NZ753824A - Livestock supplement and use thereof - Google Patents

Livestock supplement and use thereof

Info

Publication number
NZ753824A
NZ753824A NZ753824A NZ75382417A NZ753824A NZ 753824 A NZ753824 A NZ 753824A NZ 753824 A NZ753824 A NZ 753824A NZ 75382417 A NZ75382417 A NZ 75382417A NZ 753824 A NZ753824 A NZ 753824A
Authority
NZ
New Zealand
Prior art keywords
population
wilkinson
sarah
caffeine
pregnant
Prior art date
Application number
NZ753824A
Inventor
Susan Robertson
Michael Friend
Scott Edwards
Original Assignee
Charles Sturt Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2016904569A external-priority patent/AU2016904569A0/en
Application filed by Charles Sturt Univ filed Critical Charles Sturt Univ
Publication of NZ753824A publication Critical patent/NZ753824A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/116Heterocyclic compounds
    • A23K20/137Heterocyclic compounds containing two hetero atoms, of which at least one is nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Fodder In General (AREA)

Abstract

A method of conditioning near term livestock population to minimise the mortality rate of an offspring population derived therefrom including providing caffeine or a methylxanthine compound to pregnant livestock population before, during and/or after an estimated day of commencement of the parturition period for the population thereby conditioning the population to minimise the mortality rate in offspring population derived therefrom.

