NZ629859B - Methods for treating cancer using tor kinase inhibitor combination therapy - Google Patents

Methods for treating cancer using tor kinase inhibitor combination therapy

Info

Publication number
NZ629859B
NZ629859B NZ629859A NZ62985914A NZ629859B NZ 629859 B NZ629859 B NZ 629859B NZ 629859 A NZ629859 A NZ 629859A NZ 62985914 A NZ62985914 A NZ 62985914A NZ 629859 B NZ629859 B NZ 629859B
Authority
NZ
New Zealand
Prior art keywords
cancer
pyrazin
dihydropyrazino
tor kinase
pyridinyl
Prior art date
Application number
NZ629859A
Other versions
NZ629859A (en
Inventor
Trowe Torsten
Original Assignee
Signal Pharmaceuticals Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signal Pharmaceuticals Llc filed Critical Signal Pharmaceuticals Llc
Publication of NZ629859A publication Critical patent/NZ629859A/en
Publication of NZ629859B publication Critical patent/NZ629859B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4406Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 3, e.g. zimeldine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Abstract

Disclosed herein is the use of 1-ethyl-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, a TOR kinase inhibitor, in combination with an effective amount of a histone deacetylase inhibitor for treating or preventing a cancer, wherein the cancer is a cancer of the head, neck, eye, mouth, throat, esophagus, bronchus, larynx, pharynx, chest, bone, lung, colon, rectum, stomach, prostate, urinary bladder, uterine, cervix, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system, and wherein the histone deacetylase inhibitor may be selected from Belinostat, MS-275 and Romidepsin. r of the head, neck, eye, mouth, throat, esophagus, bronchus, larynx, pharynx, chest, bone, lung, colon, rectum, stomach, prostate, urinary bladder, uterine, cervix, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system, and wherein the histone deacetylase inhibitor may be selected from Belinostat, MS-275 and Romidepsin.

Description

Patents Form No. 5 N.Z. No. 629859 NEW ZEALAND Patents Act 1953 COMPLETE SPECIFICATION METHODS FOR TREATING CANCER USING TOR KINASE TOR COMBINATION THERAPY We, Signal Pharmaceuticals, LLC a company of the United State of America of 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, UNITED STATES OF AMERICA do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be ularly described in and by the following statement:- METHODS FOR TREATING CANCER USING TOR KINASE INHIBITOR COMBINATION THERAPY 1. FIELD Provided herein are methods for treating or preventing a cancer comprising administering an effective amount of a TOR kinase inhibitor and an ive amount of a second active agent to a patient having a cancer. 2. BACKGROUND The connection between abnormal protein phosphorylation and the cause or uence of diseases has been known for over 20 years. Accordingly, protein kinases have become a very important group of drug targets. See Cohen, Nature, 1:309-315 (2002).
Various protein kinase inhibitors have been used clinically in the treatment of a wide variety of diseases, such as cancer and chronic inflammatory es, including diabetes and stroke.
See Cohen, Eur. J. Biochem., 01-5010 (2001), Protein Kinase Inhibitors for the Treatment of Disease: The Promise and the Problems, Handbook of Experimental Pharmacology, Springer Berlin Heidelberg, 167 (2005).
The protein kinases are a large and diverse family of enzymes that catalyze protein phosphorylation and play a al role in cellular signaling. Protein kinases may exert positive or negative tory effects, depending upon their target protein. Protein kinases are involved in specific signaling pathways which regulate cell functions such as, but not limited to, metabolism, cell cycle ssion, cell adhesion, vascular function, apoptosis, and angiogenesis. Malfunctions of cellular signaling have been associated with many diseases, the most characterized of which include cancer and diabetes. The tion of signal transduction by cytokines and the association of signal molecules with ncogenes and tumor suppressor genes have been well documented. Similarly, the connection n diabetes and related conditions, and deregulated levels of protein kinases, has been demonstrated. See e.g., r et al. Pharmaceutical Research, 17(11):1345-1353 (2000).
Viral ions and the conditions related thereto have also been associated with the regulation of n kinases. Park et al. Cell 101 (7): 777-787 (2000).
Because protein kinases te nearly every cellular process, including metabolism, cell proliferation, cell differentiation, and cell survival, they are attractive s for therapeutic intervention for various disease states. For example, cell-cycle control and angiogenesis, in which protein kinases play a pivotal role are cellular processes associated with numerous e conditions such as but not limited to cancer, inflammatory diseases, al angiogenesis and diseases related thereto, atherosclerosis, macular degeneration, diabetes, obesity, and pain.
Protein kinases have become attractive targets for the treatment of cancers.
Fabbro et al., Pharmacology & Therapeutics 93:79-98 (2002). It has been proposed that the involvement of protein kinases in the pment of human malignancies may occur by: (1) genomic rearrangements (e.g., BCR-ABL in chronic myelogenous leukemia), (2) ons g to tutively active kinase activity, such as acute myelogenous leukemia and gastrointestinal , (3) deregulation of kinase activity by activation of oncogenes or loss of tumor suppressor functions, such as in cancers with oncogenic RAS, (4) deregulation of kinase ty by over-expression, as in the case of EGFR and (5) ectopic expression of growth factors that can bute to the development and maintenance of the neoplastic phenotype. Fabbro et al., Pharmacology & Therapeutics 93:79-98 (2002).
The elucidation of the intricacy of protein kinase pathways and the complexity of the onship and interaction among and between the various protein kinases and kinase pathways highlights the importance of developing pharmaceutical agents capable of acting as n kinase modulators, regulators or inhibitors that have beneficial activity on multiple kinases or le kinase pathways. Accordingly, there remains a need for new kinase modulators.
The protein named mTOR (mammalian target of rapamycin), which is also called FRAP, RAFTI or RAPT1), is a 2549-amino acid r protein kinase, that has been shown to be one of the most critical proteins in the mTOR/PI3K/Akt pathway that tes cell growth and proliferation. Georgakis and Younes Expert Rev. Anticancer Ther. 6(1):131- 140 (2006). mTOR exists within two complexes, mTORC1 and mTORC2. While mTORC1 is sensitive to rapamycin analogs (such as temsirolimus or imus), mTORC2 is y rapamycin-insensitive. Notably, rapamycin is not a TOR kinase inhibitor. Several mTOR inhibitors have been or are being evaluated in al trials for the treatment of cancer.
Temsirolimus was approved for use in renal cell carcinoma in 2007 and sirolimus was approved in 1999 for the prophylaxis of renal transplant rejection. Everolimus was approved in 2009 for renal cell carcinoma patients that have progressed on vascular endothelial growth factor receptor inhibitors, in 2010 for subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis (TS) in patients who require therapy but are not candidates for surgical resection, and in 2011 for progressive neuroendocrine tumors of pancreatic origin (PNET) in patients with unresectable, locally advanced or metastatic disease. There remains a need for TOR kinase inhibitors that inhibit both mTORC1 and mTORC2 complexes.
DNA-dependent n kinase (DNA-PK) is a serine/threonine kinase involved in the repair of DNA double strand breaks (DSBs). DSBs are considered to be the most lethal DNA lesion and occur endogenously or in se to ionizing radiation and herapeutics (for review see Jackson, S. P., Bartek, J. The DNA-damage response in human biology and disease. Nature Rev 2009; 461:1071-1078). If left unrepaired, DSBs will lead to cell cycle arrest and/or cell death (Hoeijmakers, J. H. J. Genome maintenance isms for preventing cancer. Nature 2001; 411: 366-374; van Gent, D. C., Hoeijmakers, J. H., Kanaar, R. Chromosomal stability and the DNA double-stranded break tion. Nat Rev Genet 2001; 2: 196-206). In response to the insult, cells have developed complex mechanisms to repair such breaks and these mechanisms may form the basis of therapeutic resistance. There are two major pathways used to repair DSBs, non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ brings broken ends of the DNA er and rejoins them t reference to a second template s, S. J., DeWeese, T. L., Jeggo P. A., Parker, A.R. The life and death of DNA-PK. Oncogene 2005; 24: 949-961). In contrast, HR is dependent on the proximity of the sister tid which provides a template to mediate faithful repair (Takata, M., , M. S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., et al. Homologous ination and nonhomologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17: 5497- 5508; Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet 2000; 16: 259-264). NHEJ repairs the majority of DSBs. In NHEJ, DSBs are recognized by the Ku protein that binds and then activates the catalytic subunit of DNA-PK. This leads to recruitment and activation of end-processing enzymes, polymerases and DNA ligase IV (Collis, S. J., DeWeese, T. L., Jeggo P. A., Parker, A.R. The life and death of .
