OA20443A - DNA-cutting agent based on CAS9 protein from the bacterium pasteurella pneumotropica - Google Patents

DNA-cutting agent based on CAS9 protein from the bacterium pasteurella pneumotropica Download PDF

Info

Publication number
OA20443A
OA20443A OA1202100566 OA20443A OA 20443 A OA20443 A OA 20443A OA 1202100566 OA1202100566 OA 1202100566 OA 20443 A OA20443 A OA 20443A
Authority
OA
OAPI
Prior art keywords
dna
sequence
protein
amino acid
ppcas9
Prior art date
Application number
OA1202100566
Inventor
Polina Anatolevna SELKOVA
Olga Sergeevna MUSHAROVA
Tatiana Olegovna ARTAMONOVA
Marina Viktorovna ABRAMOVA
Konstantin Viktorivich SEVERINOV
Sergey Anatolievich SHMAKOV
Daría Nikolaevna ARTAMONOVA
Ignaty Igorevich GORYANIN
Julia Valerevna ANDREEVA
Tatiana Igorevna ZYUBKO
Yana Vitalievna FEDOROVA
Mikhail Alekseevich KHODORKOVSKII
George Evgenevich POBEGALOV
Anatoliy Nikolaevich ARSENIEV
Aleksandra Andreevna VASILIEVA
Original Assignee
Joint Stock Company "Biocad"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joint Stock Company "Biocad" filed Critical Joint Stock Company "Biocad"
Publication of OA20443A publication Critical patent/OA20443A/en

Links

Abstract

The present invention describes a novel bacterial nuclease of a CRISPR-Cas9 system from the bacterium P. pneumotropica, as well as the use of said nuclease for creating strictly specific twostrand cuts in a DNA molecule. The present nuclease possesses unusual properties and can be used as an instrument for introducing changes at strictly specified locations in a genomic DNA sequence of single-celled and multi-celled organisms. The invention thus increases the universality of accessible CRISPR-Cas9 systems, making it possible to use Cas9 nuclease from various organisms to cut genomic or plasmid DNA in a large number of specific sites and under various conditions.