Description

Livestock ment and use thereof Field of the invention The invention relates to pastoral farming systems, ularly to extensive pastoral farming where livestock animals are born, lly unassisted, in the pasture, and to animal husbandry practices for ing mortality rate of newborn livestock populations in pastoral farming systems.
Background of the ion Reference to any prior art in the specification is not an acknowledgment or suggestion that this prior art forms part of the common general dge in any jurisdiction or that this prior art could reasonably be expected to be understood, regarded as relevant, and/or combined with other pieces of prior art by a skilled person in the art.
Pastoral farming systems for farming of livestock may be generally classified into intensive or extensive systems.
Intensive farming systems generally involve high inputs of labour and capital throughout the animal growth cycle. In these systems, each animal may be independently intensively managed, in particular with regard to the cement and completion of gestation.
For e, in intensive pig production, the commencement of gestation is known, which means that for any given animal the gestation age of the pregnancy is also known. This enables the farmer to know the exact time in which to induce labour, and the time at which to condition the animal in preparation for labour.
Such conditioning may include perianal analgesia for pain relief during parturition. Other treatments may be given to increase the chances of survival of the offspring, in particular during the days immediately following birth. For example, W02007/021189A2 (Provimi Holding B.V.) discusses the administration of caffeine to an animal as the animal is actually giving birth, or immediately before the mammal gives birth. In this example the actual gestational age is known, as is the time of parturition [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson which tends to arise from artificial induction. hi P et al. 2013 discusses that caffeine orally administered to sows with induced parturition showed a protective effect on the consequences of neonatal hypoxia in tissue ischemia-reperfusion injury piglets. This study administered caffeine to the pregnant sow at a known ion date. Further, given that parturition was d, the ne was also given in knowledge of the time of birth. The survival of piglets was not improved.
While some studies have demonstrated that caffeine given to neonate piglets improves metabolic variables of the neonate (Orozco-Gregorio H. et al. 2010; Orozco- Gregorio H. et al. 2012); more recent studies have demonstrated that caffeine increases neonatal body temperature and negatively effects survival at 24 hours of age (Nowland TL et al. 2016).
Maternal caffeine administration has been found to significantly decrease cerebral oxygenation in fetal sheep and it has been speculated that this could present a problem for newborn lambs ise compromised (Tomimatsu T et al. 2007).
Extensive pastoral systems generally involve much less farmer assistance in animal production. A ular point of difference is the focus on the performance and management of a herd or population of animals as a whole rather than management of individual animals per se.
For example, in extensive farming systems, the actual gestation date of any one ular pregnancy of a flock or herd is not known. This is because, unlike an intensive g system, the date of fertilisation of a given animal is not known.
The difference arises because in extensive g systems, a population of females is joined with one or more males for a period that is estimated to be sufficient for all of the females of the population to be fertilised. The date that any one ular female is ised is not determined. All that is determined is an estimated cement date of gestation as calculated from the period of joining.
Even if animals have been artificially inseminated, the time to natural parturition variesD>m animal to animal. For example, in sheep the time to natural parturition may ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson vary by i 5 days of accepted gestation period which on average is about 147 days (although there are breed differences in gestation length).
One ularly important outcome is that the pregnant population is managed according to an estimated gestational age of the population, not according to the actual gestational age of any one particular pregnant female of the population. The population is generally managed according to an estimated parturition , which is a period starting on the day on which a first birth is expected and finishing on the last date on which birth could be expected.
The above management practices enable the lower labour and capital input costs that are generally associated with extensive farming systems, including cattle, lamb and goat farming systems. However, one difficulty that arises in these systems is that the animals are born sted into a pasture and for at least the first few days post birth, are left to fend for themselves in that nment. This puts the newborns into a compromised position as revealed by an unacceptable high mortality rate on average of 20% of a newborn population as observed in sheep farming.
There is a need to reduce or otherwise to improve the al rate in a tion of offspring or progeny, particularly offspring or y produced in an ive farming system, in particular offspring or progeny born in a pastoral nment.
There is a need to reduce or otherwise improve the mortality rate in a population of newborn lambs born in pasture, particularly to reduce the mortality rate within 7 days post birth.
Summary of the invention The invention seeks to address one or more of the above mentioned problems or needs and in one embodiment provides a method for conditioning a near term livestock population to minimise the mortality rate of an offspring population derived therefrom including providing caffeine to a pregnant livestock population before, during and/or after an estimated day of commencement of the parturition period for the tion, y conditioning the population to minimise the mortality rate in an offspring [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson ation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson Unmarked set by Sarah.Wilkinson population.
The gestational ages of each pregnancy of the population may be the same or different at the time of provision of caffeine. In one preferred embodiment, the gestational ages of at least one or some of the pregnancies of the tion are different.
Where the caffeine is provided to the nt population before the estimated day of commencement of the parturition period for the population, the population is typically a near term population at the time of provision of caffeine.
Further aspects of the t ion and further embodiments of the aspects described in the preceding paragraphs will become apparent from the following description, given by way of example.
Detailed ption of the embodiments As described , the inventors have shown that caffeine may be provided to a herd, flock or population of near term livestock to significantly decrease the mortality rate of a population of animals produced from the near term livestock. These findings are significant because they arise in circumstances where the gestational date of an individual pregnancy and/or the time to parturition for that pregnancy at the time of provision of caffeine is not known.
Previously, the circumstances where caffeine had been proposed for use was in those animal husbandry practices resembling intensive farming where each administration of caffeine was timed ing to a known actual gestational age (arising from knowledge of fertilisation date) and/or according to a known actual ition date (arising from dge of date of induction of parturition). The invention is a surprising finding to the extent that it demonstrates that caffeine and methylxanthine compounds can be used irrespective of dge of actual gestational age or actual parturition date. It therefore enables the use of caffeine and methylxanthine compounds in livestock animals, ularly those for whom offspring are born in e (i.e. without significant ance) and where neither actual gestational age nor actual parturition date is known.
[Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson Thus in a first embodiment the invention provides a method for conditioning a near term livestock population to minimise the ity rate of an offspring tion derived therefrom including providing caffeine to a nt livestock population before, during and/or after an estimated day of commencement of the parturition period for the population, y conditioning the population to minimise the mortality rate in an ing population derived therefrom.