Oncogene 2005; 24: 949-961). NHEJ is primarily controlled by DNA-PK and thus inhibition of DNA-PK is an attractive approach to modulating the repair response to exogenously induced DSBs. Cells deficient in components of the NHEJ pathway are defective in DSB repair and highly sensitive to ionizing radiation and omerase poisons (reviewed by Smith, G. C. M., Jackson, S.P. The DNA-dependent protein . Genes Dev 1999; 13: 916-934; Jeggo, P.A., Caldecott, K., Pidsley, S., Banks, G.R. Sensitivity of Chinese hamster ovary mutants defective in DNA double strand break repair to topoisomerase II inhibitors.
Cancer Res 1989; 49: 7057-7063). A DNA-PK inhibitor has been reported to have the same effect of sensitizing cancer cells to therapeutically induced DSBs (Smith, G. C. M., Jackson, S.P. The DNA-dependent protein kinase. Genes Dev 1999; 13: 916-934).
Romidepsin has been shown to have anticancer activities. The drug is approved in the U.S. for treatment of cutaneous T-cell lymphoma (CTCL) and peripheral T- cell lymphoma , and is tly being tested, for example, for use in treating patients with other hematological malignancies (e.g., multiple myeloma, etc.) and solid tumors (e.g., prostate cancer, pancreatic cancer, etc.). It is thought to act by selectively inhibiting deacetylases (e.g., histone deacetylase, tubulin deacetylase), promising new s for pment of a new class of anti-cancer therapies (Bertino & Otterson, Expert Opin Investig Drugs 20(8):11151-1158, 2011). One mode of action involves the inhibition of one or more classes of histone ylases (HDAC). on or identification of any nce in Section 2 of this application is not to be construed as an admission that the reference is prior art to the present application. 3. SUMMARY Provided herein are methods for treating or preventing a , comprising administering an effective amount of a TOR kinase inhibitor and an effective amount of a second active agent to a patient having a cancer, wherein the second active agent is a histone deacetylase (HDAC) inhibitor. [0011A] In a particular embodiment, provided herein is the use of 1-ethyl(2-methyl- 6-(1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, isomer, tautomer or isotopologue thereof and a histone deacetylase inhibitor in the manufacture of a ment for the treatment of cancer. In a related embodiment, provided herein is the use of 1-ethyl(2- methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, e, stereoisomer, tautomer or ologue thereof in the manufacture of a medicament for the treatment of cancer, wherein the treatment comprises administration of 1-ethyl(2-methyl(1H-1,2,4-triazol yl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue f in combination with a histone deacetylase inhibitor. In a related embodiment, provided herein is the use of a histone deacetylase inhibitor in the manufacture of a ment for the treatment of cancer, n the treatment comprises administration of the histone deacetylase inhibitor in combination with 1-ethyl(2-methyl(1H-1,2,4-triazol (followed by 5A) yl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof.
In certain embodiments, ed herein are methods for achieving an International Workshop on Chronic Lymphocytic Leukemia (IWCLL) response definition of complete response (CR), complete se with lete marrow recovery (CRi), partial response (PR), or stable disease (SD) in a patient having chronic cytic ia, sing administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving a National Cancer Institute-sponsored Working Group on Chronic Lymphocytic Leukemia (NCI-WG CLL) response definition of complete response (CR), te response with incomplete marrow recovery (CRi), partial se (PR) or stable disease (SD) in a patient having chronic lymphocytic leukemia, comprising stering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving an International Workshop Criteria (IWC) for non-Hodgkin’s lymphoma of complete response, partial response or stable disease in a patient having non-Hodgkin’s lymphoma, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. 5A (followed by 6) In certain embodiments, provided herein are methods for achieving an International Uniform Response Criteria (IURC) for multiple myeloma of complete response, partial response or stable disease in a patient having multiple myeloma, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient.
In n embodiments, provided herein are methods for achieving a Response Evaluation Criteria in Solid Tumors (for example, RECIST 1.1) of te response, partial response or stable disease in a patient having a solid tumor, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving a Prostate Cancer Working Group 2 (PCWG2) Criteria of te response, partial response or stable disease in a patient having prostate cancer, comprising administering an effective amount of a TOR kinase inhibitor in ation with a second active agent to said patient. In n embodiments, ed herein are s for ing a Responses Assessment for Neuro- Oncology (RANO) Working Group for glioblastoma multiforme of complete response, l response or stable e in a patient having glioblastoma multiforme, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient.
In n embodiments, provided herein are methods for increasing survival without cancer progression of a patient having a , comprising administering an effective amount of a TOR kinase inhibitor in combination with an effective amount of a second active agent.
In certain embodiments, the TOR kinase inhibitor is a compound as described herein.
The present embodiments can be understood more fully by reference to the detailed description and examples, which are intended to ify non-limiting embodiments. 4. DETAILED DESCRIPTION 4.1 DEFINITIONS An “alkyl” group is a saturated, partially saturated, or unsaturated straight chain or branched non-cyclic hydrocarbon having from 1 to 10 carbon atoms, typically from 1 to 8 s or, in some embodiments, from 1 to 6, 1 to 4, or 2 to 6 or carbon atoms.
Representative alkyl groups include -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl and -n-hexyl; while saturated branched alkyls include -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylbutyl and the like.
Examples of unsaturared alkyl groups include, but are not d to, vinyl, allyl, -CH=CH(CH3), -CH=C(CH3)2, -C(CH3)=CH2, -C(CH3)=CH(CH3), -C(CH2CH3)=CH2, -C≡CH, -C≡C(CH3), H2CH3), -CH2C≡CH, -CH2C≡C(CH3) and -CH2C≡C(CH2CH3), among others. An alkyl group can be substituted or unsubstituted. In certain ments, when the alkyl groups described herein are said to be “substituted,” they may be substituted with any substituent or tuents as those found in the exemplary nds and embodiments disclosed herein, as well as halogen (chloro, iodo, bromo, or fluoro); hydroxyl; alkoxy; alkoxyalkyl; amino; alkylamino; y; nitro; cyano; thiol; thioether; imine; imide; amidine; guanidine; enamine; aminocarbonyl; acylamino; phosphonato; phosphine; thiocarbonyl; sulfonyl; sulfone; sulfonamide; ketone; aldehyde; ester; urea; urethane; oxime; hydroxyl amine; alkoxyamine; xyamine; N-oxide; hydrazine; hydrazide; hydrazone; azide; isocyanate; isothiocyanate; cyanate; thiocyanate; , or O(alkyl)aminocarbonyl.
An “alkenyl” group is a straight chain or branched non-cyclic hydrocarbon having from 2 to 10 carbon atoms, lly from 2 to 8 carbon atoms, and including at least one carbon-carbon double bond. Representative straight chain and branched (C2-C8)alkenyls include -vinyl, -allyl, butenyl, butenyl, -isobutylenyl, pentenyl, pentenyl, methylbutenyl, methylbutenyl, -2,3-dimethylbutenyl, hexenyl, hexenyl, hexenyl, heptenyl, heptenyl, heptenyl, octenyl, octenyl, octenyl and the like.
