NZ762151B2 - Acidic/anionic antimicrobial and virucidal compositions and uses thereof - Google Patents

Acidic/anionic antimicrobial and virucidal compositions and uses thereof Download PDF

Info

Publication number
NZ762151B2
NZ762151B2 NZ762151A NZ76215118A NZ762151B2 NZ 762151 B2 NZ762151 B2 NZ 762151B2 NZ 762151 A NZ762151 A NZ 762151A NZ 76215118 A NZ76215118 A NZ 76215118A NZ 762151 B2 NZ762151 B2 NZ 762151B2
Authority
NZ
New Zealand
Prior art keywords
acid
compositions
composition
ppm
use solution
Prior art date
Application number
NZ762151A
Other versions
NZ762151A (en
Inventor
Derrick Anderson
Stacy Fawbush
Catherine Hanson
Gerard Hinrichs
Kaitlin Lake
Junzhong Li
Wendy Lo
Joshua Luedtke
David D Mcsherry
Erik Olson
Original Assignee
Ecolab Usa Inc
Filing date
Publication date
Application filed by Ecolab Usa Inc filed Critical Ecolab Usa Inc
Priority claimed from PCT/US2018/052883 external-priority patent/WO2019067560A1/en
Publication of NZ762151A publication Critical patent/NZ762151A/en
Publication of NZ762151B2 publication Critical patent/NZ762151B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/10Aromatic or araliphatic carboxylic acids, or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Abstract

Non-flammable, dilutable liquid concentrate antimicrobial compositions including 20-45 wt-% of a weak acid, 8-45 wt-% of a strong acid, 0.1-38 wt-% of at least one anionic surfactant comprising a C8-C22 alkyl sulfonate, 1-38 wt-% of at least one additional functional ingredient, and water are provided wherein the composition has an acidic pH and is free of fatty-acids. In particular, the antimicrobial compositions provide efficacious virucidal activity, including against Norovirus, having acceptable use solution pH that do not require use of personal protective equipment (PPE), are surface compatible and do not leave residues on treated surfaces. Methods of cleaning a surface with the compositions are also provided and may beneficially eliminate the need to rinse the antimicrobial compositions after use.

Description

ACIDIC/ANIONIC ANTIMICROBIAL AND VIRUCIDAL COMPOSITIONS AND USES THEREOF REFERENCE TO RELATED APPLICATIONS This application claims priority under 35 U.S.C. § 119 to provisional application Serial No. 62/563,461, ?led September 26, 2017, herein orated by reference in its entirety.
FIELD OF THE INVENTION The invention relates to antimicrobial itions including at least one acid and at least one c surfactant. In particular, food contact (or non-food contact) antimicrobial compositions including at least one acid and at least one anionic surfactant provide a no-rinse composition ef?cacious for sanitizing and against Norovirus, having acceptable use solution pH that do not require use of personal protective equipment (PPE), are surface compatible and do not result in streaky, hazy or tacky residues on treated es. The compositions are suitable for use as hard surface antimicrobial compositions, including ware wash applications, 3rd sink sanitizers, food contact and non- food contact applications, m ent compositions, among others, including those which are an alternative to quaternary ammonium compounds. Methods of cleaning a surface with the compositions are also provided.
BACKGROUND OF THE INVENTION Microbial and Viral pathogens are an increasing public health concern. Pathogenic viruses t a significant health concern as they are able to persist on surfaces for longer periods of time and require complete and reliable inactivation in order to stop disease transmission. Viruses can be identified according to a hierarchy that correspondences with the level of resistance to being inactivated. The three viral subgroups include small non- enveloped, large non-enveloped, and enveloped viruses. An antimicrobial t that is able to inactivate a small, non-enveloped virus is also able to inactivate any large, non- enveloped Virus or any ped virus. Similarly, an antimicrobial product that can inactivate a large, non—enveloped virus is also able to inactivate any enveloped virus.
Accordingly it is desirable to identify and develop antimicrobial compositions that can vate small, non-enveloped viruses to then be able to have corresponding antimicrobial efficacy across the viral hierarchy.
Norovirus is an exemplary small, veloped virus in need of additional antimicrobial compositions for surface ent. The non—enveloped Norovirus (NoV), also known previously as lk-Like Virus" (NLV) or small round structured virus, is the most important viral pathogen of epidemic acute gastroenteritis that occurs in both developed and developing countries. NoV s to the viridae family and are icosahedral, single stranded, positive-sense RNA viruses whose capsids are composed of 180 copies of a single major structural protein. Noroviruses are estimated to cause 23 million cases of acute gastroenteritis in the United States per year, and are the leading cause of gastroenteritis in the United States. Of viruses, only the common cold is reported more often than viral gastroenteritis (norovirus). Norovirus causes nausea, vomiting (sometimes accompanied by diarrhea), and stomach cramps. This infection typically is spread from person to person by direct contact.
Noroviruses are very highly contagious and can spread easily from person to person. People can become infected with the norovirus in several ways, including, eating food or drinking liquids that are contaminated with norovirus; touching surfaces or objects contaminated with norovirus, and then placing their hands in their mouths, or having direct contact with another person who is ed and showing symptoms (for example, when caring for someone who is ill, or sharing foods or eating utensils with someone who is ill).
During outbreaks of norovirus gastroenteritis, several modes of transmission have been documented, for example, initial foodbome ission in a restaurant, followed by secondary -to-person transmission to household contacts.
Quaternary ammonium nds have become a commonplace antimicrobial and are widely used within the rvice industry for food t sanitizing and disinfectant applications with disinfection claim sets requiring a follow—up rinse step. However, recent tory scrutiny over quaternary ammonium compounds may change the utilization of these sanitizing and disinfectant itions.
Quaternary ammonium compounds and other chemistries are utilized in products for treating Norovirus, which is a highly contagious, significant public health burden.
Norovirus is one of the most dif?cult viruses to disinfect. Norovirus is the most common cause of epidemic gastroenteritis causing at least 50% of all outbreaks with an estimated 20 million cases in the US. each year and is the leading cause of foodbome illness. The ?nancial impact is large. The cost per case of Norovirus is low relative to other foodbome illnesses but due to its high incidence the total cost of illness for Norovirus is substantial.
Norovirus is sourced from the feces or vomit of an infected person and is spread through a number of ways including contact with ed hands, ingestion of contaminated food or water, and t with contaminated surfaces. Studies have shown an infected person may be ious for 2 weeks after ry and may continue shedding virus particles in feces for as long as 2 . Given the persistence of Norovirus, decontamination of surfaces should take place long after an infected person is no longer showing symptoms.
Products having a no—rinse capability are desirable, although they present challenges due to regulatory ements for all active and inert ingredients to have a list tolerance designated for chemical substances used as ingredients in antimicrobial pesticide ations applied to food-contact surfaces in public eating places, dairy-processing equipment, and food-processing equipment and utensils. Various cially-available products exist in the marketplace that provide no-rinse s for Norovirus, including for example, Purell Professional Food Service Sanitizer as disclosed in US. Patent No. 8,143,309 and Pure Bioscience Pure Hard Surface as disclosed in US. Patent Nos. 6,197,814 and 6,583,176, the entire contents of which are incorporated by reference in their entirety. However, there are various challenges presented by the products. For example, various products present ?ammability ns, impart hazy and/or tacky residues and/or poor surface appearance, having limited compatibility with soft metal surfaces (including aluminum) and are only available as ready-to-use (RTU) formulations instead of concentrates and/or solids, which limits applications of their use. As a result, there are various limitations which set in place a need for improved compositions.
Accordingly, it is an objective of the compositions and s to e a product that can offer no-rinse disinfection without the use of quaternary ammonium A further object of the compositions and methods is to provide antimicrobial and ectant compositions against Norovirus (and other small, veloped viruses to also provide antiviral ef?cacy against large, veloped viruses and enveloped viruses), including short contact time, preferably 10 minutes or less, more preferably 5 minutes or less, and most preferred 1 minute or less.
A further object of the compositions and methods is a treatment option providing acceptable material compatibility that supports good cleaning performance without a hazy, streaky, or tacky residue on the d surface.
A further object of the compositions and methods is a ent option having a use solution pH that does not require the use of personal tive equipment (PPE).
A still r object of the compositions and methods is to provide efficacy against biofilms.
Other s, advantages and features of the present invention will become apparent from the following specification taken in conjunction with the accompanying drawings.
BRIEF Y OF THE INVENTION In a first aspect there is provided an antimicrobial composition comprising: from 20 wt-% to 45 wt-% of a weak acid having a pKa greater than about 2.5; from 8 wt-% to 45 wt-% of a strong acid having a pKa less than about 2.5; from 0.1 wt-% to 38 wt-% of at least one anionic surfactant comprising a C8-C22 alkyl sulfonate; from 1 wt-% to 38 wt-% of at least one additional functional ingredient; and water, wherein the composition is free of fatty acids; and is a dilutable liquid concentrate having an acidic pH and is non-flammable.
In a second aspect there is provided a method of using an antimicrobial composition, comprising: contacting the antimicrobial composition according to the first aspect to a non-human surface in need of treatment; wherein the method achieves at least a 3-log microbial reduction.
In a third aspect there is provided a method of disinfecting a surface, comprising: contacting a use solution of the antimicrobial composition according to the first aspect with a non-human surface in need of ent; wherein the method does not e a rinse step and achieves at least a 3-log microbial reduction on the surface.
An age of the compositions and methods is that antimicrobial compositions provide dilutable, non-flammable, se efficacy against microbial pathogens, including viruses such as Norovirus, while providing surface compatible formulations that do not leave hazy, streaky, or tacky residues on treated es. It is a further advantage of the compositions and methods that use solution pH do not e a user to employ PPE. As still further benefits, the compositions are suitable for use as hard surface antimicrobial compositions, including ware wash applications, 3rd sink sanitizers, food contact and non-food contact applications, biofilm ent compositions, among , including those which are an alternative to quaternary um compounds.
In an embodiment, a solid antimicrobial composition comprises from about 10 wt-% to about 70 wt-% of at least one acid; at least one sulfonate, sulfate and/or carboxylate anionic surfactant; and at least one nonionic surfactant and/or a solidifying agent, wherein a use solution of the solid composition has an acidic pH and is ammable. In a further embodiment, the anionic surfactant is a C8-C22 alkyl sulfonate and/or alpha sulfonated carboxylic acid or its ester, and the one or more acids include a strong acid, a weak acid or a combination thereof. In a further embodiment, the anionic tant comprises from about 0.1 wt-% to about 38 wt-% of the solid composition, the acids comprises a weak acid comprising from about 8 wt-% to about 55 wt-% and a strong acid comprising from about 2 wt-% to about 75 wt-% of the solid composition, and the solidifying agent is urea, PEG and/or a solidifying polymer.
[NEXT PAGE IS PAGE 5] In a further ment, a method of using an antimicrobial composition comprises contacting a use solution of the solid antimicrobial ition to a surface in need of treatment; wherein the method achieves at least a 3-log microbial reduction. The contacting can e wiping, dipping, immersing, or spraying. In various embodiments, the surface can be a hard surface, a precleaned hard surface, human tissue or mammalian tissue, and/or is contaminated with a bio?lm and/or a small, non—enveloped virus, a large, non-enveloped virus, and/or an enveloped virus. In a preferred aspect, the contacting provides complete kill of a Norovirus in less than 1 minute.
In a further ment, a solid virucidal composition comprises from about 10 wt-% to about 70 wt—% of at least one acid, n the acid comprises a weak acid, a strong acid or combination thereof; at least one sulfonate, sulfate and/or carboxylate anionic surfactant; and at least one nonionic surfactant and/or a fying agent, wherein the solid composition provides a use solution that is a dilutable acidic liquid concentrate that is non-?ammable. In preferred embodiments, the anionic surfactant is a C8-C22 alkyl sulfonate and/or alpha sulfonated carboxylic acid or its ester, and a use pH of the composition is from about 1.5 to about 4. In further embodiments, the weak acid comprises from about 8 wt-% to about 55 wt-%, the strong acid comprises from about 2 wt-% to about 75 wt-% of the solid composition, and the anionic tant comprises from about 1 wt-% to about 40 wt-% of the solid ition.
Additional embodiments e a method of inactivating a virus, comprising: contacting the solid virucidal composition with an aqueous source to generate a use on, contacting the use solution to a surface in need of viral inactivation, wherein the ting of the surface provides antiviral inactivation ef?cacy from at least a 3 log reduction to complete inactivation within less about 1 minute. In preferred embodiments, the virus is a small, non-enveloped virus, a large, non—enveloped virus, and/or an enveloped virus. In further preferred embodiments, the virus is Norovirus.
While multiple embodiments are disclosed, still other embodiments of the present ion will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative ments of the invention.
Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS shows cleaning performance evaluation s comparing commercially- available products with cy against Norovirus compared to the acid/anionic surfactant compositions disclosed herein.
Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts throughout the several views. Reference to various embodiments does not limit the scope of the invention. Figures represented herein are not limitations to the various embodiments according to the invention and are presented for exemplary illustration of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention s to solid compositions and dilutable liquid compositions that are non-?ammable antimicrobial compositions providing no-rinse efficacy against microbial and viral pathogens, including Norovirus, while providing surface compatible formulations that do not leave hazy, streaky, or tacky residues on treated surfaces and do not require PPE. The embodiments are not limited to particular itions and s of use thereof, which can vary and are understood by d artisans. It is further to be understood that all terminology used herein is for the e of describing particular embodiments only, and is not intended to be ng in any manner or scope. For example, as used in this speci?cation and the appended claims, the singular forms "a, an" and "the" can include plural referents unless the content y indicates otherwise. Further, all units, pre?xes, and s may be d in its SI accepted form. c ranges recited within the specification are inclusive of the numbers within the defined range. Throughout this disclosure, various aspects of this ion are presented in a range format. It should be understood that the ption in range format is merely for convenience and brevity and should not be construed as an in?exible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range (eg. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3,80, 4, and 5).
So that the present invention may be more readily understood, n terms are ?rst de?ned. Unless de?ned ise, all technical and scienti?c terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which embodiments of the invention n. Many methods and materials similar, d, or lent to those described herein can be used in the practice of the ments of the present invention without undue experimentation, the preferred materials and methods are described herein. In describing and claiming the embodiments of the present invention, the following terminology will be used in accordance with the ions set out below.
The term "about," as used herein, refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or use solutions in the real world; through inadvertent error in these procedures; h differences in the manufacture, source, or purity of the ingredients used to make the itions or carry out the methods; and the like. The term "about" also encompasses amounts that differ due to different equilibrium ions for a composition resulting from a particular initial mixture. Whether or not modi?ed by the term "abou ", the claims include equivalents to the quantities.
The term "actives" or "percent actives" or "percent by weight actives" or "actives concentration" are used hangeably herein and refers to the concentration of those ingredients involved in cleaning expressed as a percentage minus inert ingredients such as water or salts.
As used herein, the term "alkyl" or "alkyl groups" refers to saturated hydrocarbons having one or more carbon atoms, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), cyclic alkyl groups (or "cycloalkyl" or "alicyclic" or "carbocyclic" groups) (e.g., cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc), branched-chain alkyl groups (e.g., isopropyl, tert-butyl, sec-butyl, isobutyl, etc), and alkyl—substituted alkyl groups (e.g., alkyl- substituted cycloalkyl groups and cycloalkyl-substituted alkyl groups).
Unless otherwise speci?ed, the term "alkyl" includes both "unsubstituted " and "substituted alkyls" As used herein, the term "substituted alkyls" refers to alkyl groups having substituents replacing one or more ens on one or more carbons of the hydrocarbon backbone. Such substituents may include, for example, alkenyl, alkynyl, halogeno, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxy, aryloxycarbonyloxy, ylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), imino, sul?qydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonates, sulfamoyl, sulfonamido, nitro, tri?uoromethyl, cyano, azido, heterocyclic, ryl, or aromatic (including heteroaromatic) groups.
In some embodiments, substituted alkyls can include a heterocyclic group. As used herein, the term "heterocyclic group" includes closed ring structures analogous to carbocyclic groups in which one or more of the carbon atoms in the ring is an element other than carbon, for example, nitrogen, sulfur or oxygen. Heterocyclic groups may be saturated or rated. Exemplary heterocyclic groups include, but are not limited to, aziridine, ethylene oxide (epoxides, oxiranes), thiirane lfldes), dioxirane, azetidine, oxetane, thietane, dioxetane, dithietane, dithiete, azolidine, pyrrolidine, pyrroline, oxolane, dihydrofuran, and furan.
Differentiation of antimicrobia "-cidal" or "-static" activity, the definitions which describe the degree of efficacy, and the of?cial laboratory protocols for ing this cy are considerations for understanding the relevance of antimicrobial agents and compositions. Antimicrobial compositions can affect two kinds of microbial cell damage.
The first is a lethal, irreversible action resulting in complete microbial cell destruction or incapacitation. The second type of cell damage is reversible, such that if the organism is rendered free of the agent, it can again multiply. The former is termed microbiocidal and the later, microbistatic. A zer and a disinfectant are, by definition, agents which provide crobial or microbiocidal activity. In contrast, a preservative is lly bed as an inhibitor or microbistatic composition.
As referred to herein, antimicrobial compositions are r suitable for cidal ty against viral pathogens, including for example, Norovirus. For the purpose of this patent ation, successful dal reduction is achieved when the viral populations are completely inactivated.
The term lm," as used herein, means an extracellular matrix in which a population of microorganisms are dispersed and/or form colonies, Biofllms are understood to be typically made of polysaccharides and other macromolecules, often referred to as exopolysaccharides, that are concentrated at an ace (usually solid/liquid) and act as a binding agent that surrounds such populations of microorganisms. Biofilms are further understood to include complex associations of cells, extracellular products and detritus (or non-living particulate c material) that are trapped within the biofilm or released from cells within the . The term biofilm, as used herein, further refers to the ASTM de?nition of biofllm as an accumulation of bacterial cells lized on a substratum and embedded in an organic polymer matrix of ial origin. Biofilms are understood to be a c, self-organized accumulation of microorganisms and microbial and nmental by—products that is determined by the environment in which it lives.
As used herein, the term "cleaning" refers to a method used to facilitate or aid in soil removal, bleaching, microbial population ion, rinsing, and any ation thereof As used herein, the term "microorganism" refers to any lular or unicellular (including colonial) organism. Microorganisms include all prokaryotes. Microorganisms include bacteria (including cyanobacteiia), spores, lichens, fungi, protozoa, virinos, viroids, viruses, phages, and some algae. As used herein, the term "microbe" is synonymous with microorganism.
The term "commercially acceptable cleaning performance" refers generally to the degree of cleanliness, extent of effort, or both that a typical consumer would expect to achieve or expend when using a cleaning product or cleaning system to address a typical soiling ion on a l substrate. This degree of cleanliness may, depending on the particular cleaning product and particular substrate, correspond to a general absence of visible soils, or to some lesser degree of cleanliness. Cleanliness may be evaluated in a variety of ways ing on the particular cleaning product being used (e.g., ware or laundry detergent, rinse aid, hard surface r, vehicular wash or rinse agent, or the like) and the particular hard or soft surface being cleaned (e.g., ware, laundry, fabrics, vehicles, and the like), and normally may be determined using generally agreed industry standard tests or localized variations of such tests. In the absence of such agreed industry standard tests, cleanliness may be evaluated using the test or tests y employed by a manufacturer or seller to te the cleaning performance of its phosphorus-containing cleaning products sold in association with its brand. In some aspects, the methods provide commercially acceptable cleaning mance while ng the formulations do not leave hazy, streaky, or tacky residues on treated surfaces.
As used herein, the term "corrosive" refers to an agent or ition that results in al attack, oxidation, discoloration, dimensional changes and/or weight loss of a surface and/or pitting of a surface. Various mechanisms of corrosion are disclosed in Corrosion Basics, National Association of Corrosion Engineers, 1984, including for example, metal corrosion through a redox attack, attacking and penetrating the passivation layers of metal, pitting of surfaces, etc. Compositions that are non-corrosive beneficially do not cause or exhibit any chemical attack, ion, discoloration, dimensional and/or weight loss of a surface and/or pitting of a surface. Exemplary methodology for assessing corrosive or non-corrosive ties of a composition are rated in the Examples and can include weight assessment to measure surface changes and/or gloss measurements.
As used herein, the term fectant" refers to an agent that kills all vegetative cells including most recognized pathogenic rganisms, using the procedure bed in A. 0A. C. Use Dilution Methods, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 955.14 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). As used herein, the term "high level disinfection" or "high level disinfectan " refers to a compound or composition that kills substantially all organisms, except high levels of ial spores, and is effected with a chemical germicide cleared for marketing as a sterilant by the Food and Drug Administration. As used herein, the term "intermediate-level disinfection" or "intermediate level disinfectant" refers to a nd or composition that kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a ulocide by the nmental Protection Agency (EPA).
As used herein, the term "low-level disinfection" or "low level disinfectant" refers to a compound or composition that kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA.
As used , the phrase "food processing surface" refers to a surface of a tool, a machine, equipment, a structure, a building, or the like that is employed as part of a food processing, preparation, or storage activity. Examples of food processing surfaces include surfaces of food processing or preparation ent (e.g., slicing, canning, or transport equipment, including ?umes), of food processing wares (e.g., utensils, dishware, wash ware, and bar glasses), and of ?oors, walls, or s of structures in which food processing occurs. Food processing surfaces are found and employed in food anti-spoilage air circulation systems, aseptic packaging sanitizing, food refrigeration and cooler cleaners and sanitizers, ware washing zing, blancher cleaning and zing, food packaging materials, g board additives, third-sink sanitizing, beverage chillers and warmers, meat chilling or scalding waters, autodish sanitizers, sanitizing gels, cooling towers, food sing antimicrobial garment sprays, and non-to—low-aqueous food ation lubricants, oils, and rinse ves.
As used , the phrase "food t" es any food substance that might require treatment with an antimicrobial agent or composition and that is edible with or without further preparation. Food products include meat (e.g. red meat and pork), seafood, poultry, produce (e. g., fruits and vegetables), eggs, living eggs, egg products, ready to eat food, wheat, seeds, roots, tubers, leafs, stems, corns, ?owers, sprouts, seasonings, or a combination thereof The term "produce" refers to food products such as fruits and vegetables and plants or plant-derived materials that are typically sold uncooked and, often, unpackaged, and that can sometimes be eaten raw.
The term "hard surface" refers to a solid, substantially non-?exible surface such as a counter top, tile, ?oor, wall, panel, window, plumbing ?xture, kitchen and bathroom furniture, appliance, , circuit board, and dish. Hard surfaces may e for example, health care surfaces and food processing es.
As used herein, the phrase "health care surface" refers to a surface of an instrument, a device, a cart, a cage, furniture, a structure, a building, or the like that is employed as part of a health care activity. Examples ofhealth care surfaces include surfaces of medical or dental instruments, of medical or dental devices, of electronic apparatus employed for monitoring patient health, and of ?oors, walls, or s of structures in which health care . Health care surfaces are found in hospital, surgical, infinnity, birthing, mortuary, and clinical diagnosis rooms. These surfaces can be those typified as "hard surfaces" (such as walls, ?oors, bed-pans, etc.,), or fabric surfaces, e.g., knit, woven, and non-woven surfaces (such as surgical garments, draperies, bed linens, bandages, etc.,), or patient-care equipment (such as respirators, diagnostic equipment, shunts, body scopes, wheel chairs, beds, etc.,), or surgical and diagnostic equipment. Health care surfaces include articles and surfaces employed in animal health care.
The term "improved cleaning performance" refers lly to achievement by a substitute cleaning product or substitute cleaning system of a generally greater degree of cleanliness or with generally a reduced expenditure of effort, or both, when using the substitute cleaning product or substitute cleaning system rather than the conventional ng product to address atypical soiling condition on a l substrate. This degree of iness may, depending on the particular cleaning product and particular substrate, correspond to a general absence of visible soils, along with d surfaces that do not have hazy, Streaky, or tacky es.
The terms "include" and "including" when used in reference to a list of materials refer to but are not limited to the materials so listed.
As used herein, the term "instrument" refers to the various medical or dental instruments or devices that can bene?t from cleaning with a ition according to the present invention.
The term "microorganisms," as used herein, refers to any noncellular or unicellular ding colonial) organism. Microorganisms include all prokaryotes. rganisms include bacteria (including cyanobacteria), lichens, microfungi, protozoa, virinos, viroids, viruses, (enveloped and non-enveloped) and some algae. As used herein, the term "microbe" is synonymous with microorganism.
As used herein, the term "sanitizer" refers to an agent that reduces the number of bacterial inants to safe levels as judged by public health requirements. In an embodiment, sanitizers for use in this invention will provide at least a 3-log reduction and more preferably a 5-log order reduction. These reductions can be evaluated using a procedure set out in Germicz‘dal and Detergent Sanitizing Action ofDisinfectants, al Methods of Analysis of the Association of Official Analytical Chemists, aph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). According to this reference a sanitizer should provide a 99.999% reduction (5-log order reduction) within 30 seconds at room temperature, 25i2°C, against several test sms.
As used herein, the term "soil" refers to polar or non-polar organic or nic substances including, but not limited to carbohydrates, proteins, fats, oils and the like.
These substances may be present in their organic state or complexed to a metal to form an inorganic complex.
As used herein, the term "substantially free" refers to compositions completely lacking the component or having such a small amount of the component that the ent does not affect the performance of the composition. The component may be present as an impurity or as a contaminant and shall be less than 0.5 wt-%. In another embodiment, the amount of the component is less than 0.1 wt—% and in yet another embodiment, the amount of component is less than 0.01 wt-%.
The term hold agent" refers to a compound that inhibits crystallization of water hardness ions from solution, but that need not form a speci?c complex with the water hardness ion. Threshold agents include but are not limited to a polyacrylate, a polymethacrylate, an ole?n/maleic copolymer, and the like.