Description

DNA-CUTTING AGENT BASED ON CAS9 PROTEIN FROM THE BACTERIUM PASTEURELLA PNEUMOTROPICA
Field of invention
The invention relates to biotechnology, specifically to novel Cas nuclease enzymes of CRISPR-Cas Systems, which are used for cutting DNA and editing the genome of various organisms. This technique may be used in the future for gene therapy of hereditary human diseases, as well as for editing the genome of other organisms.
Background ofthe invention
Modification of a DNA sequence is one of the topical problems in today's biotechnology field. Editing and modifying the genomes of eukaryotic and prokaryotic organisms, as well as manipulating DNA in vitro, require targeted introduction of double-strand breaks in DNA sequences.
To solve this problem, the following techniques are currently used: artificial nuclease Systems containing domains ofthe zincfingertype, TALEN Systems, and bacterial CRISPR-Cas Systems. The first two techniques require laborious optimization of a nuclease amino acid sequence for récognition of a spécifie DNA sequence. In contrast, when it cornes to CRISPR-Cas Systems, the structures that recognize a DNA target are not proteins, but short guide RNAs. Cutting of a particular DNA target does not require the synthesis of nuclease or its gene de novo but is made by way of using guide RNAs complementary to the target sequence. It makes CRISPR Cas Systems convenient and efficient means for cutting various DNA sequences. The technique ailows for simultaneous cutting of DNA at several régions using guide RNAs of different sequences. Such an approach is also used to simultaneously modify several genes in eukaryotic organisms.
By their nature, CRISPR-Cas Systems are prokaryotic immune Systems capable of highly spécifie introduction of breaks into a viral genetic material (Mojica F. J. M. et al. Intervening sequences of regularly spaced prokaryotic repeats dérivé from foreign genetic éléments //Journal of molecular évolution. - 2005. - Vol. 80. - Issue. 2. -pp. 174-182). The abbreviation CRISPR-Cas stands for Clustered Regularly Interspaced Short Palindromie Repeats and CRISPR associated Genes (Jansen R. et al. identification of genes that are associated with DMA repeats in prokaryotes //Molecular microbiology. - 2002. - Vol. 43. - Issue. 8. - pp. 1565-1575). AH CRISPR-Cas Systems consist of CRISPR cassettes and genes encoding various Cas proteins (Jansen R. et al., Molecular microbiology. - 2002. - Vol. 43. - Issue 6. - pp. 1565-1575). CRISPR cassettes consist of spacers, each having a unique nucléotide sequence, and repeated palindromie repeats (Jansen R. et al., Molecular microbiology. - 2002. - Vol. 43. - Issue 6. - pp. 1565-1575). The transcription of CRISPR cassettes followed by processing thereof results in the formation of guide crRNAs, which together with Cas proteins form an effector complex (Brouns S. J. J. et ai. Small CRISPR RNAs guide antiviral defense in prokaryotes //Science. - 2008. - Vol. 321. - Issue 5891. - pp. 960-964). Due to the complementary pairing between the crRNA and a target DNA site, which is cailed the protospacer, Cas nuclease recognizes a DNA target and highly specifically introduces a break therein.
CRISPR-Cas Systems with a single effector protein are grouped into six different types (types l-VI), depending on Cas proteins that are included in the Systems. In 2013, it was proposed for the first time to use the Type II CRISPR-Cas9 system for editing the genomic DNA of human cells (Cong L, et al., Multiplex genome engineering using CRISPR/Cas Systems. Science. 2013 Feb 15;339(6121 ):819-23). The type II CRISPR-Cas9 System is characterized in its simple composition and mechanism of activity, i.e. its functioningrequires the formation ofan effector complex consisting only of one Cas9 protein and two short RNAs as follows: crRNA and tracer RNA (tracrRNA). The tracer RNA complementarily pairs with a crRNA région, which originates from a CRISPR repeat, to form a secondary structure necessary for the binding of guide RNAs to the Cas effector. Determining the sequence of guide RNAs is an important step in the characterization of previously unstudied Cas orthologues. The Cas9 effector protein is an RNA-dependent DNA endonuclease with two nuclease domains (HNH and RuvC) that introduce breaks into the complementary strands of target DNA, thus forming a double-strand DNA break (Deltcheva E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III //Nature. - 2011. - Vol. 471. Issue 7340. - p. 602).
Thus far, several CRISPR-Cas nucleases are known that are capable of targeted and spécifie introduction of double-strand breaks in DNA. The CRISPR-Cas9 technology is one of the most modem and rapidly developing techniques for introducing breaks in DNA of various organisms, ranging from bacterial strains to human cells, also offering in vitro application (Song M. The CRISPR/Cas9 System: Their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog. 2017 Jul;33(4):1035-1045).
The effector ribonucleic complex consisting of Cas9 and a crRNA/tracrRNA duplex requires the presence of PAM (protospacer adjusted motif) on a DNA target for récognition and subséquent hydrolysis of DNA, in addition to crRNA spacer-protospacer complementarity. (Mojica F. J. M. et al. 2009). PAM is a strictly defined sequence of several nucléotides Iocated in type II Systems adjacent to or several nucléotides awayfrom the 3' end ofthe protospacer on an off-target chain. In the absence of PAM, the hydrolysis of DNA bonds with the formation of a double-strand break does not take place. The need for the presence of a PAM sequence on a target increases récognition specificity but at the same time imposes restraints on the sélection of target DNA régions for introducing a break. Thus, the presence ofthe desired PAM sequence flanking the DNA target from the 3'-end is a feature that limits the use of CRISPR-Cas Systems at any DNA site.
Different CRISPR-Cas proteins use different, unique PAM sequences in the activity thereof. The use of CRISPR-Cas proteins with novel various PAM sequences is necessary to make it possible to modify any DNA région, both in vitro and in the genome of living organisms. Modification of eukaryotic genomes also requires the use of the small-sized nucleases to provide AAV-mediated delivery of CRISPR-Cas Systems into cells.
Although a number of techniques for cutting DNA and modifying a genomic DNA sequence are known, there is still a need for novel effective means for modifying DNA in various organisms and at strictly spécifie sites of a DNA sequence.
Summary ofthe invention
The object of the présent invention is to provide novel means for modifying a genomic DNA sequence of unicellular or multicellular organisms using CRISPR-Cas9 Systems. Currently existing Systems are of limited use due to a spécifie PAM sequence that must be présent at the 3' end of the DNA région to be modified. Search for novel Cas9 enzymes with other PAM sequences will expand the range of available means forthe formation of a double-strand break at desired, strictly spécifie sites in DNA molécules of various organisms. To solve this problem, the authors characterized the previously predicted for Pasteurella pneumotropica (P. pneumotropica) the type II CRISPR nuclease PpCas9, which can be used to introduce directed modifications into the genome of both the above and other organisms. The présent invention is characterized in that it has the following essential features: (a) short PAM sequence that is different from other known PAM sequences; (b) relatively small size of the characterized PpCas9 protein, which is 1055 amino acid residues (a.a.r.).
Said problem is solved by using a protein comprising the amino acid sequence of SEQ ID NO: 1, or comprising an amino acid sequence that is at least 95% identical to the amino acid sequence of SEQ ID NO: 1 and differs from SEQ ID NO: 1 only in non-conserved amino acid residues, to form a double-strand break in a DNA molécule, located immediately before the nucléotide sequence 5'NNNN(A/G)T-3' in said DNA molécule. In some embodiments of the invention, this use is characterized in that the double-strand break is formed in a DNA molécule at a température of 35°Cto 45 °C.