The double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group. An alkenyl group can be unsubstituted or substituted.
A “cycloalkyl” group is a saturated, or partially saturated cyclic alkyl group of from 3 to 10 carbon atoms having a single cyclic ring or multiple condensed or bridged rings which can be optionally substituted with from 1 to 3 alkyl groups. In some embodiments, the cycloalkyl group has 3 to 8 ring members, s in other embodiments the number of ring carbon atoms ranges from 3 to 5, 3 to 6, or 3 to 7. Such cycloalkyl groups include, by way of example, single ring structures such as ropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, ylcyclopropyl, 2-methylcyclopentyl, 2-methylcyclooctyl, and the like, or multiple or bridged ring structures such as adamantyl and the like. Examples of unsaturared cycloalkyl groups include cyclohexenyl, cyclopentenyl, cyclohexadienyl, butadienyl, pentadienyl, hexadienyl, among others. A cycloalkyl group can be substituted or tituted. Such substituted cycloalkyl groups include, by way of example, cyclohexanone and the like.
An “aryl” group is an aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple sed rings (e.g., yl or anthryl). In some embodiments, aryl groups contain 6-14 carbons, and in others from 6 to 12 or even 6 to 10 carbon atoms in the ring portions of the groups. Particular aryls include phenyl, biphenyl, naphthyl and the like. An aryl group can be substituted or unsubstituted.
The phrase “aryl groups” also includes groups containing fused rings, such as fused aromaticaliphatic ring systems (e.g., indanyl, tetrahydronaphthyl, and the like).
A “heteroaryl” group is an aryl ring system having one to four heteroatoms as ring atoms in a heteroaromatic ring system, wherein the remainder of the atoms are carbon atoms. In some embodiments, heteroaryl groups contain 5 to 6 ring atoms, and in others from 6 to 9 or even 6 to 10 atoms in the ring portions of the groups. Suitable heteroatoms include oxygen, sulfur and nitrogen. In certain embodiments, the heteroaryl ring system is monocyclic or bicyclic. Non-limiting examples include but are not limited to, groups such as pyrrolyl, pyrazolyl, olyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, lyl, pyrolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiophenyl, benzothiophenyl, furanyl, benzofuranyl (for example, isobenzofuran-1,3-diimine), indolyl, olyl (for example, pyrrolopyridyl or 1H-pyrrolo[2,3-b]pyridyl), indazolyl, idazolyl (for example, 1H- benzo[d]imidazolyl), imidazopyridyl (for example, zimidazolyl, 3H-imidazo[4,5- dyl or 1H-imidazo[4,5-b]pyridyl), pyrazolopyridyl, triazolopyridyl, benzotriazolyl, benzoxazolyl, hiazolyl, hiadiazolyl, isoxazolopyridyl, thianaphthalenyl, purinyl, xanthinyl, adeninyl, guaninyl, quinolinyl, isoquinolinyl, tetrahydroquinolinyl, quinoxalinyl, and quinazolinyl groups.
A “heterocyclyl” is an aromatic (also referred to as heteroaryl) or nonaromatic cycloalkyl in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of O, S and N. In some embodiments, heterocyclyl groups e 3 to10 ring members, whereas other such groups have 3 to 5, 3 to 6, or 3 to 8 ring members. Heterocyclyls can also be bonded to other groups at any ring atom (i.e., at any carbon atom or heteroatom of the heterocyclic ring). A cyclylalkyl group can be substituted or unsubstituted. Heterocyclyl groups encompass unsaturated, partially saturated and saturated ring systems, such as, for example, olyl, imidazolinyl and imidazolidinyl groups. The phrase heterocyclyl includes fused ring species, including those comprising fused aromatic and non-aromatic groups, such as, for example, benzotriazolyl, 2,3-dihydrobenzo[l,4]dioxinyl, and benzo[l,3]dioxolyl. The phrase also includes bridged polycyclic ring systems ning a heteroatom such as, but not limited to, quinuclidyl.
Representative examples of a cyclyl group include, but are not limited to, aziridinyl, azetidinyl, pyrrolidyl, imidazolidinyl, pyrazolidinyl, thiazolidinyl, tetrahydrothiophenyl, tetrahydrofuranyl, dioxolyl, furanyl, thiophenyl, pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, yl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl (for example, tetrahydro-2H-pyranyl), tetrahydrothiopyranyl, oxathiane, dioxyl, dithianyl, pyranyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, dihydropyridyl, odithiinyl, odithionyl, homopiperazinyl, quinuclidyl, indolyl, indolinyl, isoindolyl, olyl (pyrrolopyridyl), indazolyl, indolizinyl, benzotriazolyl, benzimidazolyl, uranyl, benzothiophenyl, benzthiazolyl, adiazolyl, benzoxazinyl, benzodithiinyl, benzoxathiinyl, benzothiazinyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[l,3]dioxolyl, lopyridyl, imidazopyridyl (azabenzimidazolyl; for example, 1H-imidazo[4,5-b]pyridyl, or 1H-imidazo[4,5-b]pyridin-2(3H)-onyl), triazolopyridyl, isoxazolopyridyl, purinyl, nyl, adeninyl, guaninyl, quinolinyl, isoquinolinyl, izinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl, pteridinyl, thianaphthalenyl, dihydrobenzothiazinyl, dihydrobenzofuranyl, dihydroindolyl, dihydrobenzodioxinyl, tetrahydroindolyl, tetrahydroindazolyl, tetrahydrobenzimidazolyl, tetrahydrobenzotriazolyl, ydropyrrolopyridyl, tetrahydropyrazolopyridyl, ydroimidazopyridyl, tetrahydrotriazolopyridyl, and tetrahydroquinolinyl groups. Representative tuted heterocyclyl groups may be mono- substituted or substituted more than once, such as, but not limited to, pyridyl or morpholinyl groups, which are 2-, 3-, 4-, 5-, or 6-substituted, or tituted with various substituents such as those listed below.
A “cycloalkylalkyl” group is a radical of the formula: -alkyl-cycloalkyl, wherein alkyl and cycloalkyl are defined above. tuted cycloalkylalkyl groups may be substituted at the alkyl, the cycloalkyl, or both the alkyl and the cycloalkyl portions of the group. Representative cycloalkylalkyl groups include but are not limited to cyclopentylmethyl, cyclopentylethyl, cyclohexylmethyl, cyclohexylethyl, and cyclohexylpropyl. Representative substituted cycloalkylalkyl groups may be monosubstituted or substituted more than once.
An “aralkyl” group is a radical of the formula: -alkyl-aryl, wherein alkyl and aryl are defined above. Substituted aralkyl groups may be substituted at the alkyl, the aryl, or both the alkyl and the aryl portions of the group. entative aralkyl groups include but are not limited to benzyl and phenethyl groups and fused (cycloalkylaryl)alkyl groups such as 4-ethyl-indanyl.
A “heterocyclylalkyl” group is a radical of the formula: -heterocyclyl, wherein alkyl and heterocyclyl are defined above. Substituted heterocyclylalkyl groups may be substituted at the alkyl, the heterocyclyl, or both the alkyl and the cyclyl portions of the group. Representative heterocylylalkyl groups include but are not limited to 4-ethylmorpholinyl , 4-propylmorpholinyl, 2-yl methyl, furanyl , eyl methyl, (tetrahydro-2H-pyranyl)methyl, (tetrahydro-2H-pyranyl)ethyl, tetrahydrofuran- 2-yl methyl, tetrahydrofuranyl ethyl, and indolyl propyl.
A “halogen” is chloro, iodo, bromo, or fluoro.
A “hydroxyalkyl” group is an alkyl group as described above substituted with one or more hydroxy groups.