As used herein, the term "virucidal" refers to an agent that reduces the number of viruses on a surface or substrate. In an embodiment, virucidal compositions will provide at least a 3-log order reduction, or preferably a 5—log order ion, or more preferably a complete inactivation of viruses. These reductions can be evaluated using a procedure set out in ASTM E1053 Standard Test Method for Ef?cacy of Virucidal Agents ed for Inanimate Environmental Surfaces; US standards are set forth in EPA 810.2200. According to this reference a virucidal composition should provide a 99.9% reduction (3-log order reduction) for virucidal activity.
The term "virus", as used herein refers to a type of microorganism that can include both pathogenic and non-pathogenic viruses. enic viruses can be classi?ed into two general types with respect to the viral structure: enveloped viruses and non-enveloped s. Some nown enveloped viruses include herpes virus, in?uenza virus; paramyxovirus, respiratory syncytial virus, corona virus, HIV, hepatitis B virus, hepatitis C virus and SARS-CoV virus. Non-enveloped viruses, sometimes referred to as "naked" viruses, include the families Picomaviridae, Reoviridae, viridae, Adenoviridae and Parvoviridae. Members of these families include irus, poliovirus, adenovirus, hepatitis A virus, rus, papillomavirus, and rotavirus. It is known in the art that oped" viruses are relatively sensitive and, thus, can be inactivated by commonly used disinfectants. In st, non-enveloped viruses are ntially more resistant to conventional disinfectants and are signi?cantly more environmentally stable than enveloped viruses.
As used herein, the term "ware" refers to items such as eating and g utensils, dishes, and other hard surfaces such as showers, sinks, toilets, bathtubs, countertops, windows, mirrors, transportation es, and ?oors. As used herein, the term "warewashing" refers to washing, cleaning, or g ware. The term "ware" generally refers to items such as eating and cooking utensils, dishes, and other hard surfaces. Ware also refers to items made of various substrates, including glass, ceramic, china, crystal, metal, plastic or natural substances such, but not limited to clay, bamboo, hemp and the like. Types of metals that can be cleaned with the compositions include but are not limited to, those that include um, copper, brass, and stainless steel. Types of plastics that can be cleaned with the compositions include but are not limited to, those that include polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), polyvinyl chloride (PVC), syrene acrylonitrile (SAN), polycarbonate (PC), melamine formaldehyde resins or ne resin (melamine), acrilonitrile-butadiene-styrene (ABS), and lfone (PS). Other ary plastics that can be cleaned using the compounds and compositions include polyethylene terephthalate (PET) polystyrene polyamide.
As used herein, the term "waters" es food process or transport waters. Water temperatures can range from about 40°F-160°F, about 60°F-140°F, or about 70°F-l40°F.
Food process or transport waters include produce transport waters (e.g., as found in ?umes, pipe transports, cutters, slicers, blanchers, retort systems, s, and the like), belt sprays for food ort lines, boot and hand-wash dip-pans, sink rinse waters, and the like.
Waters also include domestic and tional waters such as pools, spas, recreational ?umes and water slides, fountains, and the like.
The term "water soluble" refers to a compound that can be dissolved in water at a concentration of more than 1 wt. %. The terms "sparingly soluble" or "sparingly water soluble" refer to a compound that can be dissolved in water only to a concentration of 0.1 to 1.0 wt. %. The term "water insoluble" refers to a compound that can be dissolved in water only to a concentration of less than 0.1 wt. %.
The term "weight percent," "wt-%, percent by weight," "% by weight," and ions thereof, as used herein, refer to the concentration of a substance as the weight of that substance divided by the total weight of the composition and multiplied by 100. It is understood that, as used here, "percent," "%," and the like are intended to be synonymous with "weight percent," "wt-%," etc.
The methods and compositions of the present invention may comprise, consist essentially of, or consist of the components and ingredients of the present invention as well as other ingredients described . As used herein, "consisting essentially of" means that the methods and compositions may include additional steps, components or ients, but only if the additional steps, components or ingredients do not materially alter the basic and novel characteristics of the claimed methods and itions.
It should also be noted that, as used in this cation and the appended claims, the term "con?gured" describes a system, apparatus, or other structure that is constructed or con?gured to m a particular task or adopt a particular ration. The term "con?gured" can be used interchangeably with other similar phrases such as arranged and con?gured, constructed and arranged, adapted and con?gured, adapted, constructed, manufactured and arranged, and the like.
Acid /Anionic itions Exemplary ranges of the antimicrobial compositions and Virucidal compositions are shown in Tables 1 and 2 showing liquid and solid formulations on an active concentration basis (Tables 1A and 1B) and weight percentage basis (Table 2A and 2B). Tables lA-lB can include formulations with a minimum acid component and deionized water to provide required acidic pH for a ready to use formulation. The % by weight Tables 2A and 2B are shown at a 2 oz./gal dilutable liquid formulation, incorporating the range of actives outlined in Tables 1A and 1B. When converting concentration basis to weight percentage all raw materials were assumed 100% active. The 2 oz./gal dilution rate provides suf?cient formulation space to formulate raw material to deliver up to 6000 ppm of any one raw material in a use on.
Tables 2C and 2D are shown at a 025-] oz./gal dilutable liquid formulation.
Tables 2E and 2F show solid or liquid concentrate formulations. Tables 2G and 2H show ready to use liquid formulations.
Tables 1B, 2B, 2D and 2H g ranges for both the strong acid and weak acid with a lower threshold of 0 %-wt te that either of the acids can be included in the formulation or a combination thereof r, within the scope of the sure herein at least one acid is included in the formulation. In exemplary embodiments, for a 2 02/gal dilutable formulation including only a strong acid would require at least about 0.1 wt-%, whereas a 0.25-1 oz./gal dilutable formulation including only a strong acid would require at least about 0.3 wt-% strong acid. In an exemplary embodiment, for a 2 oz./gal ble formulation including only a weak acid would require at least about 0.1 wt-%, whereas a 0.25-1 oz./gal dilutable ation including only a weak acid would require at least about 0.8 wt-% weak acid. One skilled in the art can adjust % by weight of the compositions to arrive at a composition having a different dilution rate, which is within the scope of the disclosed itions. Bene?cially, within the ranges of actives, the compositions can be formulated to include a nearly or completely waterless liquid or solid ition.
TABLE 1A Material Fourth Exemplary Exemplary Exemplary Exemplary Range -6000 150—5000 225-4500 300-4000 Anionic Surfactant 10-6000 50-4000 0 100-1000 —---- Additional Functional 0-6000 0-3000 0-2000 0-1000 Ingredients (e. g. nonionic surfactant) TABLE 1B Exemplary Exemplary Exemplary Exemplary ppm PPm PM" PM" Strong Acid 0—3000 0—2000 0-1000 0-1000 Weak Acid 0—6000 0-5000 0-4500 0-4000 Anionic Surfactant 10-6000 50-4000 75-2000 100-1000 Water - - - - Additional onal 0-6000 - - 0—1000 Ingredients (e. g. nonionic surfactant) TABLE 2A Material ' ' Fourth Exemplary Exemplary Exemplary Exemplary Range wt- 0.138 0.3-26 05-13 0.6-6.4 t0100% t0100% t0100% to 100% onal Functional Ingredients (e. g. nonionic 0-38% 0-19% 0-13% 0-6% surfactant) TABLE 2B Material ' ' Fourth Exemplary Exemplary ary Exemplary Range wt— Range wt- Range wt- % % % % Strong Add " 0‘6 weak Add 026 Anionic Surfactant 01-38 03-26 05-13 0.6-6.4 to 100 to 100 to 100 to 100 Additional Functional ients (e.gi nonionic surfactant) TABLE 2C Material ' Fourth % % 3.75-35 5-25 Additional Functional Ingredients (e. g. ic 0_75 0-50 0-40 0-25 surfactant) TABLE 2D Material First Second Third Fourth Exemplary Exemplary Exemplary Exemplary Range wt- Range wt— Range wt— Range wt- % % % % t0100% to 100% tolOO% to 100% Additional Functional Ingredients (e. g. nonionic 035 0—50 0_40 0_25 surfactant) TABLE 2E [Solid or Liquid Concentrate] al Fourth Exemplary Exemplary ary Exemplary Range wt- % % % % Additional Functional Ingredients (e. g. nonionic 045 0_50 0-40 0-25 surfactant, solidifying agent) TABLE 2F [Solid or Liquid Concentrate] Material Fourth Exemplary Exemplary Exemplary Exemplary Range wt- Weak Acid 8-55 10-50 10-50 20-45 Strong Acid 2-?5 4-65 5-55 8-45 Anionic Surfactant 1-40 1-30 2-30 5-20 Water 1f liquid to 100 to 100 to 100 to 100 Additional Functional Ingredients (eg. solidifying 0-25 agent) TABLE 2G Material Exemplary Exemplary Exemplary Exemplary -10,000 50-5000 50-4000 50-2000 Anionic Surfactant 10-6000 50-4000 75-2000 100-1000 Water and additional functional ingredients TABLE 2H Material Exemplary Exemplary Exemplary Exemplary Strong Ac1d 0-4000 0-3000 0-2000 0-1000 Weak ACld 0-10,000 0-5000 0-4000 0-2000 -6000 50-4000 75-2000 00 Water and additional functional ingredients The antimicrobial compositions and virucidal compositions may include concentrate compositions which can be d to form use compositions or ready to use (RTU) compositions. Bene?cially, the itions overcome a limitation of the prior art in that dilutable concentrates can be provided. In general, a concentrate refers to a composition that is intended to be diluted with water to provide a use solution that contacts an object to provide the desired ng, antimicrobial efficacy, or the like. The antimicrobial composition and virucidal ition that contacts the articles can be referred to as a concentrate or a use composition (or use solution) dependent upon the formulation employed in the methods described herein. It should be understood that the tration of the acids, anionic surfactant(s), and any additional functional ingredients, such as nonionic surfactants, in the composition will vary depending on whether the composition is provided as a concentrate or as a use solution.
A use solution may be prepared from the concentrate by diluting the solid or liquid concentrate with water at a dilution ratio that provides a use solution having desired detersive ties. The water that is used to dilute the concentrate to form the use composition can be referred to as water of dilution or a diluent, and can vary from one location to r. The typical on factor is between approximately 1 and approximately 10,000. In an embodiment, the concentrate is diluted at a ratio of between about 1:10 and about 1110,000 concentrate to water, between about 1:10 and about 0 concentrate to water, or between about 1:10 and about 1:510 concentrate to water.
In another aspect, a concentrate can be diluted at a rate of from about 1/8 oz./gal. to about 2 oz./gal., from about 1/4 oz./gal. to about 1 oz./gal., or from about 1/2 oz./gal. to about 1 oz./gal while providing food contact sanitizing y. In an aspect, the dilutable concentrate itions provide a use solution pH from about 1.5 to about 4, from about 2 to about 4, from about 2.2 to about 3.5, or from about 2.5 to about 3.5, including a ranges therebetween.
The liquid compositions can be ed in various forms well appreciated by those skilled in the art. The compositions can also be manufactured to include a saturated antimicrobial wipe, such as a paper or cloth substrate having the liquid compositions ted thereon.
The solid compositions can be ed in various forms well appreciated by those skilled in the art. The compositions can be manufactured to include a solid block, including pressed, extruded, cast, tableted, or the like. Solids can also include granulates and powders, including ?owable powders. In certain embodiments the solids can also include applicable packaging (e. g. ?lm, such as a PVA ?lm). Bene?cially, the solid compositions including a combination of acids and anionic tants e ef?cacious and stable solid atives to extruded solids using quaternary ammonium compounds. Various forms and sizes of the solids can be included in addition to solid blocks, including for example, pucks, tablets, powders, granules, and the like.
The solid composition may take forms as well as sizes. In an exemplary embodiment, solids can have a weight of between approximately 50 grams and approximately 250 grams, approximately 100 grams or greater, and between approximately 1 and approximately 10 kilograms. In certain embodiments, the solid compositions can include a unit dose, such as a tablet or puck. A unit dose refers to a solid composition unit sized so that the entire unit is used during a single application of use. When the solid composition is provided as a unit dose, it is typically provided as a cast solid, an extruded pellet, or a tablet having a size of n approximately 1 gram and approximately 50 grams. In other embodiments, the solid composition is provided in the form of a multiple- use solid, such as a block or a plurality of pellets, and can be repeatedly used to generate aqueous compositions for multiple applications or cleaning cycles. In certain ments, the solid ition is provided as a pressed solid, cast solid, an extruded block, or a tablet having a mass of between approximately 5 grams and approximately 10 kilograms.
In certain embodiments, a multiple-use form of the solid composition has a mass between approximately 1 am and approximately 10 kilograms.
The degree of hardness of the solid cast ition and/or a pressed solid ition may range from that of a fused solid product which is relatively dense and hard, for example, like concrete, to a tency characterized as being a hardened paste.
In addition, the term " refers to the state of the composition under the expected conditions of storage and use of the solid cleaning composition. In general, it is expected that the composition will remain in solid form when exposed to temperatures of up to approximately 100 °F, up to approximately 120 °F, or up to approximately 125 °F while maintaining physical and dimensional stability. The dimensional stability of the solid composition is confirmed by a growth exponent of less than about 3% if heated at a temperature up to approximately 100 °F (40°C), up to approximately 120 °F (5 0°C), or up to approximately 140 °F (60°C) for an extended period of time, such as at least 30 minutes, or at least one hour, up to two weeks, up to four weeks, up to six weeks, or up to eight weeks, and at a humidity between about 40-65%.