Said problem is further solved by providing a method for modifying a genomic DNA sequence of a unicellular or multicellular organism, comprising the introduction, into at least one cell of said organism, of an effective amount of: a) either a protein comprising the amino acid sequence of SEQ ID NO: 1, or a nucleic acid encoding the protein comprising the amino acid sequence of SEQ ID NO: 1, and b) either a guide RNA comprising a sequence that forms a duplex with the nucléotide sequence of an organism's genomic DNA région, which is directly adjacent to the nucléotide sequence 5'-NNNN(A/G)T-3' and interacts with said protein following the formation ofthe duplex, or a DNA sequence encoding said guide RNA; wherein interaction of said protein with the guide RNA and the nucléotide sequence 5'-NNNN(A/G)T-3' results in the formation of a double-strand break in the genomic DNA sequence immediately adjacent to the sequence 5'-NNNN(A/G)T-3'. In some embodiments ofthe invention, the method is characterized in that it further comprises the introduction of an exogenous DNA sequence simultaneously with the guide RNA.
A mixture of crRNA and tracer RNA (tracrRNA), which can form a complex with a target DNA région and PpCas9 protein, may be used as a guide RNA. In preferred embodiments of the invention, a hybrid RNA constructed based on crRNA and tracer RNA may be used as a guide RNA. Methods for constructing a hybrid guide RNA are known to those skilled (Hsu PD, et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31 (9):827-32). One ofthe approaches for constructing a hybrid RNA has been disclosed in the Examples below.
The invention may be used both for in vitro cutting target DNA, and for modifying the genome of some living organism. The genome may be modified in a direct fashion, i.e. by cutting the genome at a corresponding site, as well as by inserting an exogenous DNA sequence via homologous repair.
Any région of double-strand or single-strand DNA from the genome of an organism other than that used for administration (or a composition of such régions among themselves and with other DNA fragments) may be used as an exogenous DNA sequence, wherein said région (or composition of régions) is intended to be întegrated into the site of a double-strand break in target DNA, induced by PpCas9 nuclease. In some embodiments of the invention, a région of double-strand DNA from the genome of an organism used for the introduction of PpCas9 protein, further modified by mutations (substitution of nucléotides), as well as by insertions or délétions of one or more nucléotides, may be used as an exogenous DNA sequence.
The technical resuit of the présent invention is to increase the versatility of the available CRISPRCas9 Systems to enable the use of Cas9 nuclease for cutting genomic or plasmid DNA in a larger number of spécifie sites and spécifie conditions.
Brief description of drawings
Fig. 1. Scheme of the locus of the CRISPR PpCas9 System. DR (direct repeat) is a regularly repeated région that is part of a CRISPR cassette.
Fig. 2. In vitro PAM screening. Scheme of the experiment.
Fig. 3. PpCas9 nuclease cutting of 7N library fragments at different reaction températures.
Fig. 4. (A) Analysis of the results of in vitro screening of PpCas9 nuclease using the calculation of the proportion change logarithm for each spécifie nucléotide in each PAM (FC) position. (B) PAM Logo of PpCas9 nuclease. The occurrence of Adenine, Cytosine, Thymine, and Guanine is indicated for each position. The height of the letters corresponds to the occurrence of nucléotide at a given position of PAM sequence.
Fig. 5. Vérification of the effect of single-nucleotide substitutions at PAM position 1 on the efficiency of cutting the DNA target by PpCas9 nuclease.
Fig. 6. Vérification of the significance of nucléotide positions in the PpCas9 PAM sequence.
Fig. 7. Vérification of the effect of Ato G substitution at PAM position 6 on the efficiency of cutting of the DNA target by PpCas9 nuclease.
Fig. 8. Vérification of the effect of single-nucleotide substitutions at PAM position 7 on the efficiency of cutting the DNA target by PpCas9 nuclease.
Fig. 9. Cutting of various DNA sites using the PpCas9 protein. Lanes 1 and 2 are positive Controls.
Fig. 10. Vérification of récognition of the PAM sequence CAGCATT by PpCas9 nuclease. Lanes 1 and 2 are positive Controls.
Fig. 11. Diagram ofthe DNA cutting tool PpCas9.
Fig. 12. Experiment on cutting of a DNA target. Hybrid guide RNAs of different lengths were used.
Fig. 13. Alignment of amino acid sequences of PpCas9 and Cas9 proteins from Staphylococcus aureus using the NCBI BLASTp software (default parameters).
Detailed disclosure ofthe invention
As used in the description ofthe présent invention, the terms includes and including shall be interpreted to mean includes, among other things. Said terms are not intended to be interpreted as consists only of. Unless defined separately, the technical and scientific terms in this application hâve typical meanings generally accepted in the scientific and technical literature.
As used herein, the term percent homology of two sequences is équivalent to the term percent identity of two sequences. Sequence identity is determined based on a reference sequence. Algorithms for sequence analysis are known in the art, such as BLAST described in Altschul et aL,
J. Mol. Biol., 215, pp. 403-10 (1990). For the purposes of the présent invention, to détermine the level of identity and similarity between nucléotide sequences and amino acid sequences, the comparison of nucléotide and amino acid sequences may be used, which is performed by the BLAST software package provided by the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/blast) using gapped alignment with standard parameters. Percent identity of two sequences is determined by the number of positions of identical amino acids in these two sequences, taking into account the number of gaps and the length of each gap to be entered for optimal comparison of the two sequences by alignment. Percent identity is equal to the number of identical amino acids at given positions taking account of sequence alignment divided by the total number of positions and multiplied by 100.
The term specifically hybridizes refers to the association between two single-strand nucleic acid molécules or sufficiently complementary sequences, which permits such hybridization under predetermined conditions typicaily used in the art.
The phrase a double-strand break located immediately before the nucléotide PAM sequence means that a double-strand break in a target DNA sequence will be made at a distance of 0 to 25 nucléotides before the nucléotide PAM sequence.
An exogenous DNA sequence introduced simultaneously with a guide RNA is intended to refer to a DNA sequence prepared specifically for the spécifie modification of a double-strand target DNA at the site of break determined by the specificity of the guide RNA. Such a modification may be, for example, an insertion or délétion of certain nucléotides at the site of a break in target DNA. The exogenous DNA may be either a DNA région from a different organism or a DNA région from the same organism as that of target DNA.
A protein comprising a spécifie amino acid sequence is intended to refer to a protein having an amino acid sequence composed of said amino acid sequence and possibly other sequences linked by peptide bonds to said amino acid sequence. An example of other sequences may be a nuclear localization signal (NLS), or other sequences that provide increased functionality for said amino acid sequence.
An exogenous DNA sequence introduced simultaneously with a guide RNA is intended to refer to a DNA sequence prepared specificaIly for the spécifie modification of a double-strand target DNA at the site of break determined by the specificity of the guide RNA. Such a modification may be, for example, an insertion or délétion of certain nucléotides at the site of a break in target DNA. The exogenous DNA may be either a DNA région from a different organism or a DNA région from the same organism as that of target DNA.
An effective amount of protein and RNA introduced into a cell is intended to refer to such an amount of protein and RNA that, when introduced into said cell, will be able to form a functional compiex, i.e. a compiex that will specifically bind to target DNA and produce therein a doublestrand break at the site determined by the guide RNA and PAM sequence on DNA. The efficiency of this process may be assessed by analyzing target DNA isolated from said cell using conventional techniques known to those skilled.
A protein and RNA may be delivered to a cell by various techniques. For example, a protein may be delivered as a DNA plasmid that encodes a gene ofthis protein, as an mRNA for translation of this protein in cell cytoplasm, or as a ribonucleoprotein compiex that includes this protein and a guide RNA. The delivery may be performed by various techniques known to those skilled.