In a second embodiment the invention provides a method for conditioning a near term livestock population to minimise the mortality rate of an offspring population derived therefrom. The method includes the ing steps: - providing a near term livestock population; - estimating the day of cement of the parturition period for the population; - providing caffeine to the population , during and/or after the estimated day of cement of the parturition period. In this embodiment, the ional ages of each pregnancy may be known or the same e the pregnancies may have arisen from artificial nation. However, because parturition is natural (as compared with induced), the day of commencement of parturition for each pregnancy is not known. In this embodiment, the steps of providing a near term livestock population and ting the day of commencement of the parturition period for the population may be carried out at the same time, and by the same person or group people.
In a third embodiment the invention provides a method for conditioning a near term livestock population to minimise the mortality rate of an offspring population derived therefrom. The method includes the ing steps: - providing a near term livestock population in which at least one pregnancy has a different gestational age from other pregnancies in the population; - estimating the day of commencement of the parturition period for the population; - providing caffeine to the population before, during and/or after the estimated day of commencement of the parturition period. In this embodiment, the gestational ages of each Dgnancy is not known and are unlikely to be the same because the pregnancies [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson arise from joining of males and females and the conception date is generally a function of the g period. Further, because parturition is natural (as compared with induced), the day of commencement of parturition for each pregnancy is not known. In this embodiment, the steps of providing a near term livestock population and estimating the day of commencement of the parturition period for the population may be carried out at the same time, and by the same person or group people ing to the invention, the provision of the caffeine to the near term population, before, during and/or after the estimated day of commencement of the parturition period, treats or conditions the near term population so as to minimise the mortality rate in the offspring tion delivered from the near term tion. "conditioning" with respect to a livestock population generally refers to bringing the s of the population to a desired state in which the mortality rate of the population of offspring delivered from them is minimised or improved. This may generally be achieved by treating or preparing the s ing to the methods of the invention bed herein. "near term" with respect to a livestock population generally refers to a population of animals that are close to natural parturition. A near term ewe would be ered to have pregnancy with a gestational age of about 135 to 150 days, depending on breed.
A near term cow would be considered to have pregnancy with a gestational age of about 260 to 300 days, depending on breed. A near term doe or nanny goat would be considered to have pregnancy with a gestational age of about 135 to 150 days, ing on breed. Generally, in a near term livestock population, the actual parturition date of any one particular ncy of the population is not known. "mortality rate" (also known as "death rate") generally refers to a measure of the number of deaths in a particular population, scaled to the size of that population, per unit of time. For example, the methods of the invention bed herein may reduce the mortality rate of a tion of newborn lambs over a period of 3 days from birth from % to 3%. "offspring population" or "progeny population" is a population of animals that are deliveD from the near term population. ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson Unmarked set by Sarah.Wilkinson "natural parturition" refers to birth without the administration to the pregnant animal of a substance to induce parturition, such as for example oxytocin. l parturition may occur in pasture and may be substantially unassisted by the farmer. "parturition period’ is a time period in which all animals of a given population have undergone natural parturition. Put in other words, it is the time from commencement of natural parturition in a population to the time to completion of natural parturition in the population. A "lambing ’ is an example of a natural parturition period applying to sheep production. In other farming systems, a natural parturition period may be defined as a "calving period’ and "kidding period’ for cattle and goat production respectively. "estimated ition period’ lly refers to a natural parturition period as an estimate because the period is calculated from an assumed time at which fertilisation of all s of a population have occurred, the latter having regard to the duration of time when males are given opportunity to mate with females. In the case of artificially inseminated females, the time of natural parturition is still estimated due to expected ion between duals in the time of parturition. "estimated day of commencement of parturition ’ refers to the first day on which natural parturition of an animal of the population is expected. ated day of completion of parturition period’ refers to the last day on which natural parturition of an animal of the population could be expected. ise" and variations of the term, such as "comprising", "comprises" and "comprised', are not intended to exclude further additives, components, integers or steps.
In the first, second, third, fourth or fifth embodiment of the invention described herein, a methylxanthine compound may be used instead of caffeine. The term "methylxanthine compound" as used herein generally refers to a compound having methylxanthine structure, i.e. having or being derived from the purine base xanthine, and being other than caffeine. Examples of methylxanthine compounds include ine, aminophylline, enprofylline, dyfylline, pentoxifylline, paraxanthine and [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson omine.
In the first, second, third, fourth or fifth ment of the invention, a methyl xanthine compound may or may not be administered together with caffeine.
Preferably caffeine may be administered in the absence of a methylxanthine compound.
In the first, second, third, fourth or fifth embodiment of the ion described herein, it is preferred that the actual gestational age of each pregnancy of the population is not known.
In the first, second, third, fourth or fifth embodiment of the invention described herein, it is preferred that the actual gestational ages of at least some of the pregnancies of the population are different. Preferably, the longest gestational age is about 1 to 56 days, ably about 20 to 50 days longer than the shortest gestational As bed herein, the caffeine or xanthine compound may be provided to the near term population before the estimated day of commencement of the parturition period. In one embodiment the caffeine or methylxanthine compound is provided no more than 14 days, ably no more than 7 days, preferably no more than 1 or 2 days, before the estimated day of commencement of the parturition period.
In one embodiment the caffeine or methylxanthine compound is provided at least 14 days before the estimated day of commencement of the parturition period for the tion. In this embodiment, caffeine is provided before any of the animals in the population undergo natural parturition.
In another embodiment, the caffeine or methylxanthine compound may be provided to the near term population on the estimated day of commencement of the parturition period. In this embodiment, at the time that caffeine or methylxanthine compound is ed, a minor proportion of animals (less than 5%) may have undergone natural parturition.
In another ment, the caffeine or methylxanthine compound may be provicD to the near term population on the 1St day following the estimated day of [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson ation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson commencement of the parturition period. In this ment up to 20% of animals of the population may have undergone natural parturition.
Preferably the caffeine or methylxanthine compound is provided to the near term population on the estimated day of commencement of parturition and also after the estimated day of commencement of parturition. More preferably the caffeine or methylxanthine compound is provided to the near term population 1 or 2 days before the estimated day of commencement of parturition, also on the estimated day of commencement of parturition and also after the estimated day of commencement of parturition.
In one embodiment the caffeine or methylxanthine nd is provided during the estimated parturition period. Preferably the caffeine or methylxanthine compound is provided during the parturition period for a period until at least 80% of the population has undergone natural parturition.