The compositions include at least one acid. In embodiments, the compositions include two acids. In such an aspect, the acids can be a combination of a weak acid and a strong acid. For the purposes of this ion, an acid is a component that can be added to an s system and result in a pH less than 7. Strong acids that can be used are acids which substantially dissociate an aqueous on. "Weak" organic and inorganic acids are acids or acid components in which the ?rst dissociation step of a proton from the acid moiety does not proceed essentially to completion when the acid is ved in water at ambient temperatures at a concentration within the range useful to form the present compositions.
Without wishing to be bound by theory, the acids of the itions serve to protonate the carboxylate functionalities on the phospholipid membrane of bacteria and reduce the tendency of the membrane to electronically repel anionic surfactants included in the antimicrobial compositions and virucidal compositions. With t to viruses, the acids are believed to affect the lipid envelope and/or capsid in the same manner. Moreover, the acids disclosed herein facilitate the creation of a low pH buffer on the surface of a substrate, thereby prolonging the residual crobial and virucidal activity of the compositions and products in which they are incorporated. ary strong acids suitable for use in the compositions include methane ic acid, sulfuric acid, sodium hydrogen sulfate, phosphoric acid, phosphonic acid, nitric acid, sulfamic acid, hydrochloric acid, trichloroacetic acid, tri?uoroacetic acid, toluene sulfonic acid, glutamic acid, and the like; alkane sulfonic acid, such as methane sulfonic acid, ethane sulfonic acid, linear alkyl benzene sulfonic acid, xylene sulfonic acid, cumene sulfonic acid and the like. In a preferred aspect, the compositions include a strong acid having a pKa less than about 2.5 to beneficially e the acidic use compositions having a pH less than about 4, or preferably less than about 3. In an embodiment, the compositions include a strong acid in combination with the anionic surfactant, and optionally include a weak acid.
Exemplary weak acids le for use in the compositions ing alpha ycarboxylic acid, such as lactic acid, citric acid, tartaric acid, malic acid, , gluconic acid, and the like; carboxylic acids, such as formic acid, acetic acid, propionic acid and the like; other common organic acids such as ascorbic acid, glutamic acid, levulinic acid, etc. could also be used. In a preferred aspect, the compositions include a weak acid having a pKa greater than about 2.5 to bene?cially provide the acidic use compositions having a pH less than about 4, or preferably less than about 3. In an embodiment, the compositions include a weak acid in combination with the anionic surfactant, and optionally include a strong acid.
In some embodiments, the compositions do not include fatty acids.
In certain embodiments, a combination of a strong acid with a weak acid result in surprisingly increased antimicrobial and virucidal ncy. In a preferred ment, the acids comprise lactic acid and methane sulfonic acid. Without being limited to a particular mechanism of action, it may be desirable to have a buffered acidic composition.
For e, if a surface in need of treatment is not suf?ciently cleaned the compositions have a buffered composition by virtue of a combination of weak and strong acids will bene?cially be able to support vation of pH sensitive organisms.
In an , the compositions having about a 2 oz./gal on include from about 0.1 wt-% to about 50 wt-% of at least one acid, from about 0.1 wt-% to about 38 wt-% of at least one acid, from about 1 wt-% to about 32 wt-% of at least one acid, from about 1.5 wt-% to about 29 wt—% of at least one acid, or from about 2 wt-% to about 26 wt-% of at least one acid, in addition to the ranges set forth in Tables above. In addition, without being limited ing to the invention, all ranges recited are inclusive of the numbers de?ning the range and include each integer within the de?ned range.
In an aspect, the compositions having about a 0.25-1 oz./gal dilution e from about 0.3 wt-% to about 95 wt-% of at least one acid, from about 1 wt-% to about 90 wt-% of at least one acid, from about 5 wt—% to about 80 wt-% of at least one acid, from about wt-% to about 70 wt-% of at least one acid, or from about 30 wt-% to about 60 wt-% of at least one acid, in addition to the ranges set forth in Tables above. In addition, without being limited according to the invention, all ranges recited are inclusive of the numbers de?ning the range and include each integer within the de?ned range.
In certain aspect, the compositions having about a 2 oz./gal dilution include from about 0.1 wt-% to about 20 wt-% of a strong acid, from about 0.1 wt-% to about 19 wt-% of a strong acid, from about 0.1 wt-% to about 13 wt—% of a strong acid, or from about 0.1 wt-% to about 6 wt-% of a strong acid, in combination with a weak acid, wherein the compositions include from about 0.1 wt-% to about 40 wt-% of a weak acid, from about 01 wt-% to about 38 wt-% of a weak acid, from about 0.1 wt-% to about 32 wt-% of a weak acid, from about 0.1 wt-% to about 29 wt-% of a weak acid, or from about 0.1 wt-% to about 26 wt-% of a weak acid, in addition to the ranges set forth in Tables above. In addition, without being limited according to the invention, all ranges recited are inclusive of the numbers de?ning the range and include each integer within the de?ned range.
In certain , the compositions having about a 0.25-1 oz./gal dilution include from about 0.1 wt-% to about 75 wt-% of a strong acid, from about 0.1 wt-% to about 75 wt-% of a strong acid, from about 0.1 wt-% to about 50 wt-% of a strong acid, or from about 0.1 wt-% to about 25 wt-% of a strong acid, in ation with a weak acid, wherein the compositions include from about 0.1 wt—% to about 95 wt-% of a weak acid, from about 0.1 wt-% to about 90 wt-% of a weak acid, from about 0.1 wt—% to about 90 wt-% of a weak acid, or from about 0.1 wt-% to about 95 wt-% of a weak acid, in on to the ranges set forth in Tables above. In addition, without being limited according to the invention, all ranges recited are inclusive of the numbers de?ning the range and include each integer within the de?ned range.
In certain aspects, the compositions before any dilution include from about 10 wt- % to about 75 wt-% acids (including strong and/or weak acids), from about 15 wt-% to about 75 wt-% acids, from about 20 wt—% to about 75 wt-% acids, from about 30 wt-% to about 75 wt-% acids, from about 30 wt—% to about 70 wt-% acids, from about 40 wt-% to about 70 wt-% acids, or from about 40 wt—% to about 60 wt-% acids. In certain aspects, the compositions before any dilution include from about 8 wt-% to about 55 wt-% weak acid and/or from about 2 wt-% to about 75 wt-% strong acid, from about 10 wt-% to about 50 wt-% weak acid and/or from about 4 wt-% to about 65 wt-% strong acid, from about 10 wt-% to about 50 wt-% weak acid and/or from about 5 wt-% to about 55 wt-% strong acid, or from about 20 wt-% to about 45 wt—% weak acid and/or from about 8 wt-% to about 45 wt-% strong acid. In addition, without being limited according to the invention, all ranges recited are inclusive of the s de?ning the range and include each integer within the de?ned range. In certain aspects, the compositions at a ready to use concentration include from about 5 ppm to about 10,000 ppm acids (including strong and/or weak acids), from about 50 ppm to about 5,000 ppm acids, 50 ppm to about 4,000 ppm acids, or from about 50 ppm to about 2,000 ppm acids. In certain aspects, the itions at a ready to use concentration include from about 0 ppm to about 4,000 ppm strong acid, from about 0 ppm to about 3,000 ppm strong acid, 0 ppm to about 2,000 ppm strong acid, or from about 0 ppm to about 1,000 ppm strong acid. In certain aspects, the compositions at a ready to use concentration e from about 0 ppm to about 10,000 ppm weak acid, from about 0 ppm to about 5,000 ppm weak acid, 0 ppm to about 4,000 ppm weak acid, or from about 0 ppm to about 2,000 ppm weak acid. In addition, without being limited according to the invention, all ranges recited are inclusive of the s de?ning the range and include each integer within the de?ned range.
Anionic surfactants The compositions include at least one anionic surfactant. In ments, the compositions include two anionic surfactants. In embodiments, the compositions include more than two anionic surfactants. Anionic surfactants are surface active substances which are categorized by the negative charge on the hydrophobe; or surfactants in which the hydrophobic section of the molecule s no charge unless the pH is elevated to neutrality or above (e. g. carboxylic acids). Carboxylate, sulfonate, sulfate and ate are the polar philic) solubilizing groups found in anionic surfactants. Of the s (counter ions) associated with these polar groups, sodium, lithium and potassium impart water solubility; ammonium and substituted um ions provide both water and oil solubility; and, calcium, barium, and magnesium promote oil lity.
Anionic ate surfactants suitable for use in the compositions also e alkyl sulfonates, the linear and branched primary and secondary alkyl sulfonates, and the aromatic sulfonates with or without substituents. In an aspect, sulfonates include sulfonated ylic acid esters. In an , suitable alkyl sulfonate surfactants include C8-C22 alkyl sulfonates, or preferably C10-C22 alkyl sulfonates. In an exemplary aspect, the anionic alkyl sulfonate tant is linear alkyl benzene sulfonic acid (LAS). In a preferred embodiment employing LAS as the anionic surfactant, the compositions are most ive at pH 3.0 or below.
Anionic sulfate surfactants suitable for use in the compositions also include alkyl ether sulfates, alkyl sulfates, the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5 -C17 acyl-N-(Ci -C4 alkyl) and -N-(C1 -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside, and the like. Also included are the alkyl sulfates, alkyl poly(ethyleneoxy) ether es and aromatic poly(ethyleneoxy) sulfates such as the sulfates or condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule).
Additional anionic surfactants suitable for the itions include anionic carboxylate surfactants, those which have a carboxylic acid or an alpha hydroxyl acid group. Anionic carboxylate surfactants suitable for use in the compositions also include carboxylic acids (and salts), such as alkanoic acids (and alkanoates), ester carboxylic acids (including sulfonated ylic acid esters), ether carboxylic acids, sulfonated fatty acids, such as sulfonated oleic acid, and the like. In an aspect, suitable ester carboxylic acids include alkyl ates, such as for example dioctyl sulfosuccinate. Such carboxylates e alkyl ethoxy carboxylates, alkyl aryl ethoxy carboxylates, alkyl polyethoxy polycarboxylate surfactants and soaps (e.g. alkyl carboxyls). Secondary carboxylates useful in the compositions include those which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring ure, e. g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary carboxylate tants typically contain no ether linkages, no ester linkages and no hydroxyl . Further, they lly lack nitrogen atoms in the head-group philic portion). Suitable secondary surfactants lly contain 11-13 total carbon atoms, although more carbons atoms (e.g., up to 16) can be present. Suitable carboxylates also include acylamino acids (and salts), such as uamates, acyl peptides, sarcosinates (e. g. N—acyl sarcosinates), taurates (e. g. N—acyl taurates and fatty acid amides of methyl tauride), and the like.
Suitable anionic surfactants include alkyl or alkylaryl ethoxy carboxylates of the following formula: R - O - 20)n(CH2)m - C02X (3) in which R is a C8 to C22 alkyl group or V in which R1 is a C4-C16 alkyl group, n is an integer of 1-20, m is an integer of 1—3; and X is a counter ion, such as hydrogen, sodium, potassium, lithium, ammonium, or an amine salt such as monoethanolamine, diethanolamine or triethanolamine. In some embodiments, n is an integer of 4 to 10 and m is 1. In some embodiments, R is a Cs—Crs alkyl group. In some embodiments, R is a C12-C14 alkyl group, n is 4, and m is 1.
In other embodiments, R is V and R1 is a C6-C12 alkyl group. In still yet other embodiments, R1 is a C9 alkyl group, n is 10 and m is 1.
Another class of anionic surfactant include the alpha sulfonated carboxylic acid esters, such as MC or PC-48 from Stepan.
In a preferred embodiment, the anionic surfactant does not include a sulfonate surfactant.
In an aspect, the compositions having about a 2 oz./gal dilution e from about 0.1 wt-% to about 40 wt-% of at least one anionic surfactant, from about 0.1 wt-% to about 38 wt-% of at least one anionic surfactant, from about 0.3 wt—% to about 26 wt-% of at least one anionic surfactant, from about 0.5 wt-% to about 13 wt—% of at least one anionic surfactant, or from about 0.6 wt-% to about 6.4 wt-% of at least one c tant. In addition, without being limited according to the invention, all ranges recited are inclusive of the numbers defining the range and include each integer within the defined range.
In an aspect, the compositions having about a 025-] 02/gal dilution include from about 0.2 wt-% to about 50 wt—% of at least one anionic tant, from about 1 wt-% to about 40 wt-% of at least one anionic surfactant, from about 2 wt-% to about 30 wt-% of at least one anionic surfactant, or from about 2.5 wt-% to about 25 wt-% of at least one anionic tant. In addition, without being limited according to the invention, all ranges recited are inclusive of the numbers ng the range and include each integer within the defined range. onal Functional Ingredients The components of the antimicrobial itions and virucidal compositions can further be combined with various additional onal components. In some embodiments, the antimicrobial composition and virucidal composition including the at least one acid and at least one anionic surfactant make up a large amount, or even substantially all of the total weight of the composition. For example, in some embodiments few or no additional functional ingredients are included therein.