The nucleic acid encoding system's components may be introduced into a cell directiy or indirectly as follows: by way of transfection or transformation of cells by methods known to those skilled, by way of the use of a recombinant virus, by way of manipulations on the cell, such as DNA microinjection, etc.
A ribonucleic complex consisting of a nuclease and guide RNAs and exogenous DNA (if necessary) may be delivered by way of transfecting the complexes into a cell or by way of mechanically introducing the complex into a cell, for example, by way of microinjection.
A nucleic acid molécule encoding the protein to be introduced into a cell may be integrated into the chromosome or may be an extrachromosomally replicating DNA. In some embodiments, to ensure effective expression of the protein gene with DNA introduced into a cell, it is necessary to modify the sequence of said DNA in accordance with the cell type in order to optimize the codons for expression, which is due to unequal frequencies of occurrence of synonymous codons in the coding régions of the genome of various organisms. Codon optimization is necessary to increase expression in animal, plant, fungal, or microorganism cells.
For a protein that has a sequence that is at least 95% identical to the amino acid sequence of SEQ. ID NO: 1 to function in a eukaryotic cell, it is necessary for this protein to end up in the nucléus of this cell. Therefore, in some embodiments of the invention, a protein having a sequence that is at least 95% identical to the amino acid sequence of SEQ ID NO: 1 and which is further modified at one or both ends by the addition of one or more nuclear localization signais is used to form double-strand breaks in target DNA. For example, a nuclear localization signal from the SV40 virus may be used. To provide efficient delivery to the nucléus, the nuclear localization signal may be separated from the main protein sequence by a spacer sequence, for example, described in Shen B, et al. Génération of gene-modified mice via Cas9/RNA-mediated gene targeting, Cell Res. 2013 May;23(5):720-3. Further, in other embodiments, a different nuclear localization signal or an alternative method for delivering said protein into the cell nucléus may be used.
The présent invention encompasses the use of a protein from the P. pneumotropica organism, which is homologous to the previously characterized Cas9 proteins, to introduce double-strand breaks into DNA molécules at strictly specified positions. The use of CRISPR nucleasesto introduce targeted modifications to the genome has a number of advantages. First, the specificity of the system's activity is determined by a crRNA sequence, which allows for the use of one type of nuclease for ail target loci. Secondly, the technique enables the delivery of several guide RNAs complementary to different gene targets into a cell at once, thereby making it possible to simultaneously modify several genes at once.
PpCas9 is a Cas nuclease found in Pasteurella pneumotropica ATCC 35149, a rodent pathogen that lives in the lungs of the animais. The Pasteurella pneumotropica (P. pneumotropica) CRISPR Cas9 System (hereinafter referred to as CRISPR PpCas9) belongs to type ll-C CRISPR Cas Systems and consists of a CRISPR cassette carrying four direct repeats (DR) with the sequence 5'ATTATAGCACTGCGAAATGAAAAAGGGAGCTACAAC3', interspaced by the sequences of unique spacers. None of the spacers of the System coïncides in sequence with the currently known bactériophages or plasmids, which fact makes it impossible to détermine the PpCas9 PAM of interest by bioinformatic analysis. To the CRISPR cassette there are adjacent the gene for the effector Cas9 protein PpCas9, as well as the genes for the Casl and Cas2 proteins involved in adaptation and intégration of new spacers. Nearby the Cas genes, a sequence was found partially complementary to direct repeats and folding into a characteristic secondary structure, which is contemplated to be the tracer RNA (tracrRNA) (Fig. 1)
Knowledge of the characteristic architecture of the RNA-Cas protein complex of type ll-C Systems made it possible to predict the direction of transcription of the CRISPR cassette: pre-crRNA is transcribed in the opposite direction to the Cas genes (Fig. 1)
Thus, the analysis of the sequence of the PpCas9 locus made it possible to predict the sequences of tracer and guide RNAs (Table 1).
Table 1. Sequences of guide RNAs of the CRISPR PpCas9 system, which were determined by bioinformatics methods. Bold indicates the sequence of direct repeat, DR.
Name Sequence
PpCas9 5'GCGAAATGAAAAACGUUGUUACAAUAAGAGAUGAAUUJCUCGCAAAG
trRNA CTCUGCCUCUUGAAAUUUCGGUUUCAAGAGGCAUCUUUUU-31
PpCas9 crRNA 5' - xxxxxxxxxxxxxxxxxxxxGUUGUAGCUCCCUUUUCAUUUCGC- 3'
To verify the activity of PpCas9 nuclease and détermine the PpCas9 PAM of interest, we conducted experiments on recreating the DNA cutting reaction in vitro. To détermine the PAM sequence of the PpCas9 protein, in vitro cutting of double-strand PAM libraries was employed. To this end, it was necessary to obtain ail the components of the PpCas9 effector complex as follows: guide RNAs and a nuclease in a recombinant form. Détermination of the guide RNA sequence made it possible to synthesize crRNA and tracrRNA molécules in vitro. The synthesis was carried out using the NEB HiScribe T7 RNA synthesis kit. The double-strand DNA libraries were 374 base pair (bp) fragments comprising a protospacer sequence flanked by randomized seven nucléotides (5'-NNNNNNN-3') from the 3' end: 5'cccggggtaccacggagagatggtggaaatcatctttctcgtgggcatccttgatggccacctcgtcggaagtgcccacgaggatga cagcaatgccaatgctgggggggctcttctgagaacgagctctgctgcctgacacggccaggacggccaacaccaaccagaactt gggagaacagcactccgctctgggcttcatcttcaactcgtcgactccctgcaaacacaaagaaagagcatgttaaaataggatcta catcacgtaacctgtcttagaagaggctagatactgcaattcaaggaccttatctcctttcattgagcacNNNNNNNaactccatcta ccagcctactctcttatctctggtatt -3'
To eut this target, guide RNAs of the following sequence were used:
tracrRNA:
5'GCGAAATGAAAAACGUUGUUACAAUAAGAGAUGAAUUUCUCGCAAAGCTCUGCCUCUUGAAAUU UCGGUUUCAAGAGGCAUCUUUUU and crRNA:
5' uaucuccuuucauugagcacGUUGUAGCUCCCUUUUUCAUUUCGC.
Bold indicates the crRNA sequence that is complementary to the protospacer (target DNA sequence).
To produce a recombinant PpCas9 protein, the gene thereof was cloned into the plasmid pET21a. DNA synthesized by Integrated DNA Technologies (IDT) was used as the DNA encoding the gene.
The sequence was codon-optimized to exclude rare codons found in the P. pneumotropica genome. E. coli Rosetta cells were transformed with the resulting plasmid pET21 a-6xHis-PpCas9.
500 μΙ of overnight culture was diluted in 500 ml of LB medium, and the cells were grown at 37 °C until an optical density of 0.6 Ru was obtained. The synthesis of the target protein was induced by adding IPTG to a concentration of 1 mM, the cells were then incubated at 20 °C for 6 hours. Then, the cells were centrifuged at 5,000 g for 30 minutes, the resulting cellular précipitâtes were frozen at -20 °C.
The précipitâtes were thawed on ice for 30 minutes, resuspended in 15 ml of lysis buffer (Tris-HCI 50 mM pH 8, 500 mM NaCI, b-mercaptoethanol 1 mM, imidazole 10 mM) supplemented with 15 mg of lysozyme and re-incubated on ice for 30 minutes. The cells were then disrupted by sonication for 30 minutes and centrifuged for 40 minutes at 16,000 g. The resulting supematant was passed through a 0.2 pm filter and applied onto a HisTrap HP 1 mL column (GE Healthcare) at 1 ml/min.
Chromatography was performed using the AKTA FPLC chromatograph (GE Healthcare) at 1 ml/min. The column with the applied protein was washed with 20 ml of lysis buffer supplemented with 30 mM imidazole, after which the protein was washed off with lysis buffer supplemented with 300 mM imidazole.
Then, the protein fraction obtained in the course of affinity chromatography was passed through a Superdex 200 10/300 GL gel filtration column (24 ml) equilibrated with the following buffer: Tris-HCI 50 mM pH 8, 500 mM NaCI, 1 mM DTT. Using an Amicon concentrator (with a 30 kDa filter), fractions corresponding to the monomeric form of the PpCas9 protein were concentrated to 3 mg/ml, after which the purified protein was stored at -80 °C in a buffer containing 10% glycerol.