Preferably the ne or xanthine compound is provided to the near term population daily, but could be given every 2", 3rd, 4th 6th or 7th day, or once weekly, , 5th, the latter particularly if the caffeine or methylxanthine compound is provided in a sustained release formulation adapted for the nt timing of administration. As explained further below, caffeine or methylxanthine compound may also be given once only to each pregnant animal of the population, particularly where the estimated parturition period for the tion is relatively short. ably the caffeine or methylxanthine compound is provided to an animal of the population to provide an amount of about 1 to 50 mg, preferably about 20 to 25 mg caffeine (or methylxanthine compound)/ kg animal of the population. ably the caffeine or methylxanthine compound is provided to the population in the form of a product selected from feed, feed ve, lick block, rumen bolus, drench or sustained e device or formulation. In one embodiment the product is adapted to provide caffeine or methylxanthine compound in a dose of less than aeferably the livestock is sheep, cattle or goat, more preferably sheep. Thus in a [Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson fourth embodiment the invention provides a method for ioning a near term ewe population to minimise the mortality rate of an offspring lamb population. The method includes the following steps: - providing a near term ewe population in which at least one pregnancy has a different gestational age from other pregnancies in the population; - estimating the day of commencement of the parturition period for the population; - providing caffeine or methylxanthine compound to the population before, during and/or after the ted day of commencement of the parturition period; thereby conditioning the near term ewe population to minimise the mortality rate in an offspring population.
In a fifth embodiment there is provided a method for ioning a near term ewe tion to minimise the mortality rate of an offspring lamb population. The method includes the following steps: - providing a near term ewe population in which: - each pregnancy arises from artificial insemination; and/or - each pregnancy of the population has ntially the same gestational age, or the same gestational age, as other pregnancies in the population; - estimating the day of commencement of the parturition period for the population; - ing caffeine or methylxanthine compound to the population before, during and/or after the ted day of commencement of the parturition period; thereby conditioning the near term ewe population to minimise the mortality rate in an offspring population.
Preferably the mortality rate of the ing population is reduced by up to 50% of the mortality rate that would otherwise be observed in absence of caffeine administration according to the invention.
[Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson ed set by Wilkinson The invention may in certain embodiments provide for a reduction in the mortality rate of the ing population within 7 days from birth from 10 to 90%, preferably about 50%, or 60%, or 70% or 80%. For e, of the proportion of the offspring population that (without application of the invention herein) die within 7 days from birth, that proportion can be reduced by up to 90%.
In further embodiments there are provided caffeine —containing products or xanthine compound —containing products for consumption by, or for administration to a pregnant population of animals. These products may be formulated according to whether the population is estimated to have a short parturition period or a long parturition period.
A short parturition period generally applies where the animals have been artificially inseminated on the same day. In this embodiment the variance in the date of natural parturition from animal to animal may be less than 7 days, for example 1 to 3 days. In this ment, the product may be ated as a sustained release formulation for once only administration (such as a bolus) to each animal, to provide a given daily dose of caffeine or methylxanthine compound to each animal for each day of the estimated parturition period. Examples of such products include sustained release capsules, pastes etc. The amount of caffeine or methylxanthine compound to be ed in such a formulation and the substrate for controlling release e of the caffeine or methylxanthine compound can be determined by the skilled worker, having regard to the weight of the animal and the period over which release is required. For e, a slow release intra-ruminal device containing 30 grams of caffeine or methylxanthine nd, releasing 20mg/kg/day, would cover a 70kg pregnant ewe for 3 weeks.
A longer parturition period generally applies where the animals have been naturally mated over a g period which may be up to 8 weeks. In this embodiment the variance in the date of natural parturition from animal to animal may be up to 8 weeks. In this embodiment, the product may be formulated as a formulation for consumption by the animal, preferably on a daily basis, to provide the animal with a given daily dose of caffeine or methylxanthine compound to each animal for each day of the entated parturition period. Examples of such products include a lick block, or a [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson feed. Where caffeine or methylxanthine compound is provided in the form of a feed, it may be formulated as a premix formulation which is to be added to feed. Thus in one embodiment there is provided a lick block or feed including ne or methylxanthine compound in an amount enabling a reduced mortality rate of an offspring population derived from a near term population when said block or feed is consumed by said near term population, said block or feed further ing an agent for masking or reducing a ne or methylxanthine compound flavour or texture.
It will be understood that the invention disclosed and d in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text. All of these different combinations constitute s alternative aspects of the invention.
Examples 1. Aim The aim of this study was to evaluate whether feeding caffeine to ewes during the g period would increase lamb al in a flock managed under normal commercial conditions. 2. Materials and s 2.1 Location and design An experiment was conducted with the approval of the Charles Sturt University Animal Ethics committee during 2016 (project A16009) on a commercial property (34°48’S; 147°26’E) 40 km north of Wagga Wagga, NSW. The experiment ed two treatments with three replicates of each. The ne treatment was ewes fed caffeine (1.6 g/ewe per day) at an estimated mean 20 mg/kg liveweight for the first 14 days of the g period, and the control was not supplemented with caffeine for the same time.
The design was a randomised block, using three paddocks as replicate blocks which were subdivided to provide paddocks for each treatment. Replicate 1 grazed 17 ha pdocks ning annual grasses, subclover (Trifolium subterraneum) and [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson ation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson lucerne ago sativa); ate 2 grazed 11 ha ks containing oats, subclover and annual grasses; and replicate 3 grazed 7 ha paddocks containing annual grasses, with a large quantity of dead pasture. 2.2 Management A flock of mature (2.5 to 6.5 years when mated) Merino ewes which had been joined with Merino rams between 14 ry and 26 March was used. Ewes (n=493) which had been determined to be pregnant using trans-abdominal ultrasound, or which by abdominal size were considered likely to be pregnant, were stratified on age, then randomly allocated to replicates and treatments on 6 July, prior to the expected start of Iambing on 14 July. Unfasted Iiveweights and body condition score (scale 0 (emaciated) to 5 (obese)) (Jefferies 1961) of ewes was recorded before ewes were placed in paddocks. Numbered plates were tied around their necks for identification during g.
Lambing commenced the day after caffeine supplementation began, and is defined as day 1 of the Iambing period. During the Iambing period, the ewes were checked once daily each morning. Newborn lambs were identified to their mothers, ear- tagged, and their sex recorded. ance to deliver lambs was provided to ewes if necessary, and recorded. The day dead lambs were found was ed, and these lambs removed from paddocks, weighed, and a post-mortem examination conducted (McFarlane 1965) to determine the cause of death, with lambs which had not breathed fully being classified as ‘born dead’.
When Iambing was complete the sheep were brought to yards (1-3 September, 2016), the ewes were weighed (unfasted) and condition scored, and the weight of lambs recorded. The al of lambs to g age was ined by ce at this time, since all lambs which died earlier may not have been found. 2.3 Feeding An oral supplementation method for caffeine which was potentially suitable for commercial application was used. Caffeine was fed to the supplemented ent for 14 dafifrom 15 July (the day before Iambing commenced) to 28 July, as this was [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson ation] Sarah.Wilkinson MigrationNone set by Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson expected to e supplementation to approximately 80% of ewes on the day before lambing if the ewes were all naturally cycling at the start of g. Caffeine (96.8% i % SD purity assayed by HPLC) was fed at a rate of 1.6 g/ewe per day, based on a rate of 25 mg/kg liveweight (mean 63 kg) on 6 July, with an estimated rate of 20 mg/kg at term.
