NZ720422B - Process and compositions for achieving mammalian energy balance - Google Patents

Process and compositions for achieving mammalian energy balance

Info

Publication number
NZ720422B
NZ720422B NZ720422A NZ72042215A NZ720422B NZ 720422 B NZ720422 B NZ 720422B NZ 720422 A NZ720422 A NZ 720422A NZ 72042215 A NZ72042215 A NZ 72042215A NZ 720422 B NZ720422 B NZ 720422B
Authority
NZ
New Zealand
Prior art keywords
adipocytes
forskolin
cells
wells
hours
Prior art date
Application number
NZ720422A
Other versions
NZ720422A (en
Inventor
Sarang Bani
Muhammed Majeed
Kalyanam Nagabhushanam
Anjali Pandey
Original Assignee
Sarang Bani
Muhammed Majeed
Kalyanam Nagabhushanam
Anjali Pandey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/936,830 external-priority patent/US10085963B2/en
Application filed by Sarang Bani, Muhammed Majeed, Kalyanam Nagabhushanam, Anjali Pandey filed Critical Sarang Bani
Publication of NZ720422A publication Critical patent/NZ720422A/en
Publication of NZ720422B publication Critical patent/NZ720422B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/515Angiogenesic factors; Angiogenin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types

Abstract

Disclosed is a method of achieving optimal mammalian energy balance using forskolin on a particular physiological and developmental stage of the mammalian cellular system.