An y” group is -O-(alkyl), n alkyl is defined above.
An “alkoxyalkyl” group is -(alkyl)-O-(alkyl), wherein alkyl is defined above.
An “amine” group is a radical of the formula: -NH2.
A “hydroxyl amine” group is a radical of the formula: -N(R#)OH or -NHOH, wherein R# is a substituted or unsubstituted alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl or heterocyclylalkyl group as defined .
An “alkoxyamine” group is a l of the formula: -N(R#)O-alkyl or -NHO-alkyl, wherein R# is as defined above.
An “aralkoxyamine” group is a l of the formula: -N(R#)O-aryl or -NHO-aryl, wherein R# is as defined above.
An “alkylamine” group is a radical of the formula: -NH-alkyl or -N(alkyl)2, wherein each alkyl is independently as defined above.
An “aminocarbonyl” group is a radical of the formula: -C(=O)N(R#)2, -C(=O)NH(R#) or -C(=O)NH2, wherein each R# is as defined above.
An “acylamino” group is a radical of the formula: -NHC(=O)(R#) or -N(alkyl)C(=O)(R#), wherein each alkyl and R# are independently as d above.
An “O(alkyl)aminocarbonyl” group is a radical of the formula: -O(alkyl)C(=O)N(R#)2, -O(alkyl)C(=O)NH(R#) or -O(alkyl)C(=O)NH2, n each R# is independently as defined above.
An “N-oxide” group is a radical of the formula: -N+-O-.
A “carboxy” group is a radical of the formula: -C(=O)OH.
A “ketone” group is a radical of the formula: -C(=O)(R#), wherein R# is as defined above.
An “aldehyde” group is a radical of the formula: -CH(=O).
An “ester” group is a radical of the formula: -C(=O)O(R#) or -OC(=O)(R#), n R# is as defined above.
A “urea” group is a radical of the formula: yl)C(=O)N(R#)2, -N(alkyl)C(=O)NH(R#), -N(alkyl)C(=O)NH2, -NHC(=O)N(R#)2, -NHC(=O)NH(R#), or -NHC(=O)NH2#, wherein each alkyl and R# are independently as defined above.
An “imine” group is a radical of the formula: #)2 or -C(R#)=N(R#), wherein each R# is independently as defined above.
An “imide” group is a radical of the formula: N(R#)C(=O)(R#) or -N((C=O)(R#))2, wherein each R# is independently as defined above.
A “urethane” group is a radical of the formula: -OC(=O)N(R#)2, -OC(=O)NH(R#), -N(R#)C(=O)O(R#), or -NHC(=O)O(R#), wherein each R# is independently as defined above.
An “amidine” group is a radical of the formula: -C(=N(R#))N(R#)2, -C(=N(R#))NH(R#), -C(=N(R#))NH2, -C(=NH)N(R#)2, -C(=NH)NH(R#), -C(=NH)NH2, -N=C(R#)N(R#)2, -N=C(R#)NH(R#), -N=C(R#)NH2, -N(R#)C(R#)=N(R#), -NHC(R#)=N(R#), -N(R#)C(R#)=NH, or #)=NH, wherein each R# is independently as defined above.
A dine” group is a radical of the formula: C(=N(R#))N(R#)2, N(R#))N(R#)2, -N(R#)C(=NH)N(R#)2, -N(R#)C(=N(R#))NH(R#), -N(R#)C(=N(R#))NH2, -NHC(=NH)N(R#)2, -NHC(=N(R#))NH(R#), -NHC(=N(R#))NH2, -NHC(=NH)NH(R#), -NHC(=NH)NH2, -N=C(N(R#)2)2, -N=C(NH(R#))2, or -N=C(NH2)2, wherein each R# is independently as defined above.
A “enamine” group is a radical of the formula: -N(R#)C(R#)=C(R#)2, -NHC(R#)=C(R#)2, -C(N(R#)2)=C(R#)2, -C(NH(R#))=C(R#)2, -C(NH2)=C(R#)2, -C(R#)=C(R#)(N(R#)2), =C(R#)(NH(R#)) or -C(R#)=C(R#)(NH2), wherein each R# is independently as defined above.
An “oxime” group is a l of the formula: -C(=NO(R#))(R#), -C(=NOH)(R#), -CH(=NO(R#)), or -CH(=NOH), wherein each R# is independently as defined above.
A “hydrazide” group is a radical of the formula: -C(=O)N(R#)N(R#)2, -C(=O)NHN(R#)2, N(R#)NH(R#), -C(=O)N(R#)NH2, -C(=O)NHNH(R#)2, or -C(=O)NHNH2, wherein each R# is independently as defined above.
A “hydrazine” group is a radical of the formula: -N(R#)N(R#)2, -NHN(R#)2, -N(R#)NH(R#), -N(R#)NH2, -NHNH(R#)2, or -NHNH2, wherein each R# is independently as defined above.
A “hydrazone” group is a radical of the formula: -C(=N-N(R#)2)(R#)2, -C(=N-NH(R#))(R#)2, -C(=N-NH2)(R#)2, -N(R#)(N=C(R#)2), or -NH(N=C(R#)2), wherein each R# is independently as defined above.
An “azide” group is a radical of the formula: -N3.
An “isocyanate” group is a radical of the a: -N=C=O.
An “isothiocyanate” group is a radical of the formula: -N=C=S.
A “cyanate” group is a radical of the formula: -OCN.
A “thiocyanate” group is a radical of the formula: -SCN.
A “thioether” group is a radical of the formula; , wherein R# is as defined above.
A “thiocarbonyl” group is a radical of the formula: -C(=S)(R#), wherein R# is as defined above.
A “sulfinyl” group is a radical of the formula: (R#), wherein R# is as defined above.
A “sulfone” group is a radical of the formula: -S(=O)2(R#), wherein R# is as defined above.
A nylamino” group is a radical of the formula: -NHSO2(R#) or -N(alkyl)SO2(R#), n each alkyl and R# are defined above.
A “sulfonamide” group is a radical of the formula: -S(=O)2N(R#)2, or -S(=O)2NH(R#), or -S(=O)2NH2, wherein each R# is independently as defined above.
A “phosphonate” group is a radical of the formula: -P(=O)(O(R#))2, -P(=O)(OH)2, -OP(=O)(O(R#))(R#), or )(OH)(R#), wherein each R# is ndently as defined above.
A “phosphine” group is a radical of the formula: -P(R#)2, wherein each R# is ndently as defined above.
When the groups described , with the exception of alkyl group are said to be ituted,” they may be substituted with any appropriate substituent or substituents.
Illustrative examples of substituents are those found in the exemplary compounds and embodiments disclosed herein, as well as halogen (chloro, iodo, bromo, or fluoro); alkyl; hydroxyl; alkoxy; alkoxyalkyl; amino; alkylamino; carboxy; nitro; cyano; thiol; thioether; imine; imide; amidine; guanidine; e; arbonyl; acylamino; phosphonate; phosphine; thiocarbonyl; sulfinyl; e; sulfonamide; ketone; aldehyde; ester; urea; ne; oxime; hydroxyl amine; alkoxyamine; aralkoxyamine; N-oxide; hydrazine; hydrazide; hydrazone; azide; isocyanate; isothiocyanate; cyanate; anate; oxygen (═O); B(OH)2, O(alkyl)aminocarbonyl; cycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., ropyl, utyl, cyclopentyl, or cyclohexyl), or a heterocyclyl, which may be clic or fused or sed polycyclic (e.g., pyrrolidyl, piperidyl, piperazinyl, morpholinyl, or thiazinyl); monocyclic or fused or non-fused polycyclic aryl or heteroaryl (e.g., phenyl, naphthyl, pyrrolyl, l, furanyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl, or benzofuranyl) aryloxy; aralkyloxy; cyclyloxy; and heterocyclyl alkoxy.