To facilitate caffeine intake, the ewes were introduced to barley grain from 7 July.
During the period of caffeine supplementation, the ne was mixed into a molasses and water (3:1) solution, and this was mixed with barley grain (320 g/ewe per day) in a cement mixer. The same quantity of barley grain and es solution was mixed and fed to control ewes. The supplement was placed in 12.5 m troughs in each paddock to minimise wastage, and feed refusals were collected daily. Ewes without newborn lambs were encouraged to the feed troughs, if they did not come directly, to minimise the risk of individuals achieving excess intake of either caffeine (toxicity) or barley (acidosis).
Replicate 3 ewes were also given a magnesium supplement for the duration of the lambing period due to the lack of legumes in the pasture. Lick blocks (grass tetany blocks, Olssons) were supplied. 2.4 e and weather measurements The quantity of live pasture available was estimated on 7 July 2016 prior to the lambing period. The visual estimation method of k and Shaw (1975) was used, with 60 visual estimates taken in a diagonal transect across each paddock. The estimates were calibrated t 20 quadrats cut at ground level with electric clippers.
Weather data rature, wind speed) was accessed from the Wagga Wagga airport meteorological station (number 072150) (www.bom.gov.au/climate), approximately 40 km south. Rainfall data was ed manually on the experimental site. 2.5 Statistical analyses Data for ewes which gave birth to triplets was excluded as the numbers were small and ed between ents (11 caffeine, 6 control). Data for two lambs whiclnre born with fatal congenital deformities, one lamb which was born as a twin to [Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson a mummified fetus, and 3 lambs dying due to fox predation were excluded. Lambs for which birth type (single or twin) or date of birth was not determined were also excluded from all analyses. Data for 474 ewes and 701 lambs were available for analysis.
Prior to analysis, data were assessed for assumptions of normal bution and homogeneity using Genstat® 16th edition (VSN International 2013). Data comparing proportions were analysed using generalised linear mixed modelling using a binomial distribution. The proportion lamb mortality was analysed with treatment x lambs born x week of birth as the model fitted and replicate + day of lambing (where day 1 = the day the first lamb was born) as the random effect. The effect of replicate on lamb mortality was assessed using the same fixed effects, and day of lambing as the random effect.
The logit transformation meant standard errors for backtransformed means were not available. Available live pasture, ewe weight and condition score were analysed using linear mixed modelling, with treatment x time, where relevant, as the fixed and replicate as the random effects. Changes in ewe weight and condition score were also ed using linear mixed modelling, with treatment as the fixed and replicate as the random effects. Lamb weight at marking was analysed using linear mixed modelling using birth- rear class (single, twin, twin reared as single) + treatment x period of ment (born during the first two weeks of lambing or later) as the fixed , and replicate as the random effect. A P-value of 0.05 was considered significant. The results are presented as mean : SEM where appropriate. 3. s 3.1 Weather during lambing Cold, windy weather occurred during the first week of lambing. However, conditions declined for the entire second week of lambing, with cooler temperatures, strong winds and rain falling on all days (Table 1), and a sheep graziers alert (indicating high chill conditions and risk to sheep) being issued by the bureau of meteorology. uent weeks remained cool but wind speeds and the occurrence of rainfall declined.
[Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson Table 1. Mean daily weather conditions during weekly lambing s.
Week 1 Week 2 Week 3 Weeks 4 to 6 Dates 16 Jul to 22 23 Jul to 30 Jul to 4 5 Aug to 30 Jul 29 Jul Aug Aug Minimum temperature (°C) 6.5 4.5 4.7 3.8 Maximum temperature (°C) 16.9 11.0 13.1 15.1 No. days rain (No. days > 5) (mm) 1 (1) 7 (4) 1 (1) 1 (1) Wind speed at 9 am (km/hr) 12 14 9 11 Maximum wind gust (km/hr) 25 40 28 27 No. days maximum wind gust >20 km/hr 4 7 3 18 3.2 Availability of e The quantity of live pasture available pre-lambing was similar (P=0.334) in the ne (767 i 189 kg DM/ha) and control (742 i 189 kg DM/ha) plots. 3.3 Ewe weight and condition The mean unfasted live weight of ewes was similar between treatments and the interaction with time was not significant (P=0.053). The ewes were heavier (P<0.001) before lambing (62.7 i 1.30 kg) compared with after the lambing period (60.7 i 1.30).
The mean weight loss over the lambing period was less (P=0.006) in the caffeine (-1.2 i 1.86 kg) than in control ewes (-2.8 11.86 kg).
The mean condition score of ewes was also similar between treatments, but was higher (P<0.001) mbing (3.1 i 0.07) than post-lambing (3.0 i 0.07). The loss in condition score over the lambing period was similar (P=0.628) n treatments (caffeine -0.1 i 0.12; control -0.1 i 0.12). 3.4 Supplement intake All supplement was consumed in replicates 1 and 3 during the period of caffeine supplementation. In replicate 2, control ewes consumed all of the supplement, but ne ewes only consumed approximately half of their feed - 155 i 18 g barley and 0.8 in9 9 caffeine per day. The majority of ewes appeared to consume supplement [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ed set by Sarah.Wilkinson daily in replicates 1 and 3, while in replicate 3 a larger n of ewes may not have consumed the supplement due to the large quantity of live pasture in that replicate reducing the st of ewes in grain. 3.5 Lamb production The ewes commenced lambing on 16 July, with the last lambs born on 25 August (day 41 of g). The percentage of ewes which lambed during week 1, 2, 3 and 4 plus (4 to 6) was 16, 34, 28 and 22%, respectively. The percentage of ewes giving birth to twins was 56% and 54% in the caffeine and control treatments, respectively.
The proportion of lambs dying to day 1, day 3 or marking age was higher (P<0.006) for twins compared with single-born lambs, but the interaction with either treatment or week of birth was not significant. The mean tion mortality to marking was 0.13 and 0.18 (n= 98, 104) for singles, and 0.26 and 0.33 (n=251, 248) for twins in caffeine and control treatments, respectively. The mean proportion mortality to marking for lambs born in week one of lambing was 0.06 and 0.28 (n= 16, 11) for singles, and 0.13 and 0.38 (n=36, 54) for twins in caffeine and control treatments, respectively.
Birth type was therefore included as a covariate with ent x week of birth as the model. The proportion mortality to day 1 for singles (0.08) was lower (P<0.001) than for twins (0.16), and mortality to marking age of singles (0.16) was also lower (P<0.001) than that of twins (0.30). The proportion mortality of lambs to day 1, day 3 or marking age was 15, 17 and 21% lower (P<0.05), respectively, in the caffeine compared with the control ent for lambs born in week 1 of lambing, but not in later weeks, as shown in Table 2.
The response to caffeine supplementation was similar (P=0.976) n replicates, despite replicate 2 ewes consuming only half the caffeine dose. The proportion mortality to marking age for lambs born in week 1 of lambing was 0.06 or 0.23, 0.06 or 0.46, and 0.14 or 0.32 for caffeine and control treatments in replicates 1 to 3, respectively.
The proportion of lambs born alive (breathed fully) during the period of supplfientation (weeks 1 and 2 of lambing) was similar n the caffeine (0.97) [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson and control (0.97) treatments, and was similar to that of lambs born in later weeks (0.99 caffeine, 0.98 control), with no interaction between treatment and period (P=0.425).
Table 2. Proportion ity of lambs to 1 or 3 days after birth ng), and to marking age for lambs born in weeks 1 to 4 plus from the start of lambing.
Number of lambs in brackets.
Week of birth Caffeine Control P value (Trt x week) *Weeks in which caffeine supplement was fed. a,b: Indicates means differ significantly within rows at P=0.05.
Assistance to deliver lambs was required by two ne and three control ewes during the first 2 weeks of lambing, the period of caffeine supplementation. After this period, a further 2 caffeine ewes and 3 control ewes required assistance for delivery.