The in vitro reaction of cutting the linear PAM libraries was carried out in a volume of 20 μΙ under the following conditions. The reaction mixture consisted of: IX CutSmart buffer (NEB), 5 mM DTT, 100 nM PAM library, 2 μΜ trRNA/crRNA, 400 nM PpCas9 protein. As a control, sampies containing no RNA were prepared in a similar way. The sampies were incubated at different températures and analyzed by gel electrophoresis in 2% agarose gel. In the case of correct récognition and spécifie cutting of DNA by PpCas9 protein, two DNA fragments of about 326 and 48 base pairs should be generated (see Fig. 2).
The experiment results showed that PpCas9 has nuclease activity and cuts a portion of the PAM library fragments. The température gradient (Fig. 3) showed that the protein is active in the température range of 35-45 C. The study then used a température of 42 °C as a working température.
The library cutting reaction was repeated under the selected conditions. The reaction products were applied onto 1.5% agarose gel and subjected to electrophoresis. Uncut DNA fragments with a length of 374 bp were extracted from the gel and prepared for high-throughput sequencing using the NEB NextUltra II kit. The sampies were sequenced on the Illumina platform, and then the analysis of the sequences was carried out using bioformatical methods: we determined the différence in occurrence of nucléotides at individual positions of PAM (NNNNNNN) as compared to the control sample using the approach described in (Maxwell CS, et al., A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods. 2018 Jul 1 ;143:48-57). Furthermore, PAM logo was built to analyze the results (Fig. 4).
g
Both approaches to data analysis (Fig. 4) indicate the significane of PAM positions 5, 6 and 7. Thus, in vitro analysis allowed to establish the putative PAM sequence for PpCas9 as follows: NNNNATT. However, this sequence is only putative in view of inaccurate results obtained by screening approaches to détermine PAM.
In this regard, the significance of individual PAM sequence positions was verified for more précisé détermination of the sequence. To this end, we performed in vitro reactions of cutting of DNA fragments containing a DNA target 5'-atctcctttcattgagcac-3' flanked by PAM sequence CAACATT (or dérivatives thereof): 5'cccggggtaccacggagagatggtggaaatcatctttctcgtgggcatccttgatggccacctcgtcggaagtgcccacgaggatga cagcaatgccaatgctgggggggctcttctgagaacgagctctgctgcctgacacggccaggacggccaacaccaaccagaactt gggagaacagcactccgctctgggcttcatcttcaactcgtcgactccctgcaaacacaaagaaagagcatgttaaaataggatcta catcacgtaacctgtcttagaagaggctagatactgcaattcaaggaccttatçtççtttçattgagçaçCAACATTaactccatcta ccagcctactctcttatctctggtatt- 3'
Ail DNA cutting reactions were performed under the following conditions:
IxCutSmart buffer
400 nM PpCas9 nM DNA μΜ crRNA μΜ tracrRNA
Incubation time was 30 minutes, reaction température was 42 °C.
The substitution of PAM position 1 with ail four possible nucléotide variants did not affect the efficiency of protein activity (Fig. 5).
The predicted significance of positions 5 and 6 was confirmed experimentally by single nucléotide substitutions (purine with pyrimidine and vice versa) in each of the PAM positions. When the substitutions took place at positions 5 and 6, the protein practically stopped its activity. When the substitution took place at position 7, the efficiency of PpCas9 activity decreased twice, which fact reflects the reduced requirements for the nucléotide at this position (Fig. 6). Thus, according to the results of in vitro PAM screening of PpCas9 nuclease, the most probable nucléotides at PAM position 5 are adenine or guanine, which fact was confirmed experimentally (Fig. 7). A to G substitution did not reduce the efficiency of cutting of the fragment.
According to the results of in vitro screening, fragments with T or with S at position 7 shouid be recognized more efficiently. Additional experiments were conducted to définitively verify the significance of nucléotides at this position. The results of in vitro tests showed that substitution of the nucléotide T at position 7 with A or G reduced the cutting efficiency by 40-50% (Fig. 8). Thus, PAM position 7 is less conserved as compared to positions 5 and 6: purines at position 7 only reduce récognition efficiency but do not prevent PpCas9 protein to introduce double-strand breaks into DNA.
The results of the study were as follows: PAM recognized by PpCas9 nuclease corresponds to the following formula 5'- NNNN(A/G)T-3'. The sequences NNNNRTY (NNNN(A/G)-T-(T/C)) are recognized more efficiently as compared to NNNNRTR (NNNN-(A/G)-T-(A/G)).
The following exemplary embodiments of the method are given for the purpose of disclosing the characteristics of the présent invention and should not be construed as limiting in any way the scope of the invention.
Example 1. Testing the activity ofPpCas9 protein in the cutting of various DNA targets.
In order to check the ability ofPpCas9 to recognize various DNA sequences flanked by the sequence 5'-NNNN(A/G)T-3', experiments were conducted on in vitro cutting of DNA targets from a human grin2b gene sequence (see Table 2).
Table 2. DNA targets from the human grin2b gene.
sequence PAM
TATCTCCTTCATTGAGCAC C A A A C C c
CAGCTGAAGTAATGTTAGAG G C A C A T T
AATAAGAAAAACATTATTAT C A C C A T T
G G G G CTATAAGTACAC AAG C C C T G C A T
CGTTCTCAGAAGAGCCCCCC C A G C A T T
CCCACGAGAAAGATGATTTC C A C C A T c
A PCR fragment of the grin2b gene carrying récognition sites (Table 2) presumably recognizable by PpCas9 in accordance with PAM consensus sequence 5'-NNNN(A/G)T-3' was used as a target in the cutting reaction. crRNAs directing PpCas9 to these sites were synthesized to recognize these sequences.
The cutting reactions were performed under conditions selected for PpCas9; the resuit is shown in Fig. 9. Fig. 9 shows that the PpCas9 enzyme successfully eut three of the four targets with suitable PAM.
The target on lane 6 had PAM sequence CAGCATT, which, according to the prédictions based on the results of déplétion analysis, should be efficiently recognized by the protein. However, the récognition of this fragment did not take place in this experiment.
Therefore, the PAM CAGCATT was additionally verified on another protospacer target restricted to the same PAM (Fig. 10). In this case, the PAM was effectively recognized, which resulted in the cutting of DNA. Thus, the protein has some further preferences for the DNA target sequence. The preferences are possibly related to the secondary structure of DNA.
Thus, the studies showed the presence of nuclease activity in PpCas9, and also allowed to détermine its PAM sequence and to verify the sequences of guide RNAs.
The PpCas9 ribonucleoprotein complex specifically introduces breaks in targets restricted to the PAM 5' NNNN(A/G)T 3' from the 5' end of the protospacer. The scheme of the PpCas9/RNA complex is shown in Fig. 11.
dO
Example 2. Use of hybrid guide RNA for cutting a DNA target.
sgRNA is a form of guide RNAs, which is fused tracrRNA (tracer RNA) and crRNA. To select the optimal sgRNA, we constructed three variants of this sequence, which differed in the length of the tracrRNA-crRNA duplex. RNAs was synthesized in vitro and experiments involving them were conducted on cutting the DNA target (Fig. 12).
The following RNA sequences were used as hybrid RNAs:
- sgRNAI 25DR:
UAUCUCCUUUCAUUGAGCACGUUGUAGCUCCCUUUUUCAUUUCGCGAAAGCGAAAUGA AAAACGUUGUUACAAUAAGAGAUGAAUUUCUCGCAAAGCTCTGCCUCUUGAAAUUUCGG UUUCAAGAGGCAUCUUUUU
- sgRNA2 36DR
UAUCUCCUUUCAUUGAGCACGUUGUAGCUCCCUUUUUUCAUUUCGCAGUGCUAUAAUG AAAAUUAUAGCACUGCGAAAUGAAAAACGUUGUUACAAUAAGAGAUGAAUUUCUCGCAAA GCUCUGCCUCUUGAAAUUUCGGUUUCAAGAGGCAUCUUUUU
Bold indicates a 20-nucleotide sequence that provides pairing with the target DNA (variable portion of sgRNA). Furthermore, the experiment used a control sample without RNA and a positive control, which is the cutting of the target using crRNA+trRNA.
A sequence containing the récognition site 5' tatctcctttcattgagcac 3' with the corresponding consensus sequence PAMCAACATT was used as a DNA target: 5'cccggggtaccacggagagatggtggaaatcatctttctcgtgggcatccttgatggccacctcgtcggaagtgcccacgaggatga cagcaatgccaatgctgggggggctcttctgagaacgagctctgctgcctgacacggccaggacggccaacaccaaccagaactt gggagaacagcactccgctctgggcttcatcttcaactcgtcgactccctgcaaacacaaagaaagagcatgttaaaataggatcta catcacgtaacctgtcttagaagaggctagatactgcaattcaaggaccttatctcctttcattgagcacCAACATTcaactccat ctaccagcctactctcttatctctggtatt - 3
Bold indicates the récognition site, capital letters stand for PAM.
The reaction was performed under the following conditions: concentration of DNA sequence containing PAM (CAACATT) was 20 nM, protein concentration was 400 nM, RNA concentration was 2 μΜ; incubation time was 30 minutes, incubation température was 37 °C.