As used herein, the term “pharmaceutically acceptable salt(s)” refers to a salt prepared from a pharmaceutically acceptable non-toxic acid or base including an inorganic acid and base and an organic acid and base. Suitable pharmaceutically acceptable base on salts include, but are not limited to metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N’- dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, nediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids e, but are not limited to, inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic or te, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, c, furoic, galacturonic, gluconic, glucuronic, ic, glycolic, hydrobromic, hloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and enesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art, see for example, Remington’s Pharmaceutical Sciences, 18th eds., Mack Publishing, Easton PA (1990) or ton: The Science and Practice of Pharmacy, 19th eds., Mack Publishing, Easton PA (1995).
As used herein and unless otherwise indicated, the term “clathrate” means a TOR kinase inhibitor, or a salt thereof, in the form of a crystal lattice that contains spaces (e.g., channels) that have a guest molecule (e.g., a solvent or water) trapped within or a crystal lattice wherein a TOR kinase inhibitor is a guest molecule.
As used herein and unless otherwise indicated, the term “solvate” means a TOR kinase inhibitor, or a salt thereof, that further includes a iometric or nonstoichiometric amount of a solvent bound by non-covalent intermolecular forces. In one embodiment, the solvate is a hydrate.
As used herein and unless otherwise indicated, the term “hydrate” means a TOR kinase inhibitor, or a salt thereof, that further includes a stoichiometric or nonstoichiometric amount of water bound by non-covalent intermolecular forces.
As used herein and unless otherwise ted, the term “prodrug” means a TOR kinase inhibitor derivative that can hydrolyze, e, or otherwise react under biological conditions (in vitro or in vivo) to provide an active compound, particularly a TOR kinase inhibitor. Examples of prodrugs include, but are not limited to, derivatives and metabolites of a TOR kinase inhibitor that e biohydrolyzable es such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. In certain embodiments, prodrugs of compounds with carboxyl onal groups are the lower alkyl esters of the carboxylic acid. The carboxylate esters are conveniently formed by esterifying any of the carboxylic acid moieties present on the molecule. gs can lly be prepared using well-known methods, such as those described by Burger’s Medicinal Chemistry and Drug Discovery 6th ed. (Donald J. Abraham ed., 2001, Wiley) and Design and ation of Prodrugs (H. Bundgaard ed., 1985, d Academic Publishers Gmfh).
As used herein and unless otherwise indicated, the term “stereoisomer” or “stereomerically pure” means one stereoisomer of a TOR kinase inhibitor that is substantially free of other isomers of that compound. For example, a stereomerically pure compound having one chiral center will be substantially free of the te enantiomer of the compound. A stereomerically pure compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, or greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound. The TOR kinase inhibitors can have chiral s and can occur as racemates, individual enantiomers or diastereomers, and mixtures thereof. All such isomeric forms are included within the embodiments sed herein, including mixtures thereof. The use of stereomerically pure forms of such TOR kinase tors, as well as the use of mixtures of those forms are encompassed by the embodiments disclosed herein. For example, mixtures comprising equal or unequal amounts of the enantiomers of a particular TOR kinase inhibitor may be used in methods and compositions sed herein. These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., s, J., et al., Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); and Wilen, S.
H., Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN, 1972).
It should also be noted the TOR kinase inhibitors can e E and Z isomers, or a mixture thereof, and cis and trans isomers or a mixture thereof. In n embodiments, the TOR kinase inhibitors are isolated as either the cis or trans isomer. In other embodiments, the TOR kinase inhibitors are a mixture of the cis and trans isomers.
“Tautomers” refers to isomeric forms of a compound that are in equilibrium with each other. The concentrations of the isomeric forms will depend on the environment the nd is found in and may be different depending upon, for example, whether the compound is a solid or is in an organic or aqueous on. For example, in aqueous solution, pyrazoles may exhibit the following isomeric forms, which are referred to as tautomers of each other: N N HN N As readily understood by one skilled in the art, a wide y of functional groups and other structures may exhibit tautomerism and all tautomers of the TOR kinase inhibitors are within the scope of the present ion.
It should also be noted the TOR kinase inhibitors can contain unnatural proportions of atomic isotopes at one or more of the atoms. For example, the nds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I), sulfur-35 (35S), or carbon-14 (14C), or may be isotopically enriched, such as with deuterium (2H), carbon-13 (13C), or nitrogen-15 (15N). As used herein, an “isotopologue” is an isotopically enriched nd. The term “isotopically enriched” refers to an atom having an isotopic composition other than the natural isotopic composition of that atom.
“Isotopically enriched” may also refer to a compound containing at least one atom having an isotopic composition other than the l isotopic composition of that atom. The term “isotopic composition” refers to the amount of each isotope present for a given atom.
Radiolabeled and isotopically enriched compounds are useful as therapeutic agents, e.g., cancer and inflammation therapeutic agents, research reagents, e.g., g assay reagents, and diagnostic agents, e.g., in vivo imaging agents. All isotopic variations of the TOR kinase inhibitors as described herein, whether radioactive or not, are intended to be encompassed within the scope of the ments provided herein. In some embodiments, there are provided isotopologues of the TOR kinase inhibitors, for example, the isotopologues are ium, carbon-13, or nitrogen-15 enriched TOR kinase inhibitors.
It should be noted that if there is a discrepancy between a depicted structure and a name for that structure, the depicted ure is to be accorded more weight.
“Treating” as used herein, means an alleviation, in whole or in part, of a cancer or a symptom associated with a cancer, or slowing, or halting of further progression or worsening of those symptoms.
“Preventing” as used herein, means the prevention of the onset, recurrence or spread, in whole or in part, of a cancer, or a symptom thereof.
The term “effective amount” in connection with an TOR kinase inhibitor or a second active agent means an amount alone or in ation e of alleviating, in whole or in part, a m associated with a cancer, or slowing or halting further progression or worsening of those symptoms, or treating or ting a cancer in a subject having or at risk for having a cancer. The effective amount of the TOR kinase tor or a second active agent, for example in a pharmaceutical composition, may be at a level that will exercise the desired effect; for e, about 0.005 mg/kg of a subject’s body weight to about 100 mg/kg of a patient’s body weight in unit dosage for both oral and parenteral administration.
The term “second active agent(s)” means a histone deacetylase (HDAC) inhibitor, including those described herein in Section 4.4.
The term “cancer” includes, but is not d to, blood borne tumors and solid tumors. Blood borne tumors include lymphomas, leukemias and myelomas. Lymphomas and leukemias are malignancies arising among white blood cells. The term “cancer” also refers to any of various ant neoplasms characterized by the proliferation of cells that can invade surrounding tissue and metastasize to new body sites. Both benign and malignant tumors are classified according to the type of tissue in which they are found. For example, fibromas are neoplasms of fibrous connective tissue, and melanomas are abnormal growths of pigment (melanin) cells. Malignant tumors originating from lial tissue, e.g., in skin, bronchi, and stomach, are termed carcinomas. Malignancies of epithelial glandular tissue such as are found in the breast, prostate, and colon, are known as adenocarcinomas.
Malignant growths of connective , e.g., muscle, cartilage, lymph tissue, and bone, are called sarcomas. Through the process of metastasis, tumor cell migration to other areas of the body establishes neoplasms in areas away from the site of initial appearance. Bone tissues are one of the most d sites of metastases of malignant tumors, ing in about 30% of all cancer cases. Among malignant tumors, cancers of the lung, breast, prostate or the like are particularly known to be likely to metastasize to bone.