A total of eight ewes died during the lambing period, comprised of three l ewes and five caffeine ewes. Prior dystocia was considered to have contributed to the deaths of three of the caffeine treatment ewes, but none of these deaths occurred durinDe period of caffeine supplementation. sed intestines caused one death [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson ation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ed set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson in the caffeine treatment, while the cause of the other death was unclear. 3.6 Weight of lambs The live weight of lambs at marking age varied (P<0.001) between birth and rearing classes, and was heaviest in lambs born and reared as singles (14.9 i 0.63 kg), less in lambs born as twins but reared as singles (13.3 i 0.66 kg), and least in lambs born and reared as twins (10.7 i 0.62 kg). The live weight of lambs at marking age was higher (P=0.042) in the caffeine treatment (13.2 i 0.62 kg) compared with control lambs (12.7 i 0.62 kg). There was a trend (P=0.089) for lambs born during the period of supplementation (the first two weeks of lambing) to be 0.8 kg heavier in the caffeine than in the control treatment, but this difference did not occur for lambs born in later weeks. 4. sion This is the first study to show that feeding caffeine to ewes reduced the morality of their lambs. Lamb mortality to marking was reduced from 30% to 9% by feeding caffeine to ewes for lambs born during the first week of lambing. Survival was not improved during the second week of mentation, however, this is considered due to the overwhelming influence of windy, wet, weather throughout that week. Rainfall combined with strong winds of the level experienced can lead to the deaths of 91% of lambs born (Obst and Day 1968) due to lambs being unable to maintain adequate heat production for long periods nder 1962). Such r y kills lambs soon after birth, but lambs up to 2 days of age are also susceptible (Alexander et al. 1980).
Lamb mortality was not reduced in week 3 of lambing after caffeine supplementation had ceased. This result was as expected, based on pharmacokinetics.
Caffeine has a terminal elimination half-life of 8.9 hours in sheep (Danielson and Golsteyn 1996). After a drug is discontinued, concentrations in the body decline exponentially and by 4 half-lives (total 36 hours for caffeine in sheep) concentrations are less than 10% of that achieved during dosing. The lack of any effect of ne on ity rates in week 3 is consistent with caffeine washout resulting in little or no drug remaining (beyond erapeutic residue levels) in the dam and fetus to cause an effectD1 addition, the expected low intake of caffeine in milk by lambs after birth imply [Annotation] Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson ionNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson that caffeine supplementation impacted lamb survival from ewe intake prior to, not after, parturition. Poor weather being the primary cause of lamb mortality and thereby masking any large effect of caffeine on mortality rates in week 3, is ly since the rate of mortality for control lambs in week 3 was lower than that in week 1 or 2, associated with an improvement in r conditions. Therefore, the lack of benefit of caffeine in week 3 suggests that caffeine supplementation was only effective when ewes were fed caffeine on the day of or before parturition. antly, the similarity of mortality in both treatments in week 3 and later also indicates that there was no adverse effect on lamb survival of a 14 day supplementation period during late pregnancy. A single dose may give a different response than repeated dosing. The similarity of marking weights of surviving lambs, and the lack of impact on ewe weight and ion also indicate the safety of at least a 14 day period of supplementation. Further studies are needed over longer periods, if it is assumed that feeding throughout the whole lambing period may occur in order to ment all ewes on the day of g.
The cost-effectiveness of a longer period of supplementation will depend on the value of onal lambs, level of increase in survival, cost of feed carrier, and cost of caffeine. Caffeine is inexpensive in commercial bulk quantities, and the feeding technique would be highly profitable at current high sheep values if the same level of increase in survival as obtained in week one were obtained over 2 or 3 weeks of supplementation. Molasses was ed in order to enhance palatability, as caffeine is bitter to the taste. Elimination or reduction of this bitterness, by chemical modification or some other means, would enhance palatability and reduce overall feed costs.
The mechanism by which lamb mortality was reduced was not ed in this study. However, since the number of lambs born alive did not differ, it is clear that at least most of the benefit was through sing survival in the first day after birth. This timing is consistent with an improvement in either response to hypoxia, or some other short-term metabolic or oural adaptation to the terine environment.
While the method of feeding caffeine used in this study is commercially feasible, more user-friendly methods are desirable which are less labour-intensive and remove [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson the risk of pure caffeine dust being d. Feeding methods which avoid the ial mismothering of lambs at feeding time would also make the practice more likely to be d by producers.
. Conclusion The mortality of lambs to marking age was reduced from 30% to 9% by oral supplementation with caffeine to ewes during the lambing period, and the benefit was evident in both twin and single-born lambs. Supplementation was not effective in high chill weather conditions which caused large increases in mortality, and there was no benefit once supplementation ceased. The technique of caffeine mentation used in this study is le for cial sheep enterprises and has the ial to substantially improve lamb survival when used in appropriate conditions. While caffeine mentation is low cost, producers need to consider the value of extra lambs, and feed costs to evaluate whether caffeine supplementation may be cost-effective. 6. References Alexander G (1962) Temperature regulation in the new-born lamb. IV. The effect of wind and evaporation of water from the coat on lic rate and body temperature.
Australian Journal of Agricultural Research 13, 82-99.
Alexander G, Lynch JJ, Mottershead BE, Donnelly JB (1980) Reduction in lamb mortality by means of grass wind-breaks: results of a five-year study. Proceedings of the Australian Society of Animal Production 13, 1. son TJ, Golsteyn LR (1996) Systemic clearance and demethylation of caffeine in sheep and cattle. Drug Metabolism and Disposition 24, 1058-1061.
Haydock KP, Shaw NH (1975) The comparative yield method for estimating dry matter yield of pasture. Australian Journal of mental Agriculture and Animal Husbandry 15, 663-670.
Jefferies BC (1961) Body condition scoring and its use in management.
Tasmanian Journal of Agriculture 32, 19-21. ation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson None set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson MigrationNone set by Sarah.Wilkinson [Annotation] Sarah.Wilkinson Unmarked set by Sarah.Wilkinson McFarlane D (1965) Perinatal lamb losses 1. An autopsy method for the investigation of perinatal losses. New Zealand nary Journal 13, 116-135.
Nowland TL, Dearlove B, Kind K, van Wettere W (2016) Caffeine increases an neonatal piglets body temperature and negatively effects al at 24 hours of age. In 'Australian y of Animal Production'. Adelaide. (Australian y of Animal tion).
Obst JM, Day HR (1968) The effect of inclement weather on mortality of Merino and Corriedale lambs on Kangaroo Island. Proceedings of the Australian Society of Animal Production 7, 239-242.
Orozco-Gregorio H, Bonilla-Jaime H, Mota-Rojas D, Trujillo-Ortega ME, Roldan- Santiago P, Martinez-Rodriguez R, Borderas-Tordesillas F, Flores-Peinado S, Mora- Medina P, Ramirez-Necoechea R (2012) Effects of subcutaneous administration of caffeine on the physiometabolic profile of low-birthweight neonate piglets. Animal Production Science 52, 981 -990.
Orozco-Gregorio H, ojas D, a-Jaime H, Trujillo-Ortega ME, Becerril- Herrera M, Hernandez-Gonzalez R, Villanueva-Garcia D (2010) Effects of administration of caffeine on metabolic variables in neonatal pigs with peripartum asphyxia. American Journal of Veterinary Research 71, 1214-1219.
Superchi P, Mazzoni C, Zanardelli P, Piancastelli C, i EM, Beretti V, Sabbioni A (2013) Effects of oral caffeine administration to sows with induced parturition on a in s. Livestock Science 157, 372-377.
Tomimatsu T. et al, 2007 Maternal caffeine administration and cerebral oxygenation in near-term fetal sheep. Reproductive Sciences 41 :588-594.
VSN International (2013) Genstat Reference Manual se 16). (VSN International: Hemel Hempstead, UK). 1004094086