In other embodiments, additional functional ingredients may be included in the itions. The functional ingredients provide desired ties and functionalities to the compositions. For the purpose of this application, the term "functional ingredient" includes a al that when dispersed or dissolved in a use and/or concentrate solution, such as an aqueous solution, provides a bene?cial property in a ular use. Some particular examples of functional materials are discussed in more detail below, although the particular materials discussed are given by way of example only, and that a broad variety of other functional ingredients may be used.
In preferred embodiments, the compositions do not include quaternary ammonium compounds. In additional embodiments, the compositions do not e conventional Norovirus actives, including for example, ethanol, silver citrate, and/or electrolytic chlorine. In additional embodiments the compositions do not include alcohols and/or other organic solvents to ially provide a non-?ammable product. In other embodiments, the compositions may e solidifying agents, defoaming agents, wetting agents, anti- sition agents, solubility modi?ers, dispersants, rinse aids, metal protecting agents, izing agents, corrosion tors, sequestrants and/or chelating agents, threshold agent, fragrances and/or dyes, rheology modi?ers or thickeners, hydrotropes or couplers, buffers, solvents, sensor indicators, and the like.
Surfactants In some embodiments, the compositions e an additional surfactant.
Surfactants suitable for use with the compositions include, but are not limited to, nonionic surfactants, amphoteric surfactants, and/or zwitterionic surfactants. In some embodiments, the compositions include about 0 wt-% to about 40 wt—%, between about 0.1 wt-% to about 38 wt-%, between about 1 wt-% to about 20 wt—%, between about 1 wt-% to about 15 wt- % additional surfactant, or between about 1 wt-% to about 6 wt-% additional surfactant.
N0m‘0m‘c Surfactants Suitable nonionic surfactants suitable for use with the compositions of the present invention include alkoxylated surfactants. Suitable alkoxylated surfactants include EO/PO copolymers, capped EO/PO mers, alcohol alkoxylates, capped alcohol alkoxylates, mixtures thereof, or the like. Suitable lated surfactants for use as solvents include EO/PO block copolymers, such as the Pluronic and reverse Pluronic surfactants; alcohol alkoxylates, such as Dehypon LS-54 (R—(EO)5(PO)4) and Dehypon LS-36 )3(PO)6); and capped alcohol alkoxylates, such as Plurafac LF221 and Tegoten ECI 1; mixtures thereof, or the like.
In an exemplary aspect, a nonionic surfactant available on the market under the trade name of "Pluronic" is ed as an additional surfactant in the compositions. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with ene glycol. The hobic portion of the le has a molecular weight of from about 1,500 to 1,800. The addition of polyoxyethylene ls to this hydrophobic portion tends to increase the water solubility of the molecule as a whole and the liquid ter of the products is retained up to the point where the polyoxyethylene content is about 50 percent of the total weight of the condensation product.
The olar type of nonionic surface active agents is another class of nonionic surfactant useful in compositions of the present invention. Semi-polar ic surfactants include the amine oxides, phosphine oxides, sulfoxides and their alkoxylated derivatives.
Amine oxides are ry amine oxides corresponding to the general a: R1—(OR4)n—N —>o wherein the arrow is a conventional representation of a semi-polar bond; and, R1, R2, and R3 may be aliphatic, aromatic, heterocyclic, alicyclic, or combinations thereof. Generally, for amine oxides of detergent interest, R1 is an alkyl radical of from about 8 to about 24 carbon atoms, R2 and R3 are alkyl or hydroxyalkyl of 1-3 carbon atoms or a mixture thereof, R2 and R3 can be ed to each other, e. g. through an oxygen or nitrogen atom, to form a ring structure; R4 is an alkylene or a hydroxyalkylene group containing 2 to 3 carbon atoms, and n ranges from 0 to about 20. An amine oxide can be generated from the ponding amine and an oxidizing agent, such as hydrogen peroxide.
Useful water soluble amine oxide surfactants are selected from the octyl, decyl, dodecyl, isododecyl, coconut, or tallow alkyl di-(lower alkyl) amine oxides, specific examples of which are imethylamine oxide, nonyldimethylamine oxide, decyldimethylamine oxide, undecyldimethylamine oxide, ldimethylamine oxide, iso-dodecyldimethyl amine oxide, tridecyldimethylamine oxide, tetradecyldimethylamine oxide, pentadecyldimethylamine oxide, hexadecyldimethylamine oxide, heptadecyldimethylamine oxide, octadecyldimethylaine oxide, dodecyldipropylamine oxide, tetradecyldipropylarnine oxide, hexadecyldipropylarnine oxide, tetradecyldibutylamine oxide, octadecyldibutylamine oxide, bis(2- hydroxyethyl)dodecylamine oxide, bis(2-hydroxyethyl)dodecoxy hydroxypropylamine oxide, dimethyl-(2—hydroxydodecyl)amine oxide, 3,6,9- trioctadecyldimethylamine oxide and 3—dodecoxyhydroxypropyldi-(Z- hydroxyethyl)amine oxide.
Amphoteric Surfactants Amphoteric, or ampholytic, surfactants contain both a basic and an acidic hydrophilic group and an organic hydrophobic group. These ionic entities may be any of anionic or cationic groups described herein for other types of surfactants. A basic nitrogen and an acidic carboxylate group are the typical functional groups employed as the basic and acidic hydrophilic groups. In a few surfactants, sulfonate, e, phosphonate or phosphate provide the negative .
Amphoteric surfactants can be broadly described as derivatives of aliphatic secondary and tertiary amines, in which the aliphatic radical may be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an c water solubilizing group, e.g., carboxy, sulfo, sulfato, phosphato, or phosphono. Amphoteric surfactants are subdivided into two major classes known to those of skill in the art and described in "Surfactant Encyclopedia" Cosmetics & Toiletries, Vol. 104 (2) 69-71 (1989), which is herein incorporated by reference in its entirety. The first class es acyl/dialkyl ethylenediamine derivatives (6. g. l yethyl imidazoline derivatives) and their salts. The second class includes N- alkylamino acids and their salts. Some amphoteric surfactants can be envisioned as ?tting into both classes.
Amphoteric surfactants can be synthesized by methods known to those of skill in the art. For example, 2-alkyl yethyl irrridazoline is synthesized by condensation and ring closure of a long chain carboxylic acid (or a tive) with dialkyl ethylenediamine.
Commercial amphoteric surfactants are derivatized by subsequent hydrolysis and ring- opening of the imidazoline ring by alkylation —— for example with chloroacetic acid or ethyl e. During alkylation, one or two carboxy-alkyl groups react to form a tertiary amine and an ether linkage with differing alkylating agents yielding ent tertiary amines.
Long chain ole derivatives having application in the present invention generally have the general formula: (MONO)ACETATE OPIONATE AMPHOTERIC SULFONATE CH2COOe CH2CH2COOe OH H2CH21|\IQ{ RCONHCH2CH2119CH2CH2COOH CH2ICHCstO3eNa© (szcHon H2cu2ou RCONHCHQCH2N\ CHZCHZOH Neutral pH - Zwitterion wherein R is an acyclic hydrophobic group containing from about 8 to 18 carbon atoms and M is a cation to neutralize the charge of the anion, generally sodium. Commercially prominent imidazoline-derived amphoterics that can be employed in the present compositions include for example: Cocoamphopropionate, Cocoamphocarboxy- nate, Cocoamphoglycinate, Cocoamphocarboxy-glycinate, Cocoamphopropyl- sulfonate, and phocarboxy-propionic acid. Amphocarboxylic acids can be produced from fatty imidazolines in which the dicarboxylic acid functionality of the icarboxylic acid is diacetic acid and/or dipropionic acid.
The carboxymethylated compounds (glycinates) described herein above frequently are called betaines. Betaines are a l class of amphoteric discussed herein below in the section entitled, Zwitterion Surfactants.
Long chain N—alkylamino acids are readily prepared by reaction RNH2, in which R=Cs-Cis straight or branched chain alkyl, fatty amines with halogenated carboxylic acids.
Alkylation of the primary amino groups of an amino acid leads to secondary and tertiary amines. Alkyl substituents may have additional amino groups that provide more than one reactive nitrogen center. Most commercial N—alkylamine acids are alkyl tives of beta-alanine or (2-carboxyethyl) alanine. es of commercial lamino acid ampholytes having application in this invention include alkyl beta-amino dipropionates, RN(C2H4COOM)2 and RNHC2H4COOM. In an embodiment, R can be an acyclic hydrophobic group ning from about 8 to about 18 carbon atoms, and M is a cation to neutralize the charge of the anion.
Suitable amphoteric surfactants include those derived from coconut products such as coconut oil or coconut fatty acid. Additional suitable coconut derived surfactants include as part of their structure an ethylenediamine moiety, an alkanolamide moiety, an amino acid moiety, e. g., glycine, or a combination thereof; and an tic tuent of from about 8 to 18 (e.g., 12) carbon atoms. Such a surfactant can also be considered an alkyl amphodicarboxylic acid. These amphoteric surfactants can include chemical structures represented as: C12-alkyl-C(O)-NH-CH2-CH2-N+(CH2-CH2-C02Na)2-CH2-CH2- OH or C12-alkyl-C(O)-N(H)-CH2-CH2-N+(CH2-CO2Na)2-CH2-CH2-OH. Disodium cocoampho dipropionate is one le amphoteric surfactant and is commercially available under the ame MiranolTM FBS from Rhodia Inc., Cranbury, N.J. Another suitable coconut derived amphoteric surfactant with the chemical name disodium cocoampho diacetate is sold under the tradename MirataineTM JCHA, also from Rhodia Inc, Cranbury, N.J.
A typical listing of eric classes, and s of these surfactants, is given in US. Pat. No. 3,929,678 issued to Laughlin and Heuring on Dec. 30, 1975. Further es are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch).
Zwitterionic tants rionic surfactants can be thought of as a subset of the amphoteric surfactants and can include an anionic charge. Zwitterionic surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Typically, a zwitterionic surfactant es a positive charged quaternary ammonium or, in some cases, a sulfonium or phosphonium ion, a negative charged carboxyl group; and an alkyl group. Zwitterionics generally contain cationic and anionic groups which ionize to a nearly equal degree in the isoelectric region of the molecule and which can develop strong" salt" tion between positive- negative charge centers. es of such zwitterionic tic surfactants include derivatives of aliphatic quaternary um, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight chain or branched, and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g, carboxy, sulfonate, sulfate, phosphate, or phosphonate. e and sultaine surfactants are exemplary zwitterionic surfactants for use herein. A general formula for these compounds is: (112),, 1 + 3 R—Y—CHz—R—Z wherein R1 contains an alkyl, alkenyl, or hydroxyalkyl radical of from 8 to 18 carbon atoms having from 0 to 10 ne oxide moieties and from 0 to 1 glyceryl moiety; Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R2 is an alkyl or monohydroxy alkyl group containing 1 to 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom, R3 is an alkylene or hydroxy alkylene or hydroxy alkylene of from 1 to 4 carbon atoms and Z is a radical selected from the group consisting of carboxylate, ate, e, phosphonate, and phosphate groups.
Examples of zwitterionic surfactants having the structures listed above include: 4- i(2-hydroxyethyl)-N-octadecylammonio]-butane-l -carboxylate; - hydroxypropyl—S—hexadecylsulfonio]hydroxypentane—l -sulfate; 3-[P;P-diethyl-P-3;6;9- trioxatetracosanephosphonio]—2—hydroxypropane—1—phosphate; 3-[N,N—dipropyl-N—3- dodecoxyhydroxypropyl—ammonio]—propane—1—phosphonate; 3-(N,N-dimethyl-N- hexadecylammonio)-propane- l -sulfonate; 3-(N,N-dimethyl-N-hexadecylammonio)—2- hydroxy-propane- l -sulfonate; 4- [N,N-di(2(2-hydroxyethyl)-N(2- hydroxydodecyl)ammonio] -butane—l -carboxylate; 3—[S-ethyl-S -(3 -dodecoxy hydroxypropyl)sulfonio]-propane—1-phosphate; -dimethyl-P-dodecylphosphonio]- e-l-phosphonate; and S[N,N-di(3-hydroxypropyl)—N—hexadecylammonio] hydroxy-pentane-l-sulfate. The alkyl groups ned in said detergent surfactants can be straight or branched and saturated or unsaturated.
The zwitterionic surfactant suitable for use in the present compositions includes a betaine of the general structure: 1" If 1% RLilxILCHz—Coz' RLs—CHz—Co; R'—P+—CH2—Coz' RI" IR." These surfactant betaines typically do not exhibit strong cationic or anionic characters at pH extremes nor do they show reduced water solubility in their isoelectric range. Unlike nal" nary ammonium salts, betaines are compatible with anionics. Examples of suitable betaines include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C1244 acylamidopropylbetaine; €3-14 acylamidohexyldiethyl betaine; 4-C14-16 acylmethylamidodiethylammonio-l-carboxybutane; C16-18 acylamidodimethylbetaine; C12— 16 acylamidopentanediethylbetaine; and C12-16 acylmethylamidodimethylbetaine.