In the t of neoplasm, cancer, tumor growth or tumor cell growth, inhibition may be assessed by delayed appearance of primary or secondary tumors, slowed development of y or secondary tumors, decreased occurrence of primary or secondary , slowed or decreased severity of secondary s of disease, arrested tumor growth and sion of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. In this context, the term “prevention” includes either preventing the onset of clinically evident neoplasia ther or ting the onset of a preclinically evident stage of neoplasia in individuals at risk. Also intended to be encompassed by this definition is the prevention of transformation into malignant cells or to arrest or reverse the progression of premalignant cells to malignant cells. This includes prophylactic treatment of those at risk of developing the neoplasia.
The term “refractory B-cell non-Hodgkin’s lymphoma” as used herein is defined as B-cell non-Hodgkin’s lymphoma which was treated with an anti-CD-20 antibodycontaining regimen, for example rituximab-containing regimen, (i) without achieving at least a partial se to y or (ii) which progressed within 6 months of treatment.
The term “relapsed B-cell dgkin’s lymphoma” as used herein is defined as B-cell non-Hodgkin’s lymphoma which progressed after ≥ 6 months posttreatment with an anti-CD-20 antibody-containing regimen, for example rituximabcontaining regimen, after achieving partial se or complete response to therapy.
A person of ordinary skill will appreciate that diseases characterized as “B-cell lymphoma” exist as a continuum of diseases or disorders. While the continuum of B-cell lymphomas is sometimes discussed in terms of “aggressive” B-cell lymphomas or “indolent” B-cell lymphomas, a person of ordinary skill will appreciate that a B-cell lymphoma characterized as indolent may progress and become an aggressive B-cell lymphoma. sely, an aggressive form of B-cell ma may be aded to an indolent or stable form of B-cell lymphoma. Reference is made to indolent and sive B-cell lymphomas as generally tood by a person skilled in the art with the recognition that such characterizations are inherently dynamic and depend on the particular circumstances of the individual.
As used herein, and unless otherwise specified, the term “in combination with” includes the administration of two or more therapeutic agents simultaneously, concurrently, or sequentially within no specific time limits unless otherwise indicated. In one embodiment, a TOR kinase inhibitor is administered in combination with a second active agent. In one embodiment, the agents are present in the cell or in the subject’s body at the same time or exert their ical or therapeutic effect at the same time. In one embodiment, the therapeutic agents are in the same composition or unit dosage form. In other embodiments, the therapeutic agents are in separate compositions or unit dosage forms. In certain embodiments, a first agent can be administered prior to (e.g., 5 minutes, 15 s, minutes, 45 s, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), essentially concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapeutic agent, or any combination thereof. For example, in one embodiment, the first agent can be administered prior to the second therapeutic agent, for e.g. 1 week. In another, the first agent can be administered prior to (for e 1 day prior) and then concomitant with the second therapeutic agent.
The terms “patient” and “subject” as used herein e an animal, including, but not limited to, an animal such as a cow, monkey, horse, sheep, pig, n, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig, in one embodiment a mammal, in another embodiment a human. In one embodiment, a “patient” or “subject” is a human having a cancer.
In the context of a cancer, inhibition may be assessed by tion of disease progression, inhibition of tumor growth, reduction of primary tumor, relief of tumor-related symptoms, inhibition of tumor secreted factors ding tumor secreted hormones, such as those that contribute to carcinoid syndrome), delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary , slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of , increased Time To Progression (TTP), increased Progression Free Survival (PFS), increased Overall Survival (OS), among others.
OS as used herein means the time from randomization until death from any cause, and is measured in the intent-to-treat population. TTP as used herein means the time from randomization until objective tumor progression; TTP does not include deaths. As used herein, PFS means the time from randomization until objective tumor progression or death.
In one embodiment, PFS rates will be ed using the Kaplan-Meier estimates. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. In this context, the term “prevention” includes either preventing the onset of clinically evident cancer altogether or preventing the onset of a preclinically evident stage of a cancer. Also intended to be encompassed by this definition is the prevention of ormation into ant cells or to arrest or reverse the progression of premalignant cells to malignant cells.
This includes prophylactic treatment of those at risk of developing a .
In n embodiments, the treatment of lymphoma may be ed by the International Workshop Criteria (IWC) for non-Hodgkin lymphoma (NHL) (see Cheson BD, Pfistner B, Juweid, ME, et. al. Revised Response ia for Malignant Lymphoma. J. Clin.
Oncol: 2007: (25) 579-586), using the response and nt definitions shown below: Response Definition Nodal Masses Spleen, liver Bone Marrow CR Disappearan (a) id or PET Not Infiltrate cleared ce of all positive prior to therapy; palpable, on repeat biopsy; if evidence mass of any size permitted nodules indeterminate by of disease if PET negative disappeared morphology, (b) Variably FDG-avid or histochemi PET negative; regression stry to normal size on CT should be negative Response tion Nodal Masses Spleen, liver Bone Marrow PR Regression ≥50% decrease in SPD of ≥50% Irrelevant if of up to 6 t dominant decrease in positive prior to measurable masses; no increase in size SPD of therapy; cell type disease and of other nodes nodules (for should be specified no new sites (a) id or PET single ve prior to therapy; nodule in one or more PET positive greatest at previously involved site transverse (b) Variably FDG-avid or diameter); PET ve; regression no increase on CT in size of liver or spleen SD Failure to (a) FDG-avid or PET attain positive prior to therapy; CR/PR or PET positive at prior sites PD of e and no new sites on CT or PET (b) Variably FDG-avid or PET negative; no change in size of previous lesions on CT PD or Any new Appearance of a new ≥50% New or recurrent relapsed lesion or lesion(s) ≥1.5 cm in any increase involvement disease increase by axis, ≥50% increase in from nadir in ≥ 50% of SPD of more than one the SPD of previously node, any previous involved or ≥50% increase in lesions sites from longest diameter of a nadir previously identifed node ≥1 cm in short axis Lesions PET positive if FDG-avid lymphoma or PET positive prior to therapy Abbreviations: CR, complete remission; FDG, [18F]fluorodeoxyglucose; PET, positron emission tomography; CT, ed tomography; PR, l remission; SPD, sum of the product of the diameters; SD, stable disease; PD, progressive disease.
End point Patients Definition Measured from Primary Overall survival All Death as a result of any cause Entry onto study Progression-free All Disease progression or death as a result of Entry onto survival any cause study Secondary free survival All Failure of treatment or death as result of any Entry onto cause study Time to All Time to progression or death as a result of Entry onto progression lymphoma study Disease-free In CR Time to relapse or death as a result of Documentation survival lymphoma or acute toxicity of treatment of response Response duration In CR Time to e or progression Documentation or PR of response Lymphoma- All Time to death as a result of lymphoma Entry onto specific survival study Time to next All Time to new treatment End of primary treatment treatment Abbreviations: CR: complete remission; PR: l remission.
In one embodiment, the end point for ma is evidence of clinical benefit. Clinical benefit may reflect improvement in quality of life, or reduction in patient symptoms, transfusion requirements, frequent infections, or other parameters. Time to reappearance or progression of lymphoma-related symptoms can also be used in this end point.
In certain embodiments, the treatment of CLL may be assessed by the ational Workshop Guidelines for CLL (see Hallek M, Cheson BD, Catovsky D, et al. ines for the sis and treatment of chronic lymphocytic leukemia: a report from the International op on c Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood, 2008; (111) 12: 5446-5456) using the response and endpoint definitions shown n and in particular: Parameter CR PR PD Group A Lymphadenopathy† None > 1.5 cm Decrease ≥ 50% Increase ≥ 50% Hepatomegaly None Decrease ≥ 50% Increase ≥ 50% Splenomegaly None Decrease ≥ 50% Increase ≥ 50% Parameter CR PR PD Decrease ≥ 50% Increase ≥ 50% Blood lymphocytes < 4000/μL from baseline over baseline Normocellular, < 30% 50% reduction in lymphocytes, no B-lymphoid Marrow‡ marrow infiltrate, or nodules. Hypocellular B-lymphoid nodules marrow defines CRi (5.1.6).