Claims (45)

1. A method for conditioning a near term livestock population to se the mortality rate of an offspring population derived rom; the method including providing caffeine and/or a methylxanthine compound to a 5 pregnant livestock population before, during and/or after an estimated day of commencement of the parturition period for the population; thereby conditioning the population to minimise the mortality rate in an offspring population derived therefrom; wherein the amount of caffeine and/or a xanthine compound provided to at 10 least some individuals of the population is not measured.
2. The method of claim 1, wherein the gestational ages of at least one or some of the pregnancies of the pregnant livestock population are not known.
3. The method of claim 1 or 2, wherein the pregnant livestock tion is not located inside housing.
4. The method of any one of the preceding claims, 20 wherein the pregnant livestock population is sheep, cattle or goats.
5. The method of any one of the preceding claims, wherein the ne and/or the methylxanthine compound is provided to the pregnant population for a period until at least 80% of the population has undergone 1004094086 natural parturition.
6. The method of any one of the preceding claims, wherein the reduction in the mortality rate of the ing population within 7 days 5 from birth is from 10% to 90%.
7. The method of any one of the preceding claims, wherein the caffeine and/or methylxanthine compound is provided to the nt population in the form of one or more of a feed, feed additive, lick block, rumen bolus, drench, sustained release device 10 and ned release formulation.
8. The method of any one of the preceding claims, wherein the caffeine and/or xanthine compound is provided to at least some individuals of the pregnant population in the form of a rumen bolus.
9. The method of any one of claims 1-7, wherein the caffeine and/or methylxanthine compound is provided to the pregnant population in the form of one or more of a feed, feed additive, lick block, drench, and sustained release formulation. 20
10. The method of any one of the preceding claims, wherein the method es providing ne and/or a methylxanthine compound to a pregnant livestock population before an estimated day of commencement of the parturition period for the population. 25
11. The method of any one of the preceding claims, wherein the method includes providing caffeine and/or a methylxanthine compound to a pregnant livestock 1004094086 population during an ted day of commencement of the parturition period for the population.
12. The method of any one of the preceding claims, wherein the method 5 includes ing caffeine and/or a xanthine compound to a pregnant livestock population after an estimated day of commencement of the ition period for the tion.
13. The method of any one of the preceding claims, wherein the caffeine and/or 10 methylxanthine compound is provided to the pregnant population no more than 1 or 2 days before the estimated day of commencement of the parturition period for the population.
14. The method of any one of the preceding claims, wherein the caffeine and/or
15.methylxanthine compound is provided to the pregnant population 1 or 2 days before the estimated day of cement of parturition, also on the estimated day of commencement of parturition and also after the estimated day of commencement of parturition. 20 15. The method of any one of the preceding claims, wherein the ional ages of each individual pregnancy of the pregnant population is not known.
16. The method of any one of the preceding claims, wherein at least one pregnancy of the pregnant population has a different gestational age from other 25 pregnancies of the population.
17. The method of any one of the preceding claims, wherein at least one pregnancy of the pregnant population differs in gestational age from at least one other pregnancy of the tion by 1 to 56 days. 5
18. The method of any one of the preceding claims, wherein at least one pregnancy of the pregnant population differs in gestational age from at least one other pregnancy of the population by 20 to 50 days.
19. The method of any one of the preceding claims, wherein the caffeine and/or 10 methylxanthine compound is provided to the pregnant population for at least 1 day after the ted day of cement of the parturition period for the population.
20. The method of any one of the ing claims, wherein the caffeine and/or methylxanthine compound is provided to the pregnant population during the estimated 15 ition period.
21. The method of any one of the preceding claims, wherein during the administration period the caffeine and/or methylxanthine compound is provided to the pregnant population daily, or every 2nd, 3rd, 4th, 5th, 6th or 7th day, or once weekly.
22. The method of any one of the preceding claims, wherein the caffeine and/or methylxanthine compound is provided to the pregnant population once only to each individual pregnant animal of the population. 25
23. The method of any one of the preceding claims, wherein the livestock is sheep. 1004094086
24. The method of any one of the preceding claims, wherein the caffeine and/or methylxanthine compound is provided to an animal of the pregnant population to provide an amount of 1 to 50 mg/kg animal of the population.
25. The method of any one of the preceding claims, wherein the caffeine and/or methylxanthine nd is provided to an animal of the pregnant population to provide an amount of 20 to 25 mg/kg animal of the population. 10
26. The method of any one of the preceding claims, n caffeine is provided to the pregnant population.
27. The method of any one of claims 1-25, n a methylxanthine compound is provided to the nt population.
28. The method of any one of the preceding claims, wherein the reduction in the mortality rate of the offspring population within 7 days from birth is from 50% to 90%.
29. The method of any one of claims 1-27, wherein the reduction in the ity 20 rate of the offspring population within 7 days from birth is from 10% to 70%.
30. The method of any one of claims 1-27 or 29, wherein the reduction in the mortality rate of the offspring population within 7 days from birth is from 50% to 70%. 1004094086
31. The method of any one of the preceding claims, wherein the pregnant tion is located in one or more paddocks.
32. The method of any one of the preceding claims, wherein the pregnant 5 population is not closely supervised.
33. The method of any one of the preceding claims, wherein at least one or some of the pregnancies of the pregnant population have arisen from artificial insemination.
34. The method of any one of the preceding claims, wherein each of the individual pregnancies of the pregnant population have arisen from artificial insemination.
35. The method of any one of claims 1-32, wherein each of the dual 15 pregnancies of the pregnant population have arisen from natural mating.
36. The method of any one of claims 1-33 or 35, n the day of commencement of ition for each of the individual pregnancies of the pregnant population is not known.
37. The method of any one of the preceding claims, wherein at least one or some of the foetuses of the pregnant population is exposed to caffeine during and in the hours immediately after parturition. 25
38. The method of any one of the preceding , wherein the method 1004094086 ts or reduces hypoxia in the offspring population during and immediately subsequent to parturition.
39. The method of any one of the preceding , wherein the amount of 5 caffeine and/or a methylxanthine compound provided to all individuals of the populations is not measured.
40. The method of any one of the preceding claims, wherein the caffeine and/or methylxanthine compound is provided to the pregnant population for at least 14 days.
41. The method of any one of the preceding claims, wherein the expected parturition period is less than 7 days.
42. The method of any one claims 1-40, n the expected parturition period 15 is 8 weeks or less.
43. The method of any one of the preceding claims, wherein the ne and/or methylxanthine compound is provided to an animal of the pregnant population to provide an amount of 20 mg/kg animal of the population.
44. The method of any one of the ing claims, wherein the mortality rate of the offspring population is reduced by up to 50% of the mortality rate that would otherwise be observed in the absence of the specified caffeine and/or methylxanthine compound administration. 1004094086
45. The method of any one of the preceding claims, wherein the ock is sheep and the reduction in the mortality rate of the offspring population within 3 days from birth is from 3% to 20%.
NZ753824A 2016-11-09 2017-11-09 Livestock supplement and use thereof NZ753824A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2016904569A AU2016904569A0 (en) 2016-11-09 Livestock supplement and use thereof
PCT/AU2017/051228 WO2018085886A1 (en) 2016-11-09 2017-11-09 Livestock supplement and use thereof