Description

PROCESS AND COMPOSITIONS FOR ACHIEVING MAMMALIAN ENERGY BALANCE CROSS-REFERENCE TO RELATED PATENT APPLICATIONS This application is the PCT filing drawing priority from U.S. non-provisional patent application 14936830 filed on November 10, 2015.
BACKGROUND OF THE INVENTION [Para 001] Field of the invention: The disclosure in general relates to dietary supplements. More specifically, the present disclosure relates to a method of achieving optimal mammalian energy balance using forskolin on a particular physiological and developmental stage of the mammalian cellular system.
[Para 002] Description of Prior Art: Disruption of mammalian energy balance has been implicated as the cause for worldwide epidemics of metabolic diseases that calls for modifications in life style and food habits and also therapeutic intervention. Current diet regimens, exercise, health care awareness or drug strategies however are often unable to tackle homeostasis of energy in the mammalian body where optimally, a perfect balance between energy accumulation and energy expenditure is sought (Elattar.S and Satyanarayana, “Can Brown Fat Win the Battle against White Fat?”, J Cell Physiol. 2015 Mar 11, Zafrir B, “Brown adipose tissue: research milestones of a potential player in human energy balance and obesity”, Horm Metab Res. 2013 Oct;45(11):774-85). An impetus to the understanding of critical biological processes controlling brown adipocyte activity and differentiation has been in vogue in view of developing brown adipose tissue (BAT) focussed therapies for energy homeostasis (Giralt M, “White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013 Sep; 154(9):2992-3000) where undue energy abundance is effectively countered by optimal energy expenditure. The present disclosure discusses the potential of forskolin to mediate mammalian energy balance. Accordingly, it is the principle objective of the present invention to disclose, A. The ability of forskolin to prevent the formation of lipids within adult adipocytes during the differentiation of pre-adipocytes to adipocytes wherein the adipogenesis (fat deposition) inhibition is remarkably enhanced when forskolin is administered (brought into contact) to pre-adipocytes rather than to mature adipocytes; B. The ability of forskolin to enhance the expression of secreted factors that selectively recruit brown adipose tissue (BAT) like bone morphogenetic protein-7 (BMP-7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor (VEGF-A) and mitochondrial uncoupling protein (UCP1) wherein said enhanced expression of secreted factors that selectively recruit brown adipose tissue (BAT) is remarkably more enhanced when forskolin is administered (brought into contact) to pre-adipocytes than to mature adipocytes. In other words, forskolin treated pre-adipocytes are selectively able to differentiate into BAT.
[Para 003] The present invention fulfils the aforesaid objectives and provides further related advantages.
SUMMARY OF THE INVENTION [Para 004] In a first embodiment the present invention provides a method comparatively evaluating adipogenesis inhibition potential, comprising, adding forskolin to pre-adipocytes before differentiation by the steps of: a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml respectively in different wells of the pre-seeded microplates of step a) consisting of undifferentiated pre-adipocytes and thereafter incubating the pre-adipocytes for 72 hours in a medium added to the wells of the microplates to form wells treated with forskolin; c) Incubating the cells treated with forskolin in step b) for 48 hours in a humidified atmosphere at 37 C with 5% CO and 95% air; d) Fixing the cells of step c) by adding 100 μl of 10% formalin and staining using the Oil Red O technique; e) Reading the optical density of cells of step d) at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50); and f) Calculating the percentage inhibition of adipogenesis in the cells of steps d) and e) using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells; adding forskolin to mature adipocytes by the steps of: g) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; h) After 72 hours of incubation of the pre-adipocytes in a medium added to the wells of the microplates, adding graded concentrations of forskolin of 50µg/ml and 100µg/ml to the wells of step g); i) Incubating the cells treated with forskolin in step h) for 48 hours in a humidified atmosphere C with 5% CO and 95% air; at 37 2 j) Fixing the cells of step i) by adding 100 μl of 10% formalin and staining using the Oil Red O technique; k) Reading the optical density of cells of step j) at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50) values; and l) Calculating the percentage inhibition of adipogenesis in the cells of steps j) and k) using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells; and m) Comparing the percentage inhibition of adipogenesis in the cells of steps f) and l).
[Para 004a] In a second embodiment the present invention provides a method of promoting the expression of secreted factors that selectively recruit brown adipose tissue (BAT) said method comprising: a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml respectively in different wells of the pre-seeded microplates of step a) consisting of undifferentiated pre-adipocytes and therefore incubating the pre-adipocytes for 72 hours in a medium added to the wells of the microplates to form cells treated with forskolin; c) Incubating the cells treated with forskolin in step b) for 48 hours in a humidified atmosphere at 37 C with 5% CO and 95% air; and d) Quantitatively determining by immunoassay techniques the expressions of bone morphogenic protein-7 (BMP-7), bone morphogenic protein-4 (BMP-4), and vascular epithelial growth factor-A (VEGF-A) in the cell supernatant; wherein the secreted factors that selectively recruit brown adipose tissue (BAT) comprise one or more members selected from the group consisting of BMP-7, BMP-4 and VEGF-A, and the expression of the secreted factors that selectively recruit brown adipose tissue (BAT) is enhanced as measured when forskolin is administered to pre-adipocytes compared to mature adipocytes.