The selected sgRNAI and sgRNA2 were found to be as efficient as the native tracrRNA and crRNA sequences: cutting took place in more than 80% of the DNA targets (Fig. 12).
These hybrid RNA variants may be used to eut any othertarget DNA after modifyingthe sequence that directly pairs with the DNA target.
Example 3. Cas9 proteins from closely related organisms belonging to P. pneumotropica..
To date, no CRISPR-Cas9 enzymes hâve been characterized in P. pneumotropica. The Cas9 protein from Staphylococcus aureus, which is comparable in size, is identical to PpCas9 by 28% ((Fig. 13, the degree of identity was calculated by BLASTp software, default parameters). A similar degree of identity is présent in other known Cas9 proteins (not shown).
Thus, PpCas9 protein differs significantly in its amino acid sequence from other Cas9 proteins studied to date.
Those skilled in the art of genetic engineering will appreciate that PpCas9 protein sequence variant obtained and characterized by the Applicant in the présent description may be modified without changing the function of the protein itself (for example, by directed mutagenesis of amino acid residues that do not directly influence the functional activity (Sambrook et al., Molecular Cloning: A Laboratory Manual, (1989), CSH Press, pp. 15.3-15.108)). In particular, those skilled will recognize that non-conserved amino acid residues may be modified, without affecting the residues that are responsible for protein functionality (determining protein function or structure). Examples of such modifications include the substitutions of non-conserved amino acid residues with homologous ones. Some of the régions containing non-conserved amino acid residues are shown in Figure 12. In some embodiments of the invention, it is possible to use a protein comprising an amino acid sequence that is at least 95% identical to the amino acid sequence of SEQ ID NO: 1 and differs from SEQ ID NO: 1 only in non-conserved amino acid residues, to form, in DNA molécule, a double-strand break located immediately before the nucléotide sequence 5'-NNNN(A/G)T-3' in said DNA molécule. Homologous proteins may be obtained by mutagenesis (for example, site-directed or PCR-mediated mutagenesis) of corresponding nucleic acid molécules, followed by testing the encoded modified Cas9 protein for the préservation of its functions in accordance with the functional analyses described herein.
Example 4. The PpCas9 system described in the présent invention, in combination with guide RNAs, may be used to modify the genomic DNA sequence of a multicellular organism, including a eukaryotic organism. For introducing the PpCas9 system in the complex with guide RNAs into the cells of this organism (into ail cells or into a portion of cells), various approaches known to those skilled may be applied. For example, methods for delivering CRISPR-Cas9 Systems to the cells of organisms hâve been disclosed in the sources (Liu C et al., Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017 Nov 28;266:17-26; Lino CA et al., Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018 Nov;25(l ):1234-1257), and in the sources further disclosed within these sources.
For effective expression of PpCas9 nuclease in eukaryotic cells, it will be désirable to optimize codons for the amino acid sequence of PpCas9 protein by methods known to those skilled (for example, IDT codon optimization tool).
For the effective activity of PpCas9 nuclease in eukaryotic cells, it is necessary to import the protein into the nucléus of a eukaryotic cell. This may be done by way of using a nuclear localization signal from SV40 T-antigen (Lanford et al., Cell, 1986, 46: 575-582) linked to PpCas9 sequence via a spacer sequence described in Shen B, et al. Génération of gene-modified mice via Cas9/RNA-mediated gene targeting, Cell Res. 2013 May;23(5):720-3 or without the spacer sequence. Thus, the complété amino acid sequence of nuclease to be transported inside the nucléus of a eukaryotic cell will be the following sequence: MAPKKKRKVGIHGVPAA-PpCas9KRPAATKKAGQAKKKK (hereinafter referred to as PpCas9 NLS). A protein with the above amino acid sequence may be delivered using at least two approaches.
Gene delivery is accomplished by creating a plasmid bearing the PpCas9 NLS gene under control of a promoter (for example, the CMV promoter) and a sequence encoding guide RNAs under control of the U6 promoter. As DNA targets, DNA sequences flanked by 5'-NNNN(G/A)T -3' are used, for example, those of the human grin2b gene:
5’-CAGCTGAAGTAATGTTAGAG-3’
Thus, the sgRNA expression cassette looks as follows:
gagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgttagagagataattggaattaatttgactgtaaa cacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatgg actatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccg
CAGCTGAAGTAATGTTAGAGGTTGTAGCTCCCTTTTTCATTTCGCGAAAGCGAAATGAAAA ACGTTGTTACAATAAGAGATGAATTTCTCGCAAAGCTCTGCCTCTTGAAATTTCGGTTTCAA GAGGCATCTTTTT
Bold indicates the U6 promoter sequence, followed by a sequence required to recognize the DNA target, and further followed by the sequence forming the sgRNA structure, which is highlighted in red.
Plasmid DNA is purified and transfected into human HEK293 cells using Lipofectamine 2000 reagent (Thermo Fisher Scientific). The cells are incubated for 72 hours, then genomic DNA is extracted therefrom using genomic DNA purification columns (Thermo Fisher Scientific). The target DNA site is analyzed by sequencing on the Illumina platform in order to détermine the number of insertions/deletions in DNA that take place in the target site due to a directed doublestrand break followed by repair thereof.
Amplification ofthe target fragments is performed using primers flankingthe presumptive site of break introduction.
After amplification, samples are prepared according to the Ultra II DNA Library Prep Kit for Illumina (NEB) reagent sample préparation protocol for high-throughput sequencing. Sequencing is then performed on the Illumina platform, 300 cycles, direct reading. The sequencing results are analyzed by bioinformatic methods. An insertion or délétion of several nucléotides in the target DNA sequence is taken as a eut détection.
Delivery as a ribonucleic complex is carried out by incubating recombinant PpCas9 NLS with guide RNAs in the CutSmart buffer (NEB). The recombinant protein is produced from bacterial producer cells by purifying the former by affinity chromatography (NiNTA, Qiagen) with size exclusion (Superdex 200).
The protein is mixed with RNAs in a ratio of 1:2 (PpCas9 NLS : sgRNA), the mixture is incubated for 10 minutes at room température, and then transfected into the cells.
Next, the DNA extracted therefrom is analyzed for insertions/deletions at the target DNA site (as described above).
The PpCas9 nuclease disclosed in the present invention from the bacterium Pasieureila prseumotropsea has a number of advantages over the previously disclosed Cas9 proteins.
PpCas9 has a short, two-letter PAM, distinct from other known Cas nucleases, that is required for the system to function. The invention has shown that the presence of a short PAM (RT) located 4 nucléotides away from the protospacer is sufficient for PpCas9 to function.
The majority of Cas nucleases known thus far, which are capable of introducing double-strand breaks into DNA, hâve complex multi-letter PAM sequences, limiting the choice of sequences suitable for cutting. Among the Cas nucleases studied to date, which recognize short PAMs, only PpCas9 can recognize sequences flanked by the RT motif.
The second advantage of PpCas9 is the small protein size (1055 aar). To date, it is the only smallsized protein studied that has a two-letter RT PAM sequence.
PpCas9 is a novel, small-sized Cas nuclease with a short, easy-to-use PAM that differs from the currently known PAM sequences of other nucleases. The PpCas9 protein cuts various DNA targets with high efficiency, including at 37 °C, and can become the basis for a new genomic editing tool.
Although the invention has been described with reference to the disclosed embodiments, those skilled in the art will appreciate that the particular embodiments described in detail hâve been provided for the purpose of illustrating the présent invention and are not be construed as in any way limiting the scope of the invention. It will be understood that various modifications may be made without departing from the spirit of the présent invention.