Sultaines useful in the t invention e those compounds having the formula (R(R1)2 N+ R2803} in which R is a C6 -C18 hydrocarbyl group, each R1 is typically independently C1-C3 alkyl, e.g. methyl, and R2 is a C1-C6 hydrocarbyl group, 6. g. a C1-C3 alkylene or hydroxyalkylene group.
A typical listing of zwitterionic classes, and species of these surfactants, is given in US. Pat. No, 3,929,678 issued to Laughlin and Heuring on Dec. 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). Each of these references is herein incorporated in their entirety.
In an ment, the compositions of the present invention include a e. For example, the compositions can include cocoamido propyl betaine.
Defoaming Agents Defoaming agents can also be included in the compositions, Generally, defoamers which can be used in accordance with the invention preferably include alcohol alkoxylates and EO/PO block copolymers. Defoamers can also include polyalkylene glycol condensates and propyl glycols, including polypropyl glycol. In some embodiments, the compositions can include antifoaming agents or defoamers which are of food grade quality given the ation of the s. To this end, one of the more effective antifoaming agents includes silicones. Silicones such as dimethyl ne, glycol polysiloxane, methylphenol polysiloxane, trialkyl or tetralkyl silanes, hydrophobic silica defoamers and mixtures thereof can all be used in defoaming applications. These defoamers can be present at a concentration range from about 0.01 wt-% to 20 wt-%, 0.01 wt-% to 20 wt-%, from about 0.01 wt-% to 5 wt-%, or from about 0.01 wt-% to about 1 wt-%.
Solidl?/l'ng Agents fying agents (also referred to as hardening ) can also be included in the solid compositions, Solidifying agents can include a compound or system of compounds, organic or inorganic, which significantly contribute to the uniform solidi?cation of the solid composition. The solidifying agents should be capable of forming a homogeneous matrix with the active components of the solid composition when mixed and solidi?ed to provide a m dissolution of the s from the solid composition during use.
An exemplary solidifying agent includes urea. Urea may be in the form of prilled beads or powder. Prilled urea is generally available from commercial sources as a mixture of le sizes ranging from about 8—15 U.S. mesh, as for example, from Arcadian Sohio Company, Nitrogen Chemicals Division. A prilled form of urea is preferably milled to reduce the particle size to about 50 US mesh to about 125 US. mesh, particularly about 75-100 U.S. mesh, preferably using a wet mill such as a single or twin-screw extruder, a Teledyne mixer, a Ross emulsi?er, and the like.
Additional solidifying agents may be an organic ing agent, including for example: a polyethylene glycol (PEG) compound, suitable examples including solid polyethylene glycols of the general formula H(OCH2CH2)nOH, where n is greater than 15, particularly imately 30 to approximately 1700, such as PEG 4000, PEG 1450, and PEG 8000 among others. Still further, PEG can e varying molecular s, for example, molecular weight of about 1,400 to about 30,000. In certain embodiments, the solidifying agent includes or is solid PEG, for example PEG 1500 up to PEG 20,000. In certain embodiments, the PEG includes PEG 1450, PEG 3350, PEG 4500, PEG 8000, PEG ,000, and the like. Suitable solid polyethylene glycols are commercially available from Union Carbide under the tradename CARBOWAX.
Additional solidifying agents may be an inorganic ing agent, including for e: hydratable inorganic salts, including, but not limited to carbonates, sulfates and bicarbonates, which may be an alkali metal or alkali earth metal salt. Suitable salts include lithium, sodium, potassium, calcium, magnesium, iron, strontium, zinc, manganese, lanthanum, um, gallium, aluminum, cobalt, , molybdenum, rhenium, rhodium, scandium, tin and zirconium. Suitable metal salts include sodium, lithium, potassium salts including, but not limited to sulfates, chlorides, phosphates, acetates, nitrates, and carbonates. Particularly useful metals salts include lithium, sodium and potassium sulfates, chlorides and acetates. The following s disclose s combinations of solidi?cation, binding and/or hardening agents that can be utilized in the solid itions of the present invention. The following US. s are incorporated herein by reference in their entirety: US. Pat. Nos. 7,153,820; 7,094,746; 7,087,569; 886, 6,831,054; 6,730,653; 6,660,707; 6,653,266; 6,583,094; 6,410,495; 6,258,765; 6,177,392; 6,156,715; 5,858,299; 5,316,688; 5,234,615; 5,198,198; 5,078,301; 4,595,520; 4,680,134; RE32,763; and RE32818.
Still further, solidifying agents can include polymers and thickeners include natural gums such as xanthan gum, guar gum, or other gums from plant mucilage; polysaccharide based thickeners, such as alginates, starches, and cellulosic polymers (e.g., carboxymethyl cellulose); solid EO/PO block copolymers; rylates; and hydrocolloids. In an embodiment, the thickener does not leave inating e on the surface of an obj ect. For example, the thickeners or gelling agents can be compatible with food or other sensitive products in contact areas.
The solidifying agents can be include in the compositions at range from about 0 wt- % to 70 wt-%, 0 wt-% to 50 wt-%, 0.01 wt-% to 30 wt-%, from about 0.01 wt-% to 20 wt- %, or from about 1 wt-% to about 20 Wt-%. In other embodiments employing a combination of solid acids with the anionic surfactant, little or no solidifying agents are required to provide the stabilized solid compositions in the various solid formulations as disclosed herein. s of Use The antimicrobial compositions and virucidal compositions are particularly well suited for treating surfaces in need of antimicrobial efficacy, including for example virucidal ef?cacy. In further aspects, the antimicrobial compositions and dal compositions are still further well suited for treating surfaces in need of virucidal efficacy against small, non-enveloped s, large, non-enveloped viruses and/or any enveloped viruses. In a particular, aspect, the antimicrobial compositions and virucidal compositions are particularly well suited for ng es in need of inactivating small, non- enveloped viruses including Norovirus. Accordingly, methods of using an antimicrobial are encompassed according to the present disclosure. Methods of inactivating a virus are also encompassed according to the present disclosure. Methods of inactivating a small, non-enveloped virus are also encompassed ing to the present disclosure. Still further, methods of inactivating a Norovirus are encompassed according to the t sure.
The methods of use for antimicrobial, including antiviral, disinfection along with inactivating viruses, include a contacting step, n the antimicrobial compositions and virucidal compositions disclosed herein are applied to a surface in need of treatment. In an aspect, ting the composition is to a surface contaminated with a virus, including enveloped and non-enveloped viruses, such as a calciforrn virus including Norovirus. In a preferred aspect, the methods of use provide complete kill of Norovirus. Beneficially, in an aspect, complete kill of rus on a surface is achieved with a contact time of less than minutes, less than 5 minutes, less than 2 minutes, less than 1 minute, or less than 30 seconds.
In a further aspect, ting the composition is to a surface contaminated with a bio?lm. As referred to herein, a bio?lm is often formed on surfaces in contact with water, providing a hydrated matrix of polysaccharides to provide structural protection from biocides and crobial agents, making bio?lm more dif?cult to kill than other pathogens. The contacting step can include providing the antimicrobial compositions and/or virucidal compositions to a hard surface in contact with bio?lm, such as for example, walls, ?oors, sinks, countertops, drain lines, pipes and other plumbing surfaces, tubes and valves and like. ary industries in which the methods and compositions may be used include, but are not d to, institutional industries, including hotels, housekeeping and foodservice; food sing; water care industries; janitorial industries; and health care. According to embodiments of the methods, the contacting step reduces and/or eliminating bio?lm growth produced by a wide y of bacteria and other microorganisms. For example, according to an embodiment, the methods for treating a bio?lm are effective for bio?lm comprising a variety of ens, such as both gram positive and negative bacteria, including for example Pseudomonas aerugihosa, Escherichia coli, Staphylococcus midis, Staphylococcus aureus and Listeria monocytogenes.
In a further aspect, contacting the antimicrobial composition and/or and virucidal ition can be to a food contact and/or non-food contact hard surface. Such surfaces can further e instruments, such as medical instruments. Surfaces can also include those cleaned in third-sink sanitizing, ing various wares. In still further aspects, contacting the composition can be to a CIP (clean in place) application.
In still further aspects, contacting the composition can be to a ware wash machine, such as a ware wash application.
In still further aspects, contacting the composition can be to a third sink sanitizing application. In a still further aspect, the contacting is bene?cially compatible with ?rst sink detergents, such that a third sink sanitizing step could be used as a water recycle to combine with a ?rst sink detergent. This is a bene?t over conventional compositions ning nary ammonium nds which are not compatible with ?rst sink detergents.
In still further s, contacting the composition can be to a tissue surface, including tissue treatment applications. Exemplary tissue surfaces include mammalian skin, such as animal or human skin, including for example human hands.
The various surfaces to which the compositions can be applied can include any conventional application means. ation can include, for example, by wiping, spraying, dipping, immersing, or the like. The ting can also include providing a solid to be ?rst dissolved in water to form a solution for the contacting. The contacting step allows the composition to t the soiled surface for a predetermined amount of time.
The amount of time can be suf?cient to allow, including from a few seconds to an hour, from about 30 seconds to about 15 minutes, or any range therebetween. The methods may comprise a single step of applying the composition onto the surface without direct physical l, such as a rinse step. Bene?cially, the compositions provide a no-rinse application.
In some aspects, the methods can further include a precleaning step, such as where a cleaning compositions is applied, wiped and/or rinsed, and thereafter followed by the applying of the compositions. The compositions and methods of use thereof can include treating cleaned or soiled surfaces. In some embodiments the amount of contact time n the ition and the surface is suf?cient to reduce the population of microorganisms (including Norovirus) on or in a biofllm-soiled surface to e greater than a 90% reduction (l-log order reduction), greater than 99% reduction (2-log order reduction) in such population, greater than 99.9% reduction (3 -log order reduction) in such population, greater than 99.99% reduction (4-log order reduction) in such populations, or greater than a 99.999% reduction (5—log order reduction) in the population of microorganisms and pathogens.
Bene?cially, the methods do not require a rinse step. In an aspect, the compositions are food contact approved and do not e a rinse step. As a further , the methods do not cause corrosion and/or interfere with surfaces (eg. hazy, dull or other negative aesthetic s on the surface).
The methods can optionally include the use of various s and/or tors. In an aspect, the level of active ingredients in use solution can be monitored by various ways.
In one approach, the critical pH of the solution at which the product will start to lose its biocidal ef?cacy signi?cantly is visually ted by a color change, and the color change is ed by choosing a dye that show dramatic color change at this pH. The dye could be simply incorporated into the product, and preferably the dye is incorporated into a polymeric substrate to form a color change strip, and the strip will put in the container, for example the 3rd sink to show the color change when the solution pass the critical pH value.
Additionally, the level of anionic surfactants in use solution could also be monitored by a similar manner, where a color change will indicate the critical concentration of anionic surfactant needed for biocidal efficacy.
In an additional embodiment, as an alternative to visual indicators, properties of the use solution including pH, anionic activity, ?uorescence, and/or conductivity can be monitored by sensors that e a visual or audible signal when the solution is no longer within a speci?ed range. In some embodiments, a marker molecule can be added to the composition, where the change of the active ingredients in the use solution will trigger the physical and/or chemical property s of the marker molecule, and the change is quantified through a signal processing.
As a further bene?t over the use of nary ammonium compounds as are found in various tional antimicrobial compositions, the crobial and ral compositions disclosed herein do not adsorb on the treated surfaces, such as soft surfaces, including for example, microfiber cloths, mops, coated surfaces, etc.
All publications and patent applications in this specification are indicative of the level of ry skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually ted as incorporated by reference.
EXAMPLES Embodiments of the t invention are r defined in the following non- limiting Examples. It should be understood that these Examples, while ting certain embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and t departing from the spirit and scope f, can make various changes and modifications of the embodiments of the invention to adapt it to various usages and conditions. Thus, various modifications of the embodiments of the invention, in addition to those shown and described herein, will be nt to those skilled in the art from the foregoing description. Such modi?cations are also intended to fall within the scope of the appended claims.
Norovirus Test protocol. (Examples 1-4) Samples were prepared to provide the active level of chemistry listed in the tables in 400 ppm hard tic water. Synthetic water was AOAC hard water of 400 ppm calcium carbonate. The pH of these solutions was measured and recorded.
Feline calicivirus (FCV) strain VR782 is the ate for rus ef?cacy evaluations and tested following ASTM E1053-11 5% Fetal Bovine Serum was selected as the organic soil. Chemistry was tested in duplicate over three different tests for a total of six replicates with complete inactivation (no surviving organisms) ed of all replicates to be considered a passing result. In Examples 1-4, the virus titer was 6.5-7 log. If a failure was observed before six replicates were tested the test was ended and reported as a failure. Examples 1-4 show a high nge test that identifies chemistries that are robustly able to reduce viral populations in support of public health and food safety interests.