[Para 004b] Also described is, (A) The ability of forskolin to prevent the formation of lipids within adult adipocytes during the the differentiation of pre-adipocytes to adipocytes wherein the adipogenesis (fat deposition) inhibition is remarkably more enhanced when forskolin is administered (brought into contact) to pre-adipocytes than to mature adipocytes; (B) The ability of forskolin to enhance the expression of secreted factors that selectively recruit brown adipose tissue (BAT) like bone morphogenetic protein-7 (BMP-7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1) wherein said enhanced expression of secreted factors that selectively recruit brown adipose tissue (BAT) is remarkably enhanced when forskolin is administered (brought into contact) to pre-adipocytes than to mature adipocytes. In other words, forskolin treated pre-adipocytes are selectively able to differentiate into BAT.
[Para 005] The advantages of the present invention includes the demonstration of a method to achieve mammalian energy balance using forskolin on a particular physiological and developmental stage of the mammalian cellular system wherein forskolin evinces increased potential to (i) inhibit adipogenesis; and (ii) enhance the expression of secreted factors that selectively recruit brown adipose tissue (BAT) like bone morphogenetic protein-7 (BMP-7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1) when brought into contact or administered to pre-adipocytes rather than to mature adipocytes.
[Para 006] Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying images, which illustrate, by way of example, the principle of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS [Para 007] Fig.1 shows the graphical representation of BMP-7 in cell culture supernatant of cultured 3T3-L1 adipocytes when forskolin (50µg/ml and 100µg/ml) are respectively added before the differentiation of pre-adipocytes to adipocytes and after the differentiation of pre-adipocytes to adipocytes.
[Para 008] Fig.2 shows the graphical representation of BMP-4 in cell culture supernatant of cultured 3T3-L1 adipocytes when forskolin (50µg/ml and 100µg/ml) are respectively added before the differentiation of pre-adipocytes to adipocytes and after the differentiation of pre-adipocytes to adipocytes.
[Para 009] Fig.3 shows the graphical representation of VEGF-A in cell culture supernatant of cultured 3T3-L1 adipocytes when forskolin (50µg/ml and 100µg/ml) are respectively added before the differentiation of pre-adipocytes to adipocytes and after the differentiation of pre-adipocytes to adipocytes.
[Para 0010] Fig.4 shows the graphical representation of UCP1 in cell culture supernatant of cultured 3T3-L1 adipocytes when forskolin (50µg/ml and 100µg/ml) are respectively added before the differentiation of pre-adipocytes to adipocytes and after the differentiation of pre-adipocytes to adipocytes.
DETAILED DESCRIPTION OF THE MOST PREFERRED EMBODIMENTS (Figs. 1, 2, 3 and 4) [Para 0011] In the most preferred embodiment, the present disclosure relates to a method of achieving mammalian energy balance using forskolin in a process of adipogenesis inhibition wherein forskolin is added seperately to pre-adipocytes before differentiation and also to mature adipocytes to comparatively evaluate adipogenesis inhibition potential of, said process comprising steps of: a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml in the pre-seeded microplates of step a consisting of undifferentiated pre-adipocytes; c) Adding 200 μl of freshly prepared Adipogenesis induction medium to the wells; d) Adding 200 μl of freshly prepared Adipogenesis progression medium after 72 hours of incubation with the Adipogenesis induction medium in step c; e) Incubating the cells treated with forskolin (step b), adipogenesis induction medium (step c) and adipogenesis progression medium (step d) for 48 hours in a humidified atmosphere (37 deg. C.) of 5% CO2 and 95% air; f) Fixing the cells of step e by adding 100 μl of 10% formalin and staining using the Oil Red O technique; g) Reading the optical density of cells of step f at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50) values using the graph pad prism software; h) Calculating the percentage inhibition of adipogenesis in the cells of steps f and g using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells. i) Adding 200 μl of freshly prepared Adipogenesis induction medium to the wells of step a. j) Adding 200 μl of freshly prepared Adipogenesis progression medium comprising graded concentrations of forskolin(50µg/ml and 100µg/ml respectively) to the wells of step i after 72 hours of incubation with the Adipogenesis induction medium; k) Incubating the cells treated with forskolin (step j), adipogenesis induction medium (step i) and adipogenesis progression medium (step j) for 48 hours in a humidified atmosphere (37 deg.
C.) of 5% CO2 and 95% air; l) Fixing the cells of step l by adding 100 μl of 10% formalin and staining using the Oil Red O technique; m) Reading the optical density of cells of step m at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50) values using the graph pad prism software; n) Calculating the percentage inhibition of adipogenesis in the cells of steps m and n using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells; and o) Comparing percentage inhibition of adipogenesis in the cells of steps h and o.
