittle after the tempering process and worsens weldability. With a molybdenum content by weight below 0.4%, the tendency of the tephthalate to increase brittleness at elevated temperatures increases, as well as its tendency to reduction of strength when tempering. With a molybdenum content above 0.7% by weight, the ductility and weldability of steel deteriorate. The lower limit of the weight of Vanadium content* is 0*03% and ensures sufficient deoxidation and de-gassing - the steel has a fine-grained structure. When the vanadium content exceeds 0.07% by weight, the weldability of the metals deteriorates. Containing aluminum content below 0.02% by weight does not allow for complete deoxidation and conversion of nitrogen into aluminum nitrides. When the aluminum content exceeds 0*07% by weight, the steel becomes contaminated with aluminum oxides*, reducing the ductility and toughness of the steel* 10 15 25 30 35 40 With a nitrogen content* by weight of not less than 0.005%, a sufficient amount of aluminum nitrides is formed in the steel, ensuring obtaining fine-grained structure. When the nitrogen content exceeds 0.012% by weight, steel and joints welded from it may be subject to deformational and thermal aging. Expected ranges of arsenic content by weight. (0.003-0.008%) and tin (0.001-0.005%)* with the upper limit of the phosphorus content* not exceeding 0.015%, make it possible to increase the steel's resistance to embrittlement in the process of long-term heating at elevated temperatures, and at the same time smelting steel from ordinary raw materials. In order to ensure that the increase in the content of nickel and manganese in steel within the limits of the proposed composition does not result in an increase in the inter-fee segregation of phosphorus during long-term heating, the total content of nickel and manganese should be related to the phosphorus content by a relationship; (Ni +Mn)xP<0.037 (in percent by weight) This relationship determines the permissible content of nickel and manganese depending on the purity of steel achievable under given technological conditions in terms of phosphorus content or, conversely, determines the upper limit of phosphorus content in steel depending on nickel and manganese content, requires a funnel to ensure appropriate mechanical properties. The steel according to the invention additionally contains calcium in an amount of 0.005-0.15% by weight, which reduces the brittleness of the steel when heated due to the reduction of the unfavorable effect on brittleness of the phenomenon of anisotropy of ductility. steel in the longitudinal and transverse directions, thanks to the binding of sulfur, present in the steel in the form of an admixture*, in non-metallic inclusions. The method of obtaining steel according to the invention is very simple and is carried out as follows: Steel is melted in the main arc furnaces. The starting materials are free from phosphorus, arsenic and tin: steel scrap* special cast iron* ferroalloys (ferrovanadium, ferromolybdenum* ferrosilicon)* calcium metasilicate and pure metals (manganese, nickel and aluminum). The technological process of steel melting includes the following operations: charge (scrap steel and electrode shatter) are loaded into the furnace and melted; lime, fluorite and iron ore are added; the process of cooking* dephosphorizing and heating the metal is carried out; oxidizing slag is regenerated* liquid steel and slag are decontaminated with ferrosilicon and ferromanganese; 1 Number J of the example | 1 2 5 4 5 0 [ n»i rmiT-iiiiimi- Table 1 Stiad of steel according to the invention (in percent by weight) C 0.00 0.10 '«,». 0.11 0.1* o,* Si 0.10 W 0.37 0.15 0.1* 0*31 Ma 1 0.00 00l 1.40 0.70 0.0* i 0»ttj -- - i Ni 1 w ** 2*7 2.07 a.3 3.38 Mo M 0.63 : 0.70 0.40 0.62 V \ 0.05 047 0.06 0.03 i 0.04 Al 0.0* ^0.05 0,<# 0.00 0.03 0.01 J n ; 0.005 0.000 ! 0.012 0.000 0.005 0.0071 - —--* P I 0.014 0.011 0.008 o^oia 0.010 0.000 ag i i imi - As 0.003 0*006 o,oos 0.000 0.003 Sn 0.001 0.003 0.003 0 .002 0.005 0.003 09 and 0.005 0.00 0.15 0.06 I 0.11 0.03 (Ni+Mn)xP 0.036 | 0.016 f 0.033 l 0.034 j 0.033 i 0.020 1124 853 CJ * 2 tn io CJ J3 o li ^8 O O in o cn »-i CJ .« i<= o ^h + O I O 111 3 , d bp rt cz CO 4- a N *C I co 51 © i-H ^H i-H r; x x x x t^ 11^ co i cn tn i ^ t^Ii-h m^H cn i-h cno mlo i-hIcm i-h I cn i-h I cn ¦^ I cn iniin h it^ t^l"^ uS \o\ cn | »n ^_ ' — - ' — "3! ^ ^1^ cni^o t^ivo voo ^ n< cn cn w h I cn h Id i—i I cm «-i Icn X X X X t I v© C*» I v© L*-|VO h- | v© ^oo cno ^o\ cno\ i-l|i-l i—I | CN H |H t—I I i-H cN in t^ i ^ O 00 CN 1 t^ t- i cn cn \*£ CN 1 f- I CN O T}H O r- t cn -H t ^h 1 C| 00 oó o cn vo 1 t vO i cn o i cn o i y-t cn ih oo \Q\ Oio o i cn I ^ O I CN 00 I CN I \© ITi I v© in lvO O i 00 O I »T vO|CN vOiO V © 00 tO N* CN ki CNlTi CNlCN CN I CN CNlCN CNlcN h ioo i-h i o oo i cn tn i oo ^ O CN 0\ i-h 00 CN CN I CN i-H I CN i-i CNicn miON in i'* ooivo CNl^ 00 M XIO h IO CNlcN r-ilcN ^hIcn ^hIcn co g O On in 1 °° o vO On m in 1 ^ m in r^ cn in in ^ m o On ^ 1 o cn 1 in On v© 1 °° cn 1 v© ¦^ 00 in