The following abbreviations are used in the Examples for components of evaluated formulations: LAS: anionic surfactant, linear alkyl benzene sulfonic acid MSA: acid, methane ic acid DOS: anionic surfactant, sodium dioctyl uccinate SAS: acid, sodium bisulfate Pluronic F68: ic surfactant, difunctional block copolymer surfactant ending in primary hydroxyl groups Pluronic 17R4: nonionic surfactant, difunctional block mer surfactant, Poly(propylene glycol)—block-poly(ethylene glycol)-block—poly(propylene glycol), PPG— PEG-PPG SXS: hydrotope, sodium xylenesulfonate EXAMPLE 1 Five Minute Ef?cacy Evaluations. Samples were prepared in 400ppm synthetic water (SW) with the active level of chemistry outlined in Table 3. Ef?cacy of compositions was evaluated with a 5 minute contact time according to the norovirus test protocol outlined above Composition 1-2 utilizing a blend of weak acid c) and strong acid (MSA) was able to provide te inactivation of the test sm while Composition 1-1 utilizing only a strong acid (sulfuric acid) did not provide complete inactivation of the test sm, despite the compositions having very similar pH values (2.4 and 2.5, respectively).
TABLE 3 §ample LAS Sulfuric Lactic MSA Pluronic ' 5 Minute (ppm) (ppm) Ef?cacy Outcome ---uu--— ""I---minutes The results indicate that acid selection impacts outcome of the efficacy against the test organism. Based on the results it is hypothesized that additional strong acid tration in Composition 1-1 and/or the addition of a weak acid to Composition 1-1 may result in a passing efficacy outcome. Therefore, onal testing was completed.
EXAMPLE 2 30 Second Ef?cacy Evaluations for FCV Norovirus Contact. s were prepared in 400 ppm SW with the active level of chemistry outlined in Table 4. Efficacy of the evaluated compositions was evaluated with a 30 second contact time following the norovirus test protocol outlined above.
TABLE 4 Lactic PH"1 400ppm Sample LAS Acid 30 second ef?cacy SW supply ID (ppm) (ppm) outcome 2-2 430 1500 735 fail 2.1 2-4 650 1500 490 fail 2.2 2-5 650 1500 660 pass 2.1 As shown in the table, Composition 1-2 which provided complete inactivation at a minute contact time in Example 1 did not provide complete inactivation of the test organism with a 30 second contact time. In addition, even at a pH of 2. 1, Composition 2-2 having 430 ppm LAS did not provide complete inactivation of the test organism with a 30 second contact time. When LAS concentration was increased to 650 ppm, te inactivation of the test sm was achieved at a pH of 2.1 for Composition 2-5.
Although complete inactivation was observed, the low pH range may not be preferred for treatment of certain surfaces, as the compositions prepared in a lower alkaline water supply would result in a use on pH below pH 2.0. Based on these results additional evaluations were ed to determine the contribution of lactic acid on cy mance as well as the addition of another anionic surfactant to identify compositions having a higher pH range able to support a 30 second efficacy claim.
EXAMPLE 3 Second Efficacy Evaluations for FCV Norovirus Contact - Lactic Acid Ef?cacy Contribution. Samples were prepared in 400 ppm SW with the active level of chemistry outlined in Table 5. Ef?cacy of compositions was ted with 30 second, 60 second, 1, 2, and 5 minute contact times following the norovirus test protocol outlined above.
TABLE 5 ...............................................
Lacti MSA C (ppm 30 2 Minute 5 Minute pH in LAS Acid ) Second Sampl Ef?cacy Ef?cacy 400ppm (ppm (ppm) Ef?cacy Ef?cacy 6 ID Outcom Outcom SW ) Outcom Outcom e e supply 1—2 430 1500I395 Fail Fail 2.4 2-4 650 1500 320 Fail Fail n/a n/a 2.3 3-1 650 2250 250 Fail Fail n/a n/a 2.4 3—2 650 3000 230 Pass n/a n/a n/a 2.3 3—3 540 2250 290 Failure Fail n/a n/a 2.4 3—4 540 3000 180 Pass n/a 2.5 3—5 540 3000 n/a n/a n/a 2.6 3-6 650 3000 n/a 2.6 3-7 540 I. 610 Fail n/a 2.3 3-8 540 4600 n/a n/a n/a 2.6 Complete inactivation of the test organism was achieved with a 30 second time point at a LAS concentration as low as 540 ppm when lactic acid was increased to 3000 ppm for Compositions 3-2 and 3-4. te vation of the test organism was not achieved with lower concentrations of lactic acid d at similar or lower use solution EXAMPLE 4 Evaluation of Additional Anionic surfactant. Samples were prepared in 400 ppm SW with the active level of chemistry outlined in Table 6. Ef?cacy of compositions was evaluated with a 30 second and 60 second contact time following the norovirus test protocol outlined above.
TABLE 6 Sample LAS DOS Pluronic Ef?cacy Efficacy ID (ppm) (ppm) Acid outcome outcome (ppm) 30 60 seconds seconds ------m The results show that incorporating a second anionic into Composition 4-1 supported complete inactivation of the test organism at a 60 second contact time.
EXAMPLE 5 ng Performance tions of Residues from the Cleaning Composition. Samples were prepared in 5 grain water with the active level of chemistry outlined in Table 7. 0.5g of test substance was added to a piece of cheesecloth. The hard surface was wiped and allowed to air dry (about 10 minutes). A visual assessment of the surface was ranked on a scale of 1-5 with 1 having the best appearance.
TABLE 7 Test Active products Chemistr Professional As shown in the LAS and acid cleaning compositions according to ments of the sure show a signi?cant visual ement over commercially- available products Pure and Purell on all evaluated surfaces. The chemistries employing a strong acid (LAS 590ppm MSA), weak acid (LAS 4600ppm LA), and strong/weak acid (LAS 6A) all outperform the commercially-available products with regard to visual assessments of surface ng appearance. This evaluation is important to ensure cleaning compositions do not result in, hazy or tacky surfaces. Although the visual assessment of the weak acid (LAS 4600ppm LA) and strong/weak acid (LAS 6A) compositions ranked equivalently, there were preferred results obtained for the /weak acid (LAS 6A) due to formulations bene?ts obtained by the combination of acids.
E 6 Corrosion Evaluations. Samples were prepared in 5 grain water with the active levels of chemistry outlined in Table 8. pH of solutions were measured and recorded. Test try was prepared in 5 grain water unless otherwise noted.
TABLE 8 Lacti MSA Pluroni c (ppm c F68 pH in Acid ) (ppm) 400ppm (ppm) SW PURELL (RTU, pH 12.9) PURE (RTU, pH 1.8) grain water Weight, height, width, and depth of 1"x2" Aluminum 6061 s were measured and recorded. Coupons were added to sample jar containing 50mL of test chemistry and exposed for 3 days in a 50C oven. The exposure time period is entative of approximately 5 years of life of a ware if exposed to chemistry 1min, 2x/day, 365days/year. After the speci?ed exposure period, aluminum coupons were removed from solution, rinsed with DI water, and allowed to dry. Samples were visually assessed and remeasured. The visual assessment and % change data is provided in Table 9 representing 3 day exposure results.
TABLE 9 Height Width Change Change change Change Slightly’ 0.00 A)0 0 0 0 _063 A) 0.02 A, 0.00 A, 3_7 540 0 610 Dulled ——--_" Brown 0.00% -0.63% 0.00% 0.20% oratio n that washed away with DI rinse, Shin Signi?cantly 2.41% 4.40% 0.04% 0.28% darkened, PURELL altered, dull surface Brown -0.18% -0.63% 0.00% 0.24% Grain Water Discoloratio As shown in Table 9, the visual changes documented show the evaluated compositions employing a strong acid and/or weak acid all outperform the commercially- ble Purell product with regard to lack of ion on the treated es.
EXAMPLE?’ Corrosion Evaluations with Varying Acid Pairs. Samples were prepared in DI water by making a 1 oz./gal dilution of the concentrate formulations outlined in Tables lOA-lOC. pH of solutions were measured and recorded. Aluminum 6061 Coupons were added to a sample jar containing test chemistry and exposed for approximately 12 hours, 24 hours, 3 days, 1 week, 2 weeks and 4 weeks’ time points in a 50°C oven. After the speci?ed exposure periods, aluminum coupons were removed from solution, rinsed with DI water, and allowed to dry.
TABLE 10A Formula A4- A4- Name MSA SAS LAS (96%) Pluronic F68 (anh drous) (anh drous) -uuAcid(75%) TABLE 10B Formula B1- B2— B3— B4— B1- LacticAcid 43.06 17.23 68.90 (88%) MSA (70%) 5.21 10.41 0.00 Sodium -W"W0.00 0.00 Phosphoric -W""0.00 0.00 DI H20 23.14 33.46 437? 64.41 23.14 33.69 44.25 65.36 TABLE 10C Formula Pluronic F68 2.58 Lactic Acid 68.90 (88%) MSA (70%) 0.00 0.00 Sodium 000 0.00 Bisulfate Phosphoric 0.00 1.33 2.66 Acid (75%) D1 H20 23.14 34.73 46.32 Samples were visually assessed and gloss of coupon was measured. Gloss data was used as a metric to capture dullness of coupon. The lower the gloss value the more change observed of the coupon. The results are shown in Table 11 reporting pH and 20°Gloss Data. The s show preferences for combinations of strong and weak acids according to embodiments of the itions. For example, the difference in results n B4-MSA and B4-SAS (sodium bisulfate) show the MSA strong acid-containing composition provides approximately a 4 times lower dulling to the treated surface (where the higher the gloss number is indicting of a shiny surface as opposed to a dulled surface). Similarly, the difference in results between B4—MSA and A4—MSA show the lactic weak acid containing composition provides imately a 4 times lower dulling to the treated surface (where the higher the gloss number is indicting of a shiny surface as d to a dulled surface). .5 ma .5 .N .5 Nd 0d E as: % as: ?. d 53m 8.0m Nd wd. m H M: h. .d 0d .8m 8... wN we he m 5.0 96 5d .5 EN. . . . Wm ?m in N.m 8.0 mam $.20 H Wv ad wd 8.0 .Nm 99:. . de 5d . . 8.0 Em @920 . mN dd . . 8.0 as: Hdm 5. 5d 2 a." 8.0 93—. own M: mm md. mm 8.0 .m b... mm: mNN G NM: 0% own 5d. 8.0 0M: N. 9:5: MIN N.mm H: ?wm m: dd. 80.. 5 SVN mmN wmmN odNN wme wwNN : 2:88.. m mqm wm EXAMPLE 8 Additional testing was conducted to trate superiority of the antimicrobial compositions compared to commercially-available compositions. The same methods and protocol were used as bed in Examples 1-3 with the ation that the titer in these studies ranged from 5-7. Ambient temperature between 20-26’ C was the temperature condition.
In a ?rst study, the Feline Calicivirus (FCV) norovirus surrogate (strain VR782) was evaluated according to Table 13. Formula 1 as shown in Table 12 according to the disclosure combines LAS with acids for antimicrobial ef?cacy. The Formulation 1 was diluted at 0.20% by wt. A commercial quat formulation containing Bardac 205M multi- quats (3% n-alkyl (50% C14, 40% C12, 10% C16) dimethyl benzyl um chloride, 2.25% octyl decyl dimethyl ammonium chloride, 1-5% ethanol, 135% didecyl dimethyl um chloride, 0.9% dioctyl yl ammonium chloride) and chlorine m Dichloroiso Cyanurate, Dihydrate) were used as controls for ef?cacy comparisons. The commercial quat formulation has an actives of 15 wt—% and was diluted at 0.53% by wt.
The 50 ppm chlorine was diluted to 0.1g/L.
TABLE 12 —Formula 1 —Water —LAS (96%) —Lactic Acid (88%) Pluronic 17R4 5.0 —-Ingredient Remainder TABLE 13 Contact Soil Chemist Time Condition R2 R3 te complete complete complete lal 30 inactivatio inactivati inactivati inactivat (250ppm) seconds ' 11 on Commercial quat control 30 (400 u m) seconds complete complete Chlorine 30 inactivatio inactivati (50ppm) seconds no soil n on - - As shown in Table 13, both chlorine and the Formula 1 were able to achieve complete inactivation with a 30 second contact time while the multi-quatemary control formulation was only able to achieve an average of 1.125 log reduction.
In a second study, the Murine Norovirus (MNV) surrogate strain was evaluated ing to Table 14 using the Formulation 1 of Table 12 diluted to 0.42% by wt. The commercial quat formulation has an actives of 15 wt—% and was d at 0.53% by wt.
The 50 ppm ne (sodium hypochlorite 10%) was diluted to 0.05% by wt. The 100 ppm chlorine (Sodium Dichloroiso Cyanurate, Dihydrate) was diluted to 0.18g/L. The 200 ppm chlorine (sodium hypochlorite 10%) was diluted to 0.20% by wt. The concentrations selected for evaluation of the chlorine were based on permitted concentrations for no-rinse ations, including 400ppm active quat, 100ppm when chlorine is sourced from sodium dichlororisocyanurate dihydrate and 200ppm when d from sodium hypochlorite. In addition the evaluated concentrations are threshold levels of chemistry that have currently accepted odor, residue and corrosion pro?les. Therefore, the claimed composition having te inactivation (or at least a 5 log reduction) of viruses in on to the se application feature with desirable odor, residue and corrosion pro?les is bene?cial. Without being limited to a particular bene?t of the compositions and methods of use thereof, a no-rinse ation is not required. A rinse step can further be employed.