Claims (5)

1. Use of a protein comprisingthe amino acid sequence ofSEQID NO: 1 or comprisingan amino acid sequence that is at least 95% identical to the amino acid sequence of SEQ ID NO: 1 and differs from SEQ ID NO: 1 only in non-conserved amino acid residues, to form, in DNA molécule, a double-strand break Iocated immediately before the nucléotide sequence 5'NNNN(A/G)T-3' in said DNA molécule.
2. The use as claimed in claim 1, characterized in that the double-strand break in the DNA molécule is formed at a température of 35 °C to 45 °C.
3. The use ofthe protein as claimed in claim 1, wherein the protein comprisesthe amino acid sequence of SEQ ID NO: 1.
4. A method for modifying a genomic DNA sequence of a unicellular or multicellular organism, comprising the introduction, into at least one cell of said organism, of an effective amount of: a) either a protein comprising the amino acid sequence of SEQ ID NO: 1, or a nucleic acid encoding the protein comprising the amino acid sequence of SEQ ID NO: 1, and b) either a guide RNA comprising a sequence that forms a duplex with the nucléotide sequence of an organism's genomic DNA région, which is directly adjacent to the nucléotide sequence 5'NNNN(A/G)T-3' and interacts with said protein following the formation ofthe duplex, or a DNA sequence encoding said guide RNA;
wherein interaction of said protein with the guide RNA and the nucléotide sequence 5'NNNN(A/G)T-3' results in the formation of a double-strand break in the genomic DNA sequence immediately adjacent to the sequence 5'-NNNN(A/G)T-3'.
5. The method as claimed in claim 4, further comprising the introduction of an exogenous DNA sequence simultaneously with the guide RNA.
OA1202100566 2019-06-11 2020-06-30 DNA-cutting agent based on CAS9 protein from the bacterium pasteurella pneumotropica OA20443A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019118061 2019-06-11

Publications (1)

Publication Number Publication Date
OA20443A true OA20443A (en) 2022-08-08

Family

ID=

Similar Documents

Publication Publication Date Title
EP3985123A1 (en) Dna-cutting agent based on cas9 protein from the bacterium pasteurella pneumotropica
JP7109009B2 (en) Gene knockout method
OA20443A (en) DNA-cutting agent based on CAS9 protein from the bacterium pasteurella pneumotropica
EP4056705A1 (en) Use of cas9 protein from the bacterium pasteurella pneumotropica
RU2788197C1 (en) DNA-CUTTING AGENT BASED ON Cas9 PROTEIN FROM THE BACTERIUM STREPTOCOCCUS UBERIS NCTC3858
RU2778156C1 (en) DNA-CUTTING AGENT BASED ON THE Cas9 PROTEIN FROM THE BACTERIUM CAPNOCYTOPHAGA OCHRACEA
EA041935B1 (en) DNA CUTTER BASED ON Cas9 PROTEIN FROM BACTERIA Pasteurella Pneumotropica
RU2722933C1 (en) Dna protease cutting agent based on cas9 protein from demequina sediminicola bacteria
OA20812A (en) Use of CAS9 protein from the bacterium pasteurella pneumotropica.
RU2712492C1 (en) DNA PROTEASE CUTTING AGENT BASED ON Cas9 PROTEIN FROM DEFLUVIIMONAS SP.
EA044419B1 (en) APPLICATION OF CAS9 PROTEIN FROM PASTEURELLA PNEUMOTROPICA BACTERIA
RU2791447C1 (en) DNA CUTTER BASED ON THE ScCas12a PROTEIN FROM THE BACTERIUM SEDIMENTISPHAERA CYANOBACTERIORUM
RU2771626C1 (en) Tool for cutting double-stranded dna using cas12d protein from katanobacteria and hybrid rna produced by fusion of guide crispr rna and scout rna
OA20197A (en) DNA-cutting agent.
RU2712497C1 (en) DNA POLYMER BASED ON Cas9 PROTEIN FROM BIOTECHNOLOGICALLY SIGNIFICANT BACTERIUM CLOSTRIDIUM CELLULOLYTICUM
EA041933B1 (en) DNA CUTTER
EA042517B1 (en) DNA CUTTER
Esquerra et al. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering
OA20196A (en) DNA-cutting agent.