Group B Decrease of ≥ > 100 000/μL or 50% from Platelet count > 100 000/μL baseline secondary to increase ≥ 50% over CLL baseline Decrease of > 2 > 11 g/dL or g/dL from Hemoglobin > 11.0 g/dL increase ≥ 50% over baseline baseline secondary to > 1500/μL or > 50% Neutrophils‡ > 1500/μL improvement over Group A criteria define the tumor load; Group B criteria define the function of the poietic system (or marrow). CR (complete remission): all of the criteria have to be met, and patients have to lack disease-related constitutional symptoms; PR (partial remission): at least two of the criteria of group A plus one of the ia of group B have to be met; SD is absence of progressive disease (PD) and failure to achieve at least a PR; PD: at least one of the above criteria of group A or group B has to be met. Sum of the products of multiple lymph nodes (as evaluated by CT scans in clinical trials, or by physical examination in general practice). These parameters are vant for some response categories.
In certain embodiments, the treatment of multiple myeloma may be assessed by the International Uniform Response Criteria for Multiple Myeloma (IURC) (see Durie BGM, seau J-L, Miguel JS, et al. International uniform response criteria for multiple a. Leukemia, 2006; (10) 10: 1-7), using the response and endpoint definitions shown below: Response Subcategory se Criteriaa sCR CR as defined below plus Normal FLC ratio and Absence of clonal cells in bone marrowb by histochemistry or immunofluorescencec Response Subcategory Response Criteriaa CR Negative immunofixation on the serum and urine and Disappearance of any soft tissue plasmacytomas and <5% plasma cells in bone marrowb VGPR Serum and urine M-protein detectable by immunofixation but not on ophoresis or 90% or greater reduction in serum M-protein plus urine M-protein level <100mg per 24 h PR ≥50% reduction of serum M-protein and reduction in 24-h urinary M-protein by≥90% or to <200mg per 24 h If the serum and urine M-protein are unmeasurable,d a ≥50% decrease in the difference between involved and uninvolved FLC levels is ed in place of the M- protein criteria If serum and urine M-protein are unmeasurable, and serum free light assay is also unmeasurable, ≥50% reduction in plasma cells is required in place of M-protein, provided baseline bone marrow plasma cell percentage was ≥30% In addition to the above listed criteria, if t at baseline, a ≥50% reduction in the size of soft tissue plasmacytomas is also required SD (not recommended for use as Not g criteria for CR, VGPR, PR or ssive an indicator of response; stability disease of e is best described by providing the time to progression estimates) Abbreviations: CR, complete response; FLC, free light chain; PR, partial response; SD, stable disease; sCR, stringent te se; VGPR, very good partial response; aAll response categories require two consecutive assessments made at anytime before the institution of any new therapy; all categories also require no known evidence of progressive or new bone lesions if radiographic studies were performed. Radiographic studies are not required to satisfy these response requirements; bConfirmation with repeat bone marrow biopsy not needed; cPresence/absence of clonal cells is based upon the κ/λ ratio. An abnormal κ/λ ratio by immunohistochemistry and/or immunofluorescence es a minimum of 100 plasma cells for analysis. An abnormal ratio ting presence of an abnormal clone is κ/λ of >4:1 or <1:2.dMeasurable disease defined by at least one of the ing measurements: Bone marrow plasma cells ≥30%; Serum M-protein ≥1 g/dl (≥10 gm/l)[10 g/l]; Urine ein ≥200 mg/24 h; Serum FLC assay: Involved FLC level ≥10 mg/dl (≥100 mg/l); provided serum FLC ratio is abnormal.
In certain embodiments, the treatment of a cancer may be assessed by Response Evaluation Criteria in Solid Tumors (RECIST 1.1) (see Thereasse P., et al. New Guidelines to Evaluate the Response to Treatment in Solid Tumors. J. of the National Cancer Institute; 2000; (92) 205-216 and auer E.A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid s: Revised RECIST guideline (version 1.1).
European J. Cancer; 2009; (45) 228–247). Overall responses for all possible combinations of tumor ses in target and rget lesions with our without the ance of new lesions are as follows: Target lesions Non-target lesions New lesions l response CR CR No CR CR Incomplete No PR response/SD PR Non-PD No PR SD Non-PD No SD PD Any Yes or no PD Any PD Yes or no PD Any Any Yes PD CR = complete response; PR = partial response; SD = stable disease; and PD = progressive With respect to the evaluation of target s, complete response (CR) is the disappearance of all target lesions, partial response (PR) is at least a 30% decrease in the sum of the longest diameter of target lesions, taking as reference the baseline sum longest diameter, progressive disease (PD) is at least a 20% increase in the sum of the t diameter of target lesions, taking as reference the smallest sum longest diameter recorded since the treatment started or the appearance of one or more new lesions and stable disease (SD) is neither sufficient shrinkage to qualify for partial response nor sufficient increase to qualify for ssive disease, taking as reference the smallest sum t diameter since the treatment started.
With respect to the evaluation of non-target lesions, complete response (CR) is the disappearance of all non-target lesions and normalization of tumor marker level; incomplete response/stable e (SD) is the persistence of one or more non-target lesion(s) and/or the maintenance of tumor marker level above the normal limits, and progressive disease (PD) is the appearance of one or more new lesions and/or unequivocal progression of existing non-target lesions.
The procedures, conventions, and definitions described below provide guidance for implementing the recommendations from the Response Assessment for Neuro- Oncology (RANO) Working Group regarding response criteria for high-grade gliomas (Wen P., Macdonald, DR., Reardon, DA., et al. Updated response assessment criteria for highgrade gliomas: Response assessment in neuro-oncology g group. J Clin Oncol 2010; 28: 1963-1972). Primary modifications to the RANO criteria for Criteria for Time Point Responses (TPR) can include the addition of ional conventions for defining changes in glucocorticoid dose, and the removal of subjects’ clinical deterioration component to focus on objective radiologic assessments. The baseline MRI scan is d as the assessment performed at the end of the post-surgery rest period, prior to re-initiating compound treatment. The baseline MRI is used as the reference for assessing complete response (CR) and l response (PR). Whereas, the smallest SPD (sum of the products of perpendicular diameters) obtained either at baseline or at subsequent assessments will be ated the nadir assessment and ed as the reference for determining progression.
For the 5 days preceding any protocol-defined MRI scan, subjects receive either no glucocorticoids or are on a stable dose of glucocorticoids. A stable dose is defined as the same daily dose for the 5 consecutive days preceding the MRI scan. If the prescribed glucocorticoid dose is changed in the 5 days before the baseline scan, a new baseline scan is required with glucocorticoid use g the criteria described above. The following definitions will be used. able Lesions: able lesions are contrast-enhancing lesions that can be measured bidimensionally. A measurement is made of the l enhancing tumor diameter (also known as the longest diameter, LD). The st perpendicular diameter is measured on the same image. The cross hairs of bidimensional ements should cross and the product of these ers will be calculated.
Minimal Diameter: T1-weighted image in which the sections are 5 mm with 1 mm skip. The minimal LD of a measurable lesion is set as 5 mm by 5 mm. Larger diameters may be required for inclusion and/or designation as target lesions. After baseline, target lesions that become smaller than the minimum requirement for measurement or become no longer amenable to bidimensional measurement will be recorded at the default value of 5 mm for each diameter below 5 mm. Lesions that disappear will be recorded as 0 mm by 0 mm.
Multicentric Lesions: s that are ered entric (as opposed to continuous) are lesions where there is normal intervening brain tissue between the two (or more) lesions. For multicentric lesions that are discrete foci of enhancement, the approach is to separately measure each enhancing lesion that meets the inclusion criteria. If there is no normal brain tissue between two (or more) lesions, they will be considered the same lesion.