[Para 0012] In another most preferred embodiment, the present disclosure also relates to a method of mammalian energy balance using forskolin in a process of promoting the expression of secreted factors that selectively recruit brown adipose tissue (BAT) like bone morphogenetic protein-7 (BMP- 7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1) wherein said expression of secreted factors that selectively recruit brown adipose tissue (BAT) is remarkably enhanced as measured when forskolin is administered (brought into contact) to pre-adipocytes than to mature adipocytes, said method incorporating the steps of , a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml in the pre-seeded microplates of step a consisting of undifferentiated pre-adipocytes; c) Adding 200 μl of freshly prepared Adipogenesis induction medium to the wells; d) Adding 200 μl of freshly prepared Adipogenesis progression medium after 72 hours of incubation with the Adipogenesis induction medium in step c; e) Incubating the cells treated with forskolin (step b), adipogenesis induction medium (step c) and adipogenesis progression medium (step d) for 48 hours in a humidified atmosphere (37 deg. C.) of 5% CO2 and 95% air; f) Quantitatively determining by appropriate immunoassay techniques the expressions of BMP- 7, BMP-4, VEGF-A and UCP-1 in the cell supernatant; g) Adding 200 μl of freshly prepared Adipogenesis induction medium to the wells of step a; h) Adding 200 μl of freshly prepared Adipogenesis progression medium comprising graded concentrations of forskolin(50µg/ml and 100µg/ml respectively) to the wells of step g after 72 hours of incubation with the Adipogenesis induction medium; i) Incubating the cells treated with forskolin (step h), adipogenesis induction medium (step g) and adipogenesis progression medium (step h) for 48 hours in a humidified atmosphere (37 deg. C.) of 5% CO2 and 95% air; and j) Quantitatively determining by appropriate immunoassay techniques the expressions of BMP- 7, BMP-4, VEGF-A and UCP-1 in the cell supernatant.
[Para 0013] In yet another most preferred embodiment, the present disclosure relates to a method of achieving energy balance in mammalian adipose cellular systems, said method comprising step of administering forskolin in effective amounts targeted towards mammalian pre-adipocytes to achieve effects of (a) increased inhibition of adipogenesis and (b) increased expression of secretory factors that function individually or in combination to specifically recruit brown adipocytes or brown like (beige or brite) adipocytes. In specific embodiments, the secretory factors are selected from the group consisting of bone morphogenetic protein-7 (BMP-7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1).
[Para 0014] In yet another most preferred embodiment, the disclosure pertains to forskolin for use in therapy for obesity wherein said therapy involves achieving energy balance in mammalian adipocytes by administering forskolin in effective amounts targeted towards mammalian pre-adipocytes to bring about the effects of (a) increased inhibition of adipogenesis and (b) increased expression of secretory factors that function individually or in combination to specifically recruit brown adipocytes or brown like (beige or brite) adipocytes. In specific embodiments, the secretory factors are selected from the group consisting of bone morphogenetic protein-7 (BMP-7), bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1) [Para 0015] Also described is a method to induce the brown like phenotype (beige or brite adipocytes) in white adipocyte depots in mammals said method comprising step of administering effective amount of forskolin to obese mammals with depots of fully differentiated white adipocytes to achieve effect of increase in secretory factors that bring about the development of brown like phenotype (beige or brown adipocytes) within white adipocyte depots. In specific embodiment, the secretory factors are vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1). Also described is Forskolin for use in the therapy of obesity characterised in that forskolin is administered in effective amounts targeting mammalian white adipocyte depots to achieve effect of increased expression of secretory factors vascular endothelial growth factor-A (VEGF-A) and mitochondrial uncoupling protein (UCP1) that cause the development of brown like phenotype (beige or brite adipocytes) in white adipocyte depots in mammals.
[Para 0016] Also described is a method of achieving energy balance in mammalian adipose cellular systems, said method comprising step of administering forskolin in effective amounts targeted towards mammalian pre-adipocytes to bring about of the effect of enhanced expression of mitochondria uncoupling protein 1 (UCP-1) to result in increased mitochondrial thermiogenesis in differentiated brown adipocytes and brown like (beige or brite) adipocytes.
[Para 0017] Also described is forskolin for use in therapy for obesity wherein said therapy involves achieving energy balance in mammalian adipocytes by administering forskolin in effective amounts targeted towards mammalian pre-adipocytes to bring about the effects of enhanced expression of secretory factor mitochondria uncoupling protein 1 (UCP-1) to result in increased mitochondrial thermiogenesis in differentiated brown adipocytes and brown like (beige or brite) adipocytes.
ILLUSTRATIVE EXAMPLES [Para 0018] As illustrative examples of the most preferred embodiments outlined herein above in paragraphs [0011]-[0017], the following results are presented to show that forskolin when administered in increasing concentration is more effective in (a) preventing adipogenesis and (b) also in promoting the expression of secreted factors like BMP-7, BMP-4, VEGF-A and UCP-1 that recruit the brown adipocytes thereby creating energy balance in mammalian cell systems, when administered at the pre-adipocyte stage than once the transformation of pre-adipocytes to adipocytes has occurred.
RESULT 1-Prevention of adipogenesis Table A CONCENTRATION (µg/ml) % inhibition of adipogenesis % inhibition of adipogenesis when forskolin is added at the when forskolin is added after pre-adipocyte stage (before differentiation of pre-adipocytes differentiation into the to the adipocyte stage adipocyte stage) 6.25 10.2 1.2 12.50 12.8 6.8 19.7 10.6 50 35.5 12.9 100 41.8 18.5 [Para 0019] Table A shows that at each tested concentration of forskolin, the administration of forskolin at the mammalian pre-adipocyte stage has a profound effect on preventing adipogenesis that when administered after the differentiation of pre-adipocytes to adipocytes. Double or more than double the % inhibition of adipogenesis was observed when forskolin was administered at the pre- adipocyte stage as compared to administration at the adipocyte stage.
RESULT 2-Expression of secretory proteins that recruit brown adipocytes A. BMP-7 [Para 0020] The biological role of BMP-7 as a recruiter of the brown adipocyte lineage has been discussed in the following scientific literature. 1. Mathew Harms and Patrick Seale, “Brown and beige fat: development, function and therapeutic potential”, Nature Medicine, Volume 19, Number 10, October 2013, pages 1252-1263; 2. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity at Sub thermoneutrality .Mariëtte R. Boon Published: September 16, 2013; PLOS One. 3. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Tseng et al. Nature. 2008 Aug 21; 454(7207):1000-4. doi: .1038/nature07221. 4. Transcriptional Control of Brown Fat Development; Kajimure et al. Cell Metabolism; Volume 11, Issue 4, 7 April 2010, Pages 257–262.
[Para 0021] Immunoassays (Enzyme linked immunosorbent assay) for the quantification of BMP-7 in the cell culture supernatant when forskolin (50µg/ml and 100 µg/ml) was administered at the pre- adipocyte stage and once the differentiation to adipocytes occurred indicated that forskolin profoundly increased BMP-7 expression in at the pre-adipocyte stage than at the adipocyte stage.
[Para 0022] Thus, in correlation with the literature cited above, it may be deduced that forskolin evinces greater potential for brown fat conversion of pre-adipocytes (Fig.1) rather than fully differentiated white adipocytes.The example exemplified by Fig.1 provides substantiation to the disclosed most preferred embodiment that forskolin directs the selective differentiation of mammalian pre-adipocytes to brown adipocytes by allowing the expression of secretory factor BMP-7.
B. BMP-4 [Para 0023] Acting along with BMP-7, BMP-4 is a new adipokine and acts on adipogenesis and white to brown transition (Qian S W et al Proc Natl Acad Sci USA 110: E798-807, 2013). Immunoassays (Enzyme linked immunosorbent assay) for the quantification of BMP-4 in the cell culture supernatant when forskolin (50µg/ml and 100µg/ml) was administered at the pre-adipocyte stage and once the differentiation to adipocytes occurred indicated that forskolin profoundly increased BMP-4 expression in at the pre-adipocyte stage than at the adipocyte stage.
[Para 0024] Thus, in correlation with the literature cited above, it may be deduced that forskolin evinces greater potential for conversion of white pre-adipocytes to the brite/beige adipocyte (brown adipocyte like) (Fig.2) by the combined increased expressions and biological actions of secretory factors BMP-4 and BMP-7. The example exemplified by Fig.2 provides substantiation to the most preferred embodiment that forskolin brings about the transformation of white pre-adipocytes to brite or beige adipocytes.
C. VEGF-A [Para 0025] VEGF-A over expression leads to an increase in brown adipose tissue (BAT) thermogenesis and also promotes a “BAT-like” phenotype in white adipose tissue depots. In diet- induced obese mice, introducing VEGF-A locally in BAT rescues capillary rarefaction, ameliorates brown adipocyte dysfunction, and improves deleterious effects on glucose and lipid metabolism caused by a high-fat diet challenge. These results demonstrate a direct positive role of VEGF-A in the activation and expansion of BAT. VEGF-A over expression also exerts its action on macrophages by increasing the recruitment of M2 anti-inflammatory macrophages to fat depots. The decreased obesity and the anti-inflammatory milieu induced by VEGF-A in adipose tissue is responsible for the reduction of insulin resistance in transgenic mice (Bagchi et al, “Vascular endothelial growth factor is important for brown adipose tissue development and maintenance”, FASEB J. 27, 3257-3271 (2013).
Immunoassays (Enzyme linked immunosorbent assay) for the quantification of VEGF-A in the cell culture supernatant when forskolin (50µg/ml and 100µg/ml) was administered at the pre-adipocyte stage and once the differentiation to adipocytes occurred indicated that forskolin profoundly increased VEGF-A expression in the pre-adipocyte stage than at the adipocyte stage. Thus, in correlation with the literature cited above, it may be deduced that forskolin evinces greater potential for conversion of white pre-adipocytes to the brown adipocyte like (brite or beige) cells (Fig. 3) among white adipocyte depots in the mammalian body.
D. Uncoupling Protein-1(UCP-1) [Para 0026] A system of thermogenesis that evolved to protect the body from hypothermia is based upon the uncoupling of oxidative phosphorylation in brown adipocytes by the mitochondrial uncoupling protein (UCP-1). It has been shown that up-regulation of UCP1 by genetic manipulations or pharmacological agents can reduce obesity and improve insulin sensitivity (International Journal of Obesity (2008) 32, S32–S38; doi:10.1038/ijo.2008.236 UCP1: its involvement and utility in obesity.
L P Kozak and R Anunciado-Koza). Immunoassays (Enzyme linked immunosorbent assay) for the quantification of UCP-1 in the cell culture supernatant when forskolin (50µg/ml and 100µg/ml) was administered at the pre-adipocyte stage and once the differentiation to adipocytes occurred indicated that forskolin profoundly increased UCP-1 expression in the pre-adipocyte stage than at the adipocyte stage. Thus, in correlation with the literature cited above, it may be deduced that forskolin evinces greater potential for conversion of pre-adipocytes to the BAT-like or brown adipocytes and enhanced UCP-1 expression in these cells can be expected to enhance bringing about energy balance through appropriate energy expenditure (Fig. 4).
[Para 0027] It is already reported that administration of forskolin in humans apparently does not cause clinically significant side effects (Shonteh Henderson et al, Effect of Coleus forskolii supplementation on body composition and haematological profiles in mildly overweight women, J Int Soc Sports Nutr. 2005; 2(2): 54–62). The study elucidates that supplementation with forskolin dietary supplement Forslean® [250 mg of 10% Coleus forskolii extract, 25 mg of forskolin] two times a day for 12 weeks apparently had no clinical side effects. It may thus be inferred that the illustrative in-vitro examples included herein above to achieve energy balance in mammalian adipocyte systems is also applicable in vivo studies in animals (mammals) including human beings.
[Para 0028] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims (2)