Publications (1)

Publication Number Publication Date
NZ753824A true NZ753824A (en) 2022-08-26

Family

ID=62109030

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ753824A NZ753824A (en) 2016-11-09 2017-11-09 Livestock supplement and use thereof

Country Status (3)

Country Link
AU (2) AU2017358060B2 (en)
NZ (1) NZ753824A (en)
WO (1) WO2018085886A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966927A (en) * 1974-12-16 1976-06-29 Binninger Clarence E Methods for inducing parturition in cattle with certain intravenously-injected synthetic glucocorticoids
PT86919B (en) * 1987-03-10 1992-05-29 Beecham Group Plc METHOD FOR THE USE OF MORFOLIN DERIVATIVES IN MEDICINE AND AGRICULTURE AND THEIR PREPARATION PROCESS
JP3907964B2 (en) * 2001-04-25 2007-04-18 株式会社 伊藤園 Mental fatigue reducing composition, concentration maintenance enhancing composition and mental vitality maintenance enhancing composition
BRPI0611301A2 (en) * 2005-05-02 2010-08-31 Mileutis Ltd pharmaceutical compositions comprising casein-derived peptides and methods of using them
AR057755A1 (en) * 2005-08-15 2007-12-19 Provimi Holding B V METHOD FOR TREATMENT OF PLACENTARY MAMMALS PARTNERS IN ORDER TO REDUCE MATERNAL AND / OR UTERINE EXHAUSTION
IN2015DN03188A (en) * 2012-10-08 2015-10-02 Rivalea Australia Pty Ltd

Also Published As

Publication number Publication date
WO2018085886A1 (en) 2018-05-17
AU2023204397A1 (en) 2023-08-03
AU2017358060A1 (en) 2019-06-13
AU2017358060B2 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
Kenyon et al. Breeding ewe lambs successfully to improve lifetime performance
Devillers et al. Influence of colostrum intake on piglet survival and immunity
Monem et al. Effect of different dietary levels of inorganic zinc oxide on ovarian activities, reproductive performance of Egyptian Baladi ewes and growth of their lambs.
JP5395438B2 (en) Use of 25-hydroxyvitamin D3 to improve animal vitality
Robertson et al. Reproductive performance in goats and causes of perinatal mortality: A review
Qureshi et al. Effect of vitamin E-selenium administration during late gestation on productive and reproductive performance in dairy buffaloes and on growth performance of their calves.
Robertson et al. Caffeine supplementation of ewes during lambing may increase lamb survival
Vieira-Neto et al. Days in the prepartum group are associated with subsequent performance in Holstein cows
Astiz et al. Maternal aging affects life performance of progeny in a Holstein dairy cow model
Almond Factors affecting the reproductive performance of the weaned sow
Mommens et al. Some quantitative indicators of postovulatory aging and its effect on larval and juvenile development of Atlantic salmon (Salmo salar)
JP3721439B2 (en) High lactation breeding methods using rumen-protected amino acids
AU2017358060B2 (en) Livestock supplement and use thereof
Orr et al. Factors affecting pregnancy rate in Holstein‐Friesian cattle mated during summer in a tropical upland environment
Ahmadzadeh et al. Effect of late gestational feed restriction and glucogenic precursor on behaviour and performance of Ghezel ewes and their offspring
NZ791209A (en) Livestock supplement and use thereof
NZ794245A (en) Livestock supplement and use thereof
NZ794246A (en) Livestock supplement and use thereof
NZ794244A (en) Livestock supplement and use thereof
NZ794242A (en) Livestock supplement and use thereof
Celi et al. Pregnancy, lambing and survival
Apgar et al. Dietary zinc deprivation affects parturition and outcome of pregnancy in the ewe
Ponce-Covarrubias et al. Reproductive response of synchronized and extensively grazed Blackbelly ewes during the summer in the tropics
Friend et al. Managing metabolic disorders in pregnant ewes to improve ewe and lamb survival
Benia et al. Study of CIDR for the reproduction control of Rembi ewes during low sexual activity period in Western Algeria highlands

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 09 NOV 2024 BY FPA PATENT ATTORNEYS PTY LTD

Effective date: 20230809