TABLE 14 Contact Soil Chemist Time Condition R1 complete inactivatio n (7 log minutes Commercial quat control 5 (400 u m) minutes Chlorine 5 (50 o o m) minutes Chlorine 5 (100 o om) s Chlorine 5 (200 o om) s As shown in Table 14, the Formula 1 combining an acid and anionic surfactant provides superior outcomes to the cially-available multi quat composition and chlorine composition controls. a 1 demonstrates complete inactivation with a 5 minute contact time. However, under the same condition, the commercially-available multi quat composition was only able to achieve a 2.5 log reduction. 50ppm chlorine under the same conditions demonstrated no log reduction and 100 ppm chlorine demonstrated less than 1 log reduction.
EXAMPLE 9 Solid itions (formulations 1-11 in this example) were evaluated using solid acids permitted for food contact sanitizing that are able to e stable solids with a targeted acidic pH for food contact sanitizing while being stable in all environmental chambers. Table 15 shows evaluated pressed solid formulations. Pressed/tablets/pucks ations used a Carver hydraulic press with granulates, s powders were mixed by hand.
TABLE 15 Name / a 1 7 Lutro -ur MSA __— Anhyd MgSO4 __— anh drous Citric Acid, 45.00 59.90 anhydrous PTSA 43.33 monoh drate Glutamic Acid __— Pluronic F127 10.00 10.00 10.00 10.00 (nonionic surfactant) Pluronic F108 5.00 5.00 (nonionic surfactant) .- PEG8000, round __—14.00 Nonanoic acid __—3.50 Decanoic acid __—3.50 Table 16 shows formulations that were produced by both casting and extrusion.
The cast formulations used a steam jacket and the extruded formulations used a baking TABLE 16 —___11 Urea 20 20.00 20.00 3.03 Biosoft S-101 20 20.00 20.00 24.24 (dodecyl benzene sulfonic acid) Tomadol 91 -6 6.0? (nonionic ethoxylated alcohol surfactant) Sodium Bisulfate 36.67 27.50 18.33 anh drous PTSA 18.33 27.50 36.67 44.48 monoh drate Sodium Bisulfate 22.18 monoh drate The solid formulations 1-8 were analyzed for the pH in 500ppm soft water and 400ppm soft water (pre inoculation) with EMEM buffer for growing Norovirus to obtain food contact sanitizing levels as well as con?rm the y to inactivate Norovirus, including for applications of use where elimination of a rinse step is desired. The EMEM buffer is used to grow and suspend the FCV.
The pH measurements are shown in Table 17. ations 9-11 were not tested for pH as they are similar formulations to Formula 8.
TABLE 17 OH 500 m SW OH 400 m SW Formula 1 2.31 2.55 Formula 2 2.71 2.70 a 3 2.55 2.35 Formula 4 2.61 2.53 Formula 5 2.71 2.59 Formula6 3.14 3.17 Formula 7 3.06 3.05 Formula 8 2.72 2.62 Formula 9 -- 2.77 Formula 10 2.57 Formula 11 2.67 Formulas 1-7 made for press/powder/granulate were mixed in beakers and placed in stability chambers and observed up to 2 weeks. Formulas 8-11 for cast were blended with an overhead mixer and steam jacket for heating and d to set in molds in the freezer for 1hr and thawed where observations were made. as 8-11 were also made by extrusion; for extrusion the formulations were blended and kneaded in a pan and placed in a mold where observations were made. The stability results were ed according to a visual assessment to ensure there was no weeping of the formula from the solid; results are shown in Table 18.
TABLE 18 ——-——40C/65%RH 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks 2 weeks Insuf?cient Insuf?cient Insuf?cient Insuf?cient Insuf?cient Insuf?cient Insuf?cient Insuf?cient Formulas 1-5 provided ent stability with the combination of two acids (strong and weak acid) in the formulation. Formulas 6-7 demonstrated weeping as a result of concentration of the citric acid. ations would be required to provide a stable, cid only formulation, such as providing as an alternative solid formulation (e. g. powder) or a solid using packaging (e.g. non-moisture permeable). Alternatively other weak acids could be ed that absorb less moisture and/or a fatty acid added to the formulation.
Micro ef?cacy data is shown in Table 19. Staph, E. Coli, E. Coli 0157:H7, Listeria, and Salmonella testing employed standard AOAC 960.09: Germicidal and Detergent Sanitizing Action of Disinfection Methods. Feline Calcivirus (FCV) testing employed ASTM E1053-11: Standard test method to assess virucidal activity of chemicals intended for disinfection of inanimate, nonporous nmental surfaces.
TABLE 19 E. coli S. Aureus Salmonella E. coli Listeria Feline 0157zH7 Calcivirus (FCV) 1420 o om As shown in Table 19, the solid formulations bene?cially maintain the antimicrobial, speci?cally the virucidal ef?cacy achieved for liquid ations, The compositions achieve food contact sanitizing and complete deactivation of norovirus.
EXAMPLE 10 Additional solid stability testing was ted to assess combinations of acids for stable formulations. Stability testing was completed in a humidity chamber having 65% relative humidity at 40° C. Visual assessments were made on a weekly basis. Evaluated formulations and results are shown in Tables 20-23.
TABLE 20 Bisulfate Bisulfat Bisulfat Bisulfat Bisulfat Ctrl-l eCtrl-2 eCtrl-3 eCtrl-4 eCtrl-S Sodium Citric Acid Acusol 445ND Acusol 460ND Acusol 448 DP5005 monohydrate LAS Flake Glutamic Acid Pluronic F 127 Pluronic F68 Surfonic L24-7 Stabili -__——_ Weepin Weepin Weepin Weepin Weekl Wee-in; Weepin Weepin Weepin Weepin Week 2 Liue?ed TABLE 21 Citric1 Citric2 Citric Citric Citric Ctrl - Ctrl - Ctrl- 3 Ctrl - 4 Ctrl - 5 Sodium Bisulfate Citric Acid Acusol 445ND Acusol 460ND Acusol 448 DP5005 monohydrate LAS Flake Glutamic Acid Pluronic F127 Pluronic F68 Surfonic L24-7 Stabili -Week1 ; Week 2 g g g 1 TABLE 22 Coated Coated Coated F111 F 12- 1 F14- F14- biuslfate— biuslfate biuslfate ‘ 1.2 2833 296 23 81 2258 Bisulfate Citn‘c Acid _____- Acusol 445ND Acusol 460ND Acusol 448 DPS005 PTSA __5___-- monohydrate LAS Flake Glutamic Acid Pluronic F127 Pluronic F68 Surfonic L24-7 Stabili Wet Wet solid solid solid TABLE 23 F 1 4-7 Fl4-7b Fl7-la Fl7-lb Fl7-2a Fl7- Sodium Bisulfate CitIic Acid Acusol 445ND Acusol 46OND Acusol 448 DP5005 monohydrate LAS Flake ic Acid Pluronic F127 Pluronic F68 Surfonic L24-7 Stabili Okay Hard Hard Okay The inventions being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the inventions and all such ations are intended to be included within the scope of the following claims. The above speci?cation provides a description of the manufacture and use of the disclosed compositions and methods. Since many embodiments can be made without departing from the spirit and scope of the invention, the invention s in the claims.

Claims (11)

WE CLAIM:
1. An antimicrobial composition comprising: from 20 wt-% to 45 wt-% of a weak acid having a pKa greater than about 2.5; from 8 wt-% to 45 wt-% of a strong acid having a pKa less than about 2.5; from 0.1 wt-% to 38 wt-% of at least one anionic tant comprising a C8-C22 alkyl sulfonate; from 1 wt-% to 38 wt-% of at least one additional functional ingredient; and water, wherein the composition is free of fatty acids; and is a dilutable liquid trate having an acidic pH and is non-flammable.
2. The composition of claim 1, wherein the strong acid comprises methane sulfonic acid, and the weak acid comprises lactic acid.
3. The composition of claim 1 or 2, further comprising from about 1 wt-% to about 38 wt-% of a nonionic surfactant, preferably an alkoxylated surfactant having an ethylene oxide/propylene oxide block copolymer.
4. A method of using an crobial composition, sing: contacting the antimicrobial composition of any one of claims 1-3 to a non-human surface in need of treatment; wherein the method achieves at least a 3-log ial reduction.
5. The method of claim 4, wherein the contacting is by wiping, dipping, immersing, or spraying, wherein the non-human surface is a hard e, precleaned hard surface, a non-human surface contaminated with Norovirus, a non-human surface contaminated with a biofilm, and/or a non-human mammalian tissue, wherein the contacting provides the at least 3-log microbial reduction in less than 5 minutes, less than 2 minutes, less than 1 minute, or less than 30 seconds, and n the contacting step is at an aqueous use temperature from about 4.4°C-71°C (about 40°F-160°F), or from about 15.6°C-60°C (about 60°F-140°F), or from about 21.1°C-60°C (about 40°F).
6. The method of claim 4 or 5, wherein the concentrate is diluted at a rate of from about 0.94 g/L to about 15 g/L (about l/8 oz./gal. to about 2 oz./gal.), from about 1.87 g/L to about 7.5 g/L (about l/4 oz./gal. to about 1 oz./gal.), or from about 3.74 g/L to about 7.5 g/L (about l/2 oz./gal. to about 1 l.) to form a use solution, and wherein the use solution a use solution pH from about 1.5 to about 4, from about 2 to about 4, from about AH26(42906974_1):SAK 2.2 to about 3.5, or from about 2.5 to about 3.5, and wherein a use solution comprises from about 5 ppm to about 10,000 ppm of at least one acid, and from about 10 ppm to about 6000 ppm of at least one anionic surfactant.
7. The method of any one of claims 4-6, wherein a sensor and/or tor is employed to measure and detect at least one of the following: solution pH at which the composition loses biocidal efficacy, tration of anionic surfactant in the use solution, scence, and/or conductivity.
8. A method of disinfecting a surface, sing: contacting a use solution of the antimicrobial composition of any one of claims 1-3 with a non-human surface in need of treatment; wherein the method does not require a rinse step and achieves at least a 3-log ial reduction on the surface.
9. The method of claim 8, wherein the contacting is by wiping, dipping, immersing, or spraying, wherein the non-human surface is a hard surface, precleaned hard surface, a non-human surface contaminated with Norovirus, a non-human surface contaminated with a biofilm, and/or a mammalian tissue, and n the contacting provides at least 3-log microbial reduction in less than 5 minutes, less than 2 minutes, less than 1 minute, or less than 30 seconds, wherein the use solution pH is from about 1.5 to about 4, from about 2 to about 4, from about 2.2 to about 3.5, or from about 2.5 to about 3.5.
10. The method of claim 8 or 9, wherein the contacting step is at an s use temperature from about 4.4°C-71°C (about 40°F-160°F), or from about 15.6°C-60°C (about 60°F-140°F), or from about 21.1°C-60°C (about 40°F), and wherein the use solution comprises from about 50 ppm to about 6000 ppm of the weak and strong acid, and from about 10 ppm to about 6000 ppm of the anionic surfactant.
11. The method of any one of claims 8-10, wherein a sensor and/or indicator is employed to measure and detect at least one of the ing: on pH at which the composition loses biocidal efficacy, concentration of anionic surfactant in the use solution, fluorescence, and/or conductivity. Ecolab USA Inc. By the Attorneys for the Applicant SPRUSON & FERGUSON AH26(42906974_1):SAK Visuai Scare Pure?! sions)? LAS 590mm: MSA LAS 4600ppm LA LAS 6A FIG. 1
NZ762151A 2018-09-26 Acidic/anionic antimicrobial and virucidal compositions and uses thereof NZ762151B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762563461P 2017-09-26 2017-09-26
PCT/US2018/052883 WO2019067560A1 (en) 2017-09-26 2018-09-26 Acidic/anionic antimicrobial and virucidal compositions and uses thereof

Publications (2)

Publication Number Publication Date
NZ762151A NZ762151A (en) 2023-10-27
NZ762151B2 true NZ762151B2 (en) 2024-01-30

Family

ID=

Similar Documents

Publication Publication Date Title
AU2021261939B2 (en) Acidic/anionic antimicrobial and virucidal compositions and uses thereof
ES2701741T3 (en) Ethoxylated glycerin ether solvents
CA3136357C (en) Hard surface cleaning solution with rapid viricidal activity
AU2020408331B2 (en) Anionic surfactant impact on virucidal efficacy
US10045529B2 (en) Quat cleaner with glycerin ether ethoxylates
ES2711508T3 (en) Additives of disinfectant rinse based on peroxycarboxylic acid for use in dishwashing
WO2018075089A1 (en) REDUCED INHALATION HAZARD OF QUATERNARY AMMONIUM COMPOUNDS-pH DRIVEN PHYSIOLOGICAL RESPONSE
NZ762151B2 (en) Acidic/anionic antimicrobial and virucidal compositions and uses thereof
WO2024076947A1 (en) Antimicrobial compositions with yeasticidal activity
US20240130370A1 (en) Antimicrobial compositions with yeasticidal activity