We claim,
1. A method comparatively evaluating adipogenesis inhibition potential, comprising, adding forskolin to pre-adipocytes before differentiation by the steps of: a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml respectively in different wells of the pre-seeded microplates of step a) consisting of undifferentiated pre-adipocytes and thereafter incubating the pre-adipocytes for 72 hours in a medium added to the wells of the microplates to form wells treated with forskolin; c) Incubating the cells treated with forskolin in step b) for 48 hours in a humidified atmosphere C with 5% CO and 95% air; at 37 2 d) Fixing the cells of step c) by adding 100 μl of 10% formalin and staining using the Oil Red O technique; e) Reading the optical density of cells of step d) at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50); and f) Calculating the percentage inhibition of adipogenesis in the cells of steps d) and e) using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells; adding forskolin to mature adipocytes by the steps of: g) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; h) After 72 hours of incubation of the pre-adipocytes in a medium added to the wells of the microplates, adding graded concentrations of forskolin of 50µg/ml and 100µg/ml to the wells of step g); i) Incubating the cells treated with forskolin in step h) for 48 hours in a humidified atmosphere at 37 C with 5% CO and 95% air; j) Fixing the cells of step i) by adding 100 μl of 10% formalin and staining using the Oil Red O technique; k) Reading the optical density of cells of step j) at 492 nm in a microplate reader and expressing the results as inhibitory concentration (IC50) values; and l) Calculating the percentage inhibition of adipogenesis in the cells of steps j) and k) using the formula, C-T/T×100, wherein C is the absorbance of Oil Red O in differentiating/undifferentiated cells and T is the absorbance of Oil Red O in sample treated differentiating/undifferentiated cells; and m) Comparing the percentage inhibition of adipogenesis in the cells of steps f) and l).
2. A method of promoting the expression of secreted factors that selectively recruit brown adipose tissue (BAT) said method comprising: a) Seeding mammalian adipocyte precursor cells (pre-adipocytes) in wells of microplates wherein approximately 60×10 cells are seeded for 48-72 hours to get 70-80% confluence; b) Adding forskolin at concentrations of 50µg/ml and 100µg/ml respectively in different wells of the pre-seeded microplates of step a) consisting of undifferentiated pre-adipocytes and therefore incubating the pre-adipocytes for 72 hours in a medium added to the wells of the microplates to form cells treated with forskolin; c) Incubating the cells treated with forskolin in step b) for 48 hours in a humidified C with 5% CO and 95% air; and atmosphere at 37 2 d) Quantitatively determining by immunoassay techniques the expressions of bone morphogenic protein-7 (BMP-7), bone morphogenic protein-4 (BMP-4), and vascular epithelial growth factor-A (VEGF-A) in the cell supernatant; wherein the secreted factors that selectively recruit brown adipose tissue (BAT) comprise one or more members selected from the group consisting of BMP-7, BMP-4 and VEGF-A, and the expression of the secreted factors that selectively recruit brown adipose tissue (BAT) is enhanced as measured when forskolin is administered to pre-adipocytes compared to mature adipocytes. Fig.1 ■ ForskolinSOpg/ml Forskolin 100pg/ml ^ 200 & 160 | 120 80 i £ 40 I Addition of forskolin before the Addition of forskolin after the differentiation of pre-adipocytes differentiation of pre-adipocytes to to adipocytes adipocytes Page 1 of 4
NZ720422A 2015-11-10 2015-11-11 Process and compositions for achieving mammalian energy balance NZ720422B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/936,830 US10085963B2 (en) 2015-11-10 2015-11-10 Process and compositions for achieving mammalian energy balance
US14/936830 2015-11-10
PCT/US2015/060176 WO2017082896A1 (en) 2015-11-10 2015-11-11 Process and compositions for achieving mammalian energy balance

Publications (2)

Publication Number Publication Date
NZ720422A NZ720422A (en) 2019-08-30
NZ720422B true NZ720422B (en) 2019-12-03

Family

ID=

Similar Documents

Publication Publication Date Title
Borsini et al. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants
Hjortnaes et al. Valvular interstitial cells suppress calcification of valvular endothelial cells
Ye Adipose tissue vascularization: its role in chronic inflammation
Görtz et al. Hypoxia-dependent HIF-1 activation impacts on tissue remodeling in Graves’ ophthalmopathy—implications for smoking
Sitnick et al. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass
Kumar et al. A stimulatory thyrotropin receptor antibody enhances hyaluronic acid synthesis in graves' orbital fibroblasts: inhibition by an IGF-I receptor blocking antibody
Bei et al. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth
Nwadozi et al. Metabolic coordination of pericyte phenotypes: therapeutic implications
Lv et al. Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-β1 in activated rat hepatic stellate cells
Yeganeh et al. Trans-10, cis-12 conjugated linoleic acid (t10-c12 CLA) treatment and caloric restriction differentially affect adipocyte cell turnover in obese and lean mice
Tachikawa et al. Involvement of OCTN2 in the transport of acetyl-L-carnitine across the inner blood–retinal barrier
Sun et al. Effect of statin therapy on leptin levels in patients with coronary heart disease
Huo et al. Contribution of muscle satellite cells to sarcopenia
Lamers et al. Differential impact of oleate, palmitate, and adipokines on expression of NF-κB target genes in human vascular smooth muscle cells
Li et al. Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling
Logrip et al. Sex differences in the long-term effects of past stress on alcohol self-administration, glucocorticoid sensitivity and phosphodiesterase 10A expression
Cué et al. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome
McKenzie et al. Fiber type-specific satellite cell content in cyclists following heavy training with carbohydrate and carbohydrate-protein supplementation
US10085963B2 (en) Process and compositions for achieving mammalian energy balance
Xie et al. Prostaglandin E2 promotes pathological retinal neovascularisation via EP4R-EGFR-Gab1-AKT signaling pathway
Lu et al. Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus
CA2934156A1 (en) Use of forskolin in the treatment of obesity
Shi et al. Hypoxic Postconditioning Promotes Angiogenesis After Ischemic Stroke
Park et al. Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy
Beaudry et al. Nutritional regulation of muscle stem cells in exercise and disease: The role of protein and amino acid dietary supplementation