Nonmeasurable Lesions: All lesions that do not meet the criteria for measurable disease as defined above will be considered non-measurable lesions, as well as all nonenhancing and other truly nonmeasurable s. Nonmeasurable lesions include foci of ement that are less than the specified smallest diameter (i.e., less than 5 mm by 5 mm), nonenhancing lesions (e.g., as seen on T1-weighted post-contrast, T2-weighted, or fluidattenuated inversion ry (FLAIR) images), hemorrhagic or predominantly cystic or necrotic lesions, and leptomeningeal tumor. Hemorrhagic lesions often have intrinsic T1- weighted hyperintensity that could be erpreted as enhancing tumor, and for this reason, the pre-contrast T1-weighted image may be examined to exclude baseline or interval subacute hemorrhage.
At baseline, lesions will be classified as follows: Target s: Up to measurable lesions can be selected as target s with each measuring at least 10 mm by mm, representative of the subject’s disease; Non-target lesions: All other lesions, including all nonmeasurable lesions (including mass effects and T2/FLAIR findings) and any measurable lesion not selected as a target lesion. At baseline, target lesions are to be measured as described in the definition for measurable lesions and the SPD of all target lesions is to be determined. The presence of all other lesions is to be nted. At all post-treatment evaluations, the baseline classification of s as target and non-target lesions will be ined and lesions will be documented and described in a consistent fashion over time (e.g., recorded in the same order on source documents and eCRFs). All measurable and nonmeasurable lesions must be assessed using the same technique as at baseline (e.g., subjects should be imaged on the same MRI scanner or at least with the same magnet th) for the duration of the study to reduce difficulties in interpreting changes.
At each evaluation, target lesions will be measured and the SPD calculated. Non-target lesions will be assessed qualitatively and new lesions, if any, will be documented separately.
At each evaluation, a time point response will be determined for target lesions, non-target lesions, and new lesion. Tumor progression can be established even if only a subset of s is assessed. However, unless ssion is observed, objective status (stable disease, PR or CR) can only be determined when all lesions are ed. ] mation assessments for overall time point responses of CR and PR will be performed at the next scheduled ment, but confirmation may not occur if scans have an interval of < 28 days. Best response, incorporating confirmation requirements, will be derived from the series of time points.
In certain ments, ent of a cancer may be ed by the tion of phosphorylation of S6RP, 4E-BP1, AKT and/or DNA-PK in ating blood and/or tumor cells, and/or skin biopsies or tumor biopsies/aspirates, before, during and/or after treatment with a TOR kinase inhibitor. For example, the inhibition of phosphorylation of S6RP, 4E-BP1, AKT and/or DNA-PK is assessed in B-cells, T-cells and/or monocytes. In other embodiments, treatment of a cancer may be assessed by the inhibition of DNA-dependent protein kinase (DNA-PK) activity in skin samples and/or tumor biopsies/aspirates, such as by assessment of the amount of pDNA-PK S2056 as a biomarker for DNA damage pathways, before, during, and/or after TOR kinase inhibitor ent. In one embodiment, the skin sample is irradiated by UV light.
In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. In this context, the term “prevention” includes either preventing the onset of ally evident cancer altogether or preventing the onset of a nically evident stage of a cancer. Also intended to be encompassed by this definition is the prevention of transformation into malignant cells or to arrest or reverse the progression of premalignant cells to malignant cells. This includes prophylactic treatment of those at risk of developing a cancer. 4.2 TOR KINASE INHIBITORS The nds provided herein are generally referred to as “TOR kinase inhibitor(s).” In one , the TOR kinase inhibitors do not include rapamycin or rapamycin analogs (rapalogs).
In one embodiment, the TOR kinase inhibitors include compounds having the following formula (I): R1 N N O N N R3 and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, metabolites, ologues and prodrugs thereof, wherein: R1 is substituted or unsubstituted C13 alkyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, or substituted or unsubstituted heterocyclylalkyl; R2 is H, substituted or unsubstituted CH; alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted l, or substituted or unsubstituted cycloalkylalkyl; R3 is H, or a substituted or unsubstituted CH; alkyl, wherein in certain embodiments, the TOR kinase inhibitors do not include 7- (4-hydroxyphenyl)- 1-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, depicted below: Ho p N N O [I I T N N In some embodiments ofcompounds of formula (I), R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl. For example, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, lH-pyrrolo[2,3-b]pyridyl, indazolyl, indolyl, 1H-imidazo[4,5-b]pyridyl, 1H-imidazo[4,5-b]pyridin—2(3H)-onyl, 3H—imidazo[4,5-b]pyridyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently ed from the group consisting of substituted or unsubstituted CH; alkyl (for example, methyl), tuted or unsubstituted heterocyclyl (for example, a substituted or unsubstituted triazolyl or pyrazolyl), aminocarbonyl, halogen (for example, fluorine), cyano, hydroxyalkyl and hydroxy. In other ments, R1 is pyridyl substituted with one or more tuents independently ed from the group ting of substituted or unsubstituted C1_s alkyl (for e, methyl), tuted or unsubstituted heterocyclyl (for example, a substituted or unsubstituted triazolyl), halogen, aminocarbonyl and -NR2, wherein , cyano, hydroxyalkyl (for example, hydroxypropyl), -OR, each R is independently H, or a substituted or unsubstituted C14 alkyl. In some embodiments, R1 is lH—pyrrolo[2,3-b]pyridyl or benzimidazolyl, ally substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted CH; alkyl, and -NR2, wherein R is independently H, or a substituted or tituted C14 alkyl.
In some ments, R1 is \ \ 3 W \ o | , N/\_\ | ( ' — CR n0R2) /\”\J. _ /\/ , \N’N |/\;\, QNRZ u/\/ (CR2)nOR “Hm ‘33» Rm ‘51» , , R'In , ”m, R N/\ 0 RN I‘ll/\—<\le qu—q I‘d/j \ “m R'm m “a R". , , // “in, , RN RN’\\N N, ’N~ N \ | /—R'm N \fiNR —R'm {£41}?; m “4/Ln —Rm “(my ’ ' “‘4 O "MC/u ,or “at, wherein R is at each occurrence independently H, or a tuted or unsubstituted C14 alkyl (for example, methyl); R’ is at each occurrence independently a substituted or unsubstituted C14 alkyl (for example, methyl), halogen (for example, fluoro), cyano, -OR, or -NR2; m is 0-3; and n is 0-3. It will be tood by those skilled in the art that any of the substituents R’ may be attached to any suitable atom of any of the rings in the filsed ring systems.
In some embodiments ofcompounds of fonnula a), R1 is N‘\ N‘\ (CR2)nOR NR 12,0 / \N‘ EU/N (CR2)nOR 13,\\' , \\Jig/L‘NNR n R is at each occurrence independently H, or a substituted or unsubstituted C14 alkyl; R’ is at each occurrence independently a tuted or unsubstituted C14 alkyl, halogen, cyano, -OR or -NR2; m is 0-3; and n is 0-3.
In some embodiments ofcompounds of formula (I), R2 is H, substituted or unsubstituted C14; alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, tuted or unsubstituted C14 alkyl-heterocyclyl, substituted or unsubstituted C14 alkyl-aryl, or substituted or unsubstituted C14 alkyl-cycloalkyl. For example, R2 is H, , ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, cyclopentyl, cyclohexyl, ydrofuranyl, tetrahydropyranyl, (C14 alkyl)—phenyl, (C14 alkyl)-cyclopropyl, (C14 alkyl)-cyclobutyl, (C14 alkyl)-cyclopentyl, (C14 alkyl)-cyclohexyl, (C14 alkyl)—pylrolidyl, (C14 alkyl)—piperidyl, (C14 alkyl)—piperazinyl, (C14 alkyl)- morpholinyl, