OA19361A - Towing hook - Google Patents

Towing hook Download PDF

Info

Publication number
OA19361A
OA19361A OA1201900465 OA19361A OA 19361 A OA19361 A OA 19361A OA 1201900465 OA1201900465 OA 1201900465 OA 19361 A OA19361 A OA 19361A
Authority
OA
OAPI
Prior art keywords
hook
intermediate part
towing
stopper element
machine
Prior art date
Application number
OA1201900465
Inventor
Jani Lietonen
Original Assignee
Sandvik Mining And Construction Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Mining And Construction Oy filed Critical Sandvik Mining And Construction Oy
Publication of OA19361A publication Critical patent/OA19361A/en

Links

Abstract

A towing hook arranged on a mining machine, comprising: a first end having a bent portion to allow a towing tool to be connected, a second end having a cylindrical rod, an intermediate part being located between the first and the second end, the towing hook to be mounted in a through hole in a frame of a machine in order for the first and second ends to be positioned on different sides of the machine frame, and the intermediate part mounted partly in the through hole of the frame, and wherein the longitudinal axis of the cylindrical rod is generally parallel with a longitudinal axis defined through the towing hook representing the force transmitting direction when connecting the towing tool to the bent portion.

Description

The subject invention will be described by way of example with reference to a towing hook facilitating the towing of a mining machine. It will be appreciated that the subject invention is applicable to any type of heavy vehicle for which the brakes are activated when the vehicle is standing still.
Referring to figure 1 A, a perspective view of a towing hook 1 is disclosed. The hook has an elongate configuration with a main longitudinal axis L. The hook comprises a bent portion 2a at one end and a cylindrical tube 8 at the other opposite end. Connecting to the bent portion of the hook is an intermediate part 3a with a certain extension following the longitudinal axis. The intermediate part 3a is arranged with a first end connecting to the bent portion 2a and a second end in the longitudinal direction connecting to a cylindrical rod 7. The intermediate part is connected to the cylindrical rod at a flexible pivot point 6, or any kind of flexible hinge. The cylindrical rod 7 is, in the longitudinal direction, connected at a first end to the intermediate part and at the second end to the cylindrical tube 8. The connection between the rod 7 and the tube 8 is flexible in the longitudinal direction and rigid perpendicular to the longitudinal direction, the connection could be fitted as a sliding connection with the inner diameter of the tube somewhat larger than the outer diameter of the rod or a threaded connection or similar. The cylindrical rod 7 may be surrounded by a spring (not shown) that serves as a retum spring. The cylindrical tube 8 has preferably a somewhat larger diameter than the cylindrical rod 7, thus the rod may with one end be mounted on the inner side of one end of the cylindrical tube. The pivot point 6 allows the cylindrical rod 7 together with the cylindrical tube 8 to some extent départ from the main longitudinal axis L. This angle is normally not more than 5°, in some situations it can be up to 10°. The longitudinal axis of the hook may thus, be generally parallel with the longitudinal axis of the cylindrical rod or both axis may coïncide so that they are aligned as seen in the figures.
The cylindrical tube 8 is connected to the brake System of the machine via a first and a second port. The first port is located closest to the cylindrical rod 7 and the bent portion 2a, 2b of the hook. The second port is located at the end farthest from the cylindrical rod 7 and the bent portion 2a, 2b of the hook.
In parallel to the intermediate part 3a springs 5 are arranged. One spring on opposite sides of the intermediate part is disclosed. Any other number of springs may be arranged on each side, such that there is symmetry of springs, the same number of springs on both sides. The springs hâve a longitudinal extension parallel to the main longitudinal axis L of the hook, at one end mounting to the machine frame 10 and at the other end to an end surface 9a of the second end of the intermediate part 3a, as seen in e.g. figure 2A.
Referring to figure 2A, the same perspective view of the towing hook as in figure 1A is shown, but without any part of the machine frame visible. The entire longitudinal extension of the intermediate part 3 a is shown, from the first end connected to the bent portion 2a of the hook to the second end with a plate defining an end surface 9a. The bent portion 2a connecting to the intermediate part 3a has a shoulder or edge or any other kind of first stopper element 4a. The shoulder or edge is arranged along at least one side of the connection between the bent portion and the intermediate part of the hook. This shoulder has an extension parallel with the surface of the machine frame, functioning as an abutment surface against the machine frame. The second stopper element 1 la is a pin, tube or similar having a circular cross section. The second stopper element is mounted in a ridge or channel defining an oblong through hole 12 having an elongate extension parallel with the longitudinal axis of the hook 1. Both ends of the elongate through hole hâve the same radius, which radius is generally the same or somewhat larger than the radius of the circular cross section of the second stopper element lia. By having a pin with a circular cross section a smooth motion is achieved when pulling the hook by applying a towing force. However, any other shape instead of a circular cross section of the pin lia could be considered, such as oval, rectangular, etc.