i 00 TJH i o i O CN l I v© in in i^ oi m cn tf i-h V© V© I V© O I I h- 00 11^ O h^ t^ Uh cn I v© \f\ I v© in 00 On I 00 oo ^ h in m lin CN Ph g.'2 u oo v© i cq v© i r- cn i i-h in r- cn hn cn ^ cn I cn cn l cn cn I cn and he inio ^icn ^ | m <3< in on ^h \^ \o\ v© oo ^ I ^ cn I ^ cnlcn cnlcn 11^ 00 I CN O cn t o\ v© I ir ^ I dzi< ^ cn o o CN O o Q Q O CN US O O in O CN O m cn o o ^ o m "^ i-i I i-h cnicn cnicN cnicn ^h© ooi-h moo mv© ^1"^ cnl^ cnlcn cnlcn q o q o cn in o in cn ^ "^ ^ .H S U4 i " s a + o CN T3 O (U N Tl O £ £ 0) C tow f-l e« o 650 .N »H Uh U G OJ N O N co dpu o « + o 0\ TJ O (U N TJ O ^ CJ o tn V© rl N I-I Cm •if o o CN ON TJ O N Tl O ^ £ u G c« tow i-i U o O m V© N 1-4 Ph (U G ca N O N co ndp o B +124 853 en i—i cn i—i i —i o On 00 r- vO in Uf cn 01 i-t O 1 O i-H CN o i in i—i i—i o 1 o m i tI° t Tf t Tf o o o o i-H t-H i—1 i—1 X X X X t^ivo iivo r-ivo o |vo en ^ in^H cn © cn on H|H .-H | CN i-H 1 CN rH l i-H CM 1 "^ © 1 -^ © 1 CN (^ IH \£lvO vo|v© volv© ITll^ O om o\ ih oo io on i ^h CN 1 CN .-h l CN «-h 1 CN i-h 1 CN t^l^O 00 1 l"- On 1 00 On 1 00 in t on h-n m oo ^ho volx inl^o inlm in lin '-HIO CN 1 -h CN 1 CN d IM vo on on cn r-o r^ on -tf l^ en 1 <3< en 1 ^ en len o o o o cn in o m en -^ ^ o T3 m O vO clothing at tempering in tempering X + | 200 m 1 o © CM 1 O O o 1 o in 1 1 m l + ¦* o »-H X 00 I t*- \o\ ^ o 1 in t- Ib- "* [ O CN 1 CS 00 1 t^ o co V© | V© CM ^ ^ 1 ^ O CN U cm U 0\ ° •o 8 O V© ¦ Si ^ N N tempering w w tempering W + 200 vO ¦t O i-H X 00 1 v© O On i-H | i— 1 vO 1 —i vO 1 l cn i in CN IcN ON 1 00 m co in 1 in CNJ | CM cc o en l en o in en ¦* o i-H X h- 1 v© CN h ^H | CN ^ 1 O vO 1 l i-H 1 ^ CM 1 CN On I 00 en o in 1 m en 1 cn V© ON en 1 en o o ^ -* o X 00 o 1—1 en vo On O en in en in en o ITi ¦ ^ vO o CN Oh oh? oo in 1r- ^ i CN On i- «-h 1 CN ^ I © CO t<- in 1 o © I O © © ^ Im © CN O o CN O ON O. rr-. O O v© • ^ ^ N N o a hardening w w tempering X + 200 rt •M known s •* © i-H CN CN 1 CN en en in I vo On I ^ in in en 1^ © m en © 1—1 X © 1 © en cn «-! Icn "tf |00^ I ^H in 11 Os | © i ^ i-h 1 CN ON I-H -H -H in 1 v© © 1 CN ^ en 1 ^< © © ^ ¦* ^ i-H X l^ 1 CN CN -h —i 1 CN *~k i °i oo © in 11^- © l en l^ en '—' 1 CN vO IO © ON m \ in On I ^ -h CN en 1 ^ o in "*124 853 9 10 alloying elements are introduced into the steel; the steel is eventually deoxidized with aluminum and modified with calcium. In order to better understand the essence of the invention, the following specific examples are provided. Example I. Steel with the following weight composition is smelted: 0.08% carbon, 0.10% silicon, 0, 60% manganese, 1.7% nickel, 0.4% molybdenum, 0.03% vanadium, 0.02% aluminum, 0.005% nitrogen, 0.014% phosphorus, 0.003% arsenic, 0.001% tin, 0.005% calcium. Steel melts in an arc furnace. The starting materials used are free of phosphorus, arsenic and tin: Armco iron, electrode cullet, special cast iron, ferroalloys, calcium metasilicate with a calcium content of 15-30%, pure metallic manganese, nickel and aluminum. The charge is loaded into the furnace, melted and heated to a temperature of 1530-1580°C. After melting, iron ore and lime are added, and the resulting oxidation slag is mixed thoroughly with the liquid solid. Then the slag is removed and iron ore and lime are added to the bath again, and then nickel and ferromolybdenum are charged. The boiling process is carried out until the weight content of carbon in steel does not reach 0.08%. In turn, oxidizing slag is removed from the furnace, lime, fluorite, aluminum, ferrosilicon, manganese, and ferrovanadium are added. The liquid steel is heated to a temperature of 1610-1640 °C and removed from the furnace. Calcium metasilicate is added to the steel in a ladle. Examples II-VI. Table 1 lists the compositions of steel, smelted in a manner analogous to the method presented in Example I. Table 2 lists the mechanical properties of steel according to the invention (Examples 1-6) and known steel with a nickel content of 1.7- by weight. 2.7%, after optimal heat treatment. As can be seen from Table 2, the steel according to the invention has, with a level of strength properties analogous to the known constant, a greater resistance to the increase in brittleness during long-term heating. Thus, in the known steel, the increase in the critical brittleness temperature after 10,000 hours of heating at temperatures of 350, 400 and 450°C is 10-20. 25-45 and 50-70°C, in the case of steel according to the invention, the change in the critical brittleness temperature does not exceed 20°C after the same heating at temperatures up to 450°C. 20 Patent claim Steel, containing 0.08-0.14% carbon, 0.10-0.37% silicon, 0.6-1.4% manganese, 1.7-2.7% nickel, 0.4- 0.7% molybdenum, 0.03-0.07% vanadium, 0.02-0.07% aluminum, 0.005-0.012% nitrogen, 0.008-0.015% phosphorus, the rest iron, characterized by containing 0.C03 — 0.008% arsenic, 0.001-0.005% tin, 0.005-0.15% calcium, the total content of nickel and manganese is related to the phosphorus content by the following relationship expressed in percentage by weight (Ni+Mn)xP<0.037 PL PL PL

Claims (1)

1. Zastrzezenie patentowe Stal, zawierajaca 0,08—0,14% wegla, 0,10—0,37% krzemu, 0,6—1,4% manganu, 1,7—2,7% niklu, 0,4— 0,7% molibdenu, 0,03—0,07% wanadu, 0,02—0,07% 25 glinu, 0,005—0,012% azotu, 0,008—0,015% fosforu, reszta zelazo, znamienna tym, ze zawiera 0,C03— 0,008% arsenu, 0,001—0,005% cyny, 0,005—0,15% wapnia, przy czym sumaryczna zawartosc niklu i man¬ ganu jest powiazana z zawartoscia fosforu nastepu- 30 jaca zaleznoscia wyrazona w procentach wagowych (Ni+Mn)xP<0,037 PL PL PL1. Patent claim Steel, containing 0.08-0.14% carbon, 0.10-0.37% silicon, 0.6-1.4% manganese, 1.7-2.7% nickel, 0.4 — 0.7% molybdenum, 0.03-0.07% vanadium, 0.02-0.07% aluminum, 0.005-0.012% nitrogen, 0.008-0.015% phosphorus, the rest iron, characterized by containing 0, C03 - 0.008% arsenic, 0.001 - 0.005% tin, 0.005 - 0.15% calcium, the total content of nickel and manganese is related to the phosphorus content by the following relationship expressed in percentage by weight (Ni+Mn)xP< 0.037 PL PL PL
PL1980225693A 1979-07-16 1980-07-16 Alloy steel PL124853B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU792797060A SU943317A1 (en) 1979-07-16 1979-07-16 Steel composition

Publications (2)

Publication Number Publication Date
PL225693A1 PL225693A1 (en) 1981-05-08
PL124853B1 true PL124853B1 (en) 1983-02-28

Family

ID=20840986

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1980225693A PL124853B1 (en) 1979-07-16 1980-07-16 Alloy steel

Country Status (5)

Country Link
FR (1) FR2461760B1 (en)
IT (1) IT1151023B (en)
PL (1) PL124853B1 (en)
SE (1) SE429977B (en)
SU (1) SU943317A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853379A (en) * 1957-05-23 1958-09-23 Lukens Steel Co High strength alloy steel for structural and pressure vessels
US3876422A (en) * 1972-05-25 1975-04-08 Inland Steel Co Elongated leaded steel casting
SU554702A1 (en) * 1975-12-08 1978-03-30 Центральный Научно-Исследовательский Институт Технологии Шиностроения Steel
JPS52101627A (en) * 1976-02-23 1977-08-25 Sumitomo Metal Ind Ltd Non-tempered shape steel in low temp. toughness

Also Published As

Publication number Publication date
SE8005168L (en) 1981-01-17
FR2461760A1 (en) 1981-02-06
IT1151023B (en) 1986-12-17
SE429977B (en) 1983-10-10
FR2461760B1 (en) 1985-11-15
SU943317A1 (en) 1982-07-15
PL225693A1 (en) 1981-05-08
IT8023449A0 (en) 1980-07-15

Similar Documents

Publication Publication Date Title
US4795609A (en) High-strength steel for valve springs, process for producing the steel, and valve springs made of the same
CN103981449B (en) A kind of method utilizing electric arc furnace to prepare low-alloy high-ductility abrasion-proof cast steel
CN103966515B (en) A kind of method utilizing electric arc furnace to prepare low-alloy high-strength toughness cast steel adding
CN103114252B (en) Method for preparing lining plate using low-alloy wear-resistant steel
CN103436808B (en) A kind of low-carbon-equivalent high-strong toughness cast steel and preparation method thereof
JP5687590B2 (en) Method for producing boron-containing stainless steel
CN103131955A (en) Medium carbon multiple elements low alloy wear resisting steel and production method
CN106893927B (en) A kind of production technology of antiwear high-chromium cast iron material
CN109852893A (en) A kind of low-temperature high-toughness refractory steel and preparation method thereof
CN101660106A (en) Wear-resistant high-ductility vanadium, niobium and rare earth alloy steel liner plate and manufacture technology
JP5695202B2 (en) Boron-containing stainless steel with excellent hot workability and surface properties
CN109881121A (en) Chloride ion corrosion-resistant high-strength anti-seismic reinforcing steel bar and production method and application thereof
CN112853155A (en) High aluminum austenitic alloy having excellent high temperature corrosion resistance and creep resistance
CN104651730A (en) Wear-resistant alloy steel, alloy grinding ball and preparation method of wear-resistant alloy steel
PL124853B1 (en) Alloy steel
CN107675094A (en) It is a kind of to be used to make copper sulphur bag, the new material of cinder ladle
CN110468329A (en) ZG-SY09MnCrNiMo RE steel and casting preparation method
CN110230003A (en) A kind of High-Strength Low-Alloy heat resisting cast steel material and its preparation process suitable for extremely frigid zones
CN103436807A (en) Low-carbon equivalent high strength and toughness cast steel
CN110241363A (en) A kind of New-type cast steel material and its casting method
CN114959320B (en) Production method of low-nitrogen low-boron low-phosphorus low-carbon ferromanganese
PL124854B1 (en) Alloy steel
SU1742351A1 (en) Steel
Sunulahpašić et al. INTENSIFICATION OF LOW-CARBON STEEL DESULPHURISATION IN THE INDUCTION FURNACE
RU1786175C (en) Steel