When mounting the hook in the machine frame 10 the bent portion 2a together with the intermediate part 3a is preferably inserted into the through hole of the machine frame by first inserting the second end of the intermediate part and when the intermediate part is safely arranged in the through hole of the machine frame the plate being the end surface 9a can be connected and rigidly fixed to the second end of the intermediate part, preferably with bolts. The second stopper element 1 la will then be arranged in the machine frame 10 and in the elongated through hole 12 accordingly. The second stopper element 1 la is able to slide freely in the oblong through hole 12.
The intermediate part 3a, 3b must be able to slide in the machine frame and thus, allowing the entire hook 1 to move in the longitudinal direction when a towing force is applied and then released. The spacing between the intermediate part and the through hole is small, as the spacing serves to guide the intermediate part and thus, the hook. The intermediate part has a mainly rectangular cross section seen in the longitudinal direction.
The towing hook is mounted in the frame 10 of a heavy vehicle, of which frame only a small part is shown in figure IA. The second stopper element 1 la is mounted with tight fitting in the machine frame, e.g. the element should not be able to move in the frame during normal use. The towing hook is mounted in the frame of the rear end of the heavy vehicle. The ultimate end of the towing hook with the bent portion 2a, 2b can move in a substantially longitudinal direction when towing takes place. This is contrary to the other ultimate end opposite the bent portion 2a, 2b as shown in the drawings, this ultimate end is fixedly arranged in the frame of the machine.
Referring to figure IB, a perspective view of another embodiment of a towing hook 1 is disclosed. Similar as in figure 1A the hook has a longitudinal extension with a bent portion 2b in one end followed by an intermediate part 3b, connected via a pivot point 6 to the cylindrical rod 7 followed by the cylindrical tube 8 at the second end. As in figure IA springs 5 are arranged close to the intermediate part. A part of the machine frame 10 is also shown. Different to the embodiment of figure IA the machine frame may comprise a broader area 13 giving enough space for a through hole for mounting the intermediate part 3b ofthe hook.
Identical parts already described in connection to the first embodiment will not be further described.
Referring to figure 2B, the same perspective view of the towing hook as in figure IB is shown, but without any part of the machine frame included. The first stopper element 4b is a pin or a similar small element protruding from the side ofthe towing hook, close to the bent portion 2b. The second stopper element 11b is a shoulder or edge at the second end of the intermediate part 3b. The shoulder or edge is arranged along at least one side of the intermediate part of the hook, adjacent the plate being the end surface 9b. This shoulder has an extension parallel with the surface of the machine frame and thus, works as an abutment surface against the machine frame.
When mounting the hook in the machine frame 10 the bent portion 2b together with the intermediate part 3b is preferably inserted into the through hole of the machine frame by first inserting the first end of the intermediate part and when the intermediate part is safely arranged in the through hole of the machine part the first stopper element 4b is firmly arranged in the hook close to the bent portion 2b.
The bent portion 2a ofthe hook may hâve smooth edges as seen in the first embodiment seen in figures ΙΑ, 2A, 3A and 4A, respectively. The bent portion 2b may also comprise sharper edges as seen in figures IB, 2B, 3B and 4B, respectively.
Referring to figures 3A and 4A, another perspective view of the hook according to the first embodiment is disclosed, without and with machine frame respectively.
Referring to figures 3B and 4B, another perspective view of the hook according to the second embodiment is disclosed, without and with machine frame respectively.
When the machine is towed any kind of towing tool can be connected to the bent portion of the hook. The towing tool can either be a corresponding hook of a towing car, a wire loop, shackle or a rope, or the similar. When applying a pulling force at the bent portion 2a, 2b in a longitudinal direction the intermediate part 3a, 3b of the hook 1 can slide in the machine frame 10 such that the pivot point 6 is moved and the cylindrical rod 7 is moved in a longitudinal direction. The springs 5 are compressed. An oil flow is created flowing out ofthe first port ofthe cylindrical tube 8 being located closest to the cylindrical rod 7, resulting in the hydraulic circuit releasing the machine brakes. The sliding motion is limited by the first stopper element 4a, 4b and on the other end by the second stopper element lia, 11b. When applying the towing force, the hook is pulled out in the longitudinal direction until the second stopper element 1 la in the form of a pin bears against the end of the oblong through hole 12 most remote from the bent portion 2a. Altematively, when the second stopper element 11b in the form of a shoulder cornes to close contact with the machine frame 10, the hook cannot be pulled out further. When the towing takes place so that the pulling force is transmitted to the machine being moved, the second stopper element lia, 11b carries the towing force.
When the towing action is completed and the force applied is removed the springs 5 help the hook to retum to the original position as before starting the towing action, the machine frame will then again bear against the first stopping element in either the form of an edge 4a or a pin 4b. This also has the effect that the intermediate part 3a, 3b slides back to its original position and that the cylindrical rod 7 moves back to its original position in a longitudinal direction. Also, the création of a hydraulic oil flow back into the hydraulic tube via the second port will resuit in the hydraulic circuit activating the machine brakes.
Referring to figure 5, the towing hook is shown to be mounted in the frame of a mining machine. The mining machine can be a loader. The hook is mounted at the rearward end, opposite the bucket of the loader.

Claims (15)

1. A towing hook (1) arranged on a mining machine, comprising:
a first end having a bent portion (2a, 2b) to allow a towing tool to be connected, a second end having a cylindrical rod (7), an intermediate part (3a, 3b) being located between the first and the second end, the towing hook to be mounted in a through hole in a frame (10) of a machine in order for the first and second ends to be positioned on different sides of the machine frame (10), and the intermediate part (3a, 3b) mounted partly in the through hole ofthe frame, and wherein the longitudinal axis of the cylindrical rod (7) is generally parallel with a longitudinal axis (L) defined through the towing hook representing the force transmitting direction when connecting the towing tool to the bent portion (2a, 2b).
2. The hook according to claim 1, wherein the cylindrical rod (7) is connected to a tube (8) having the same longitudinal axis as the cylindrical rod.
3. The hook according to claim 1 or 2, wherein the intermediate part (3a, 3b) ofthe hook is mounted freely in the through hole of the machine frame to allow the hook to be moved in relation to the frame.
4. The hook according to any of the preceding claims, wherein the hook comprises a first stopper element (4a, 4b) and a second stopper element (lia, 11b).
5. The hook according to claim 4, wherein the first stopper element (4a, 4b) is mounted at the first end of the hook.
6. The hook according to claim 4 or 5, wherein the first stopper element (4b) is a pin with an axis perpendicular to the surface of the first end of the hook and the axis being parallel to the surface of the machine frame.
7. The hook according to claim 4 or 5, wherein the first stopper element (4a) is a shoulder located at the first end of the hook toward the intermediate part (3a).
8. The hook according to any of claims 4 to 7, wherein the second stopper element (lia, 11b) is mounted at the intermediate part (3a, 3b) ofthe hook.
9. The hook according to claim 8, wherein the second stopper element (11b) is a shoulder located at the intermediate part toward the second end.
10. The hook according to claim 8, wherein the second stopper element (1 la) is a pin having a longitudinal axis perpendicular to the longitudinal axis of the cylindrical rod (7), and wherein the intermediate part (3a) comprises a through hole (12), which pin (1 la) is arranged in the through hole (12).
11. The hook according to claim 10, wherein the second stopper element (1 la) is mounted in the machine frame.
12. The hook according to any of the preceding claims, wherein at least two springs (5) are mounted in connection to the intermediate part (3a, 3b), wherein the spring extends between the end surface (9a, 9b) of the intermediate part being connected to the second end of the hook and the machine frame (10).
13. The hook according to any of the preceding claims, wherein the intermediate part (3a, 3b) is pivotally engaged at a pivoting point (6) with the second end.
14. The hook according to any of the preceding claims, wherein the tube (8) is connected to the brake system of the machine.
15. A towing hook system comprising a hook (1) according to any ofthe preceding claims, wherein the System transmits the towing force applied at the bent portion (2a, 2b) of the first end to the tube (8) connected to the second end, wherein the tube removes the brake force of the machine.
OA1201900465 2017-06-15 2018-06-14 Towing hook OA19361A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17176182.8 2017-06-15

Publications (1)

Publication Number Publication Date
OA19361A true OA19361A (en) 2020-06-29

Family

ID=

Similar Documents

Publication Publication Date Title
CN108431334B (en) Locking device for quick connector
EP3320226B1 (en) Quick release shackle
DE102015009941A1 (en) A caliper brake
US11364752B2 (en) Towing hook
OA19361A (en) Towing hook
EP2927063B1 (en) Pedal force simulating device
US2716471A (en) Combined coupler and brake applying device
EP3165419A1 (en) Overrun brake for a trailer
JP2012172703A (en) Parking brake device
DE202018103664U1 (en) clamping device
US20060278758A1 (en) Secondary arresting line release mechanism
US20110101672A1 (en) Device for gripping an exhaust pipe
DE202016101017U1 (en) Quick coupling for hoses or pipes
US20240151063A1 (en) Cable barrier separator apparatus
US20130270497A1 (en) Chain release apparatuses and methods
DE19906545C2 (en) Device for articulating a mechanical control cable
US2574406A (en) Automatic draft controlled brake
DE202017105492U1 (en) System for preventing the activation of a trailer overrun during reverse drive
US1489321A (en) Towline
DE202011105448U1 (en) Unit for picking up spare wheels on vehicles
KR102356395B1 (en) Motor Vehicle Comprising Running Gear Attachment Guide Means
KR20230115094A (en) Safety device for quick coupler
EP3566901A1 (en) Lashing point with assembly position
DE202017002331U1 (en) Overrun brake with a built-in and connected to the drawbar hydraulic cylinder with working piston or piston rod, which is connected to the drawbar housing tube, is actuated via a slot in the Zustange.
DE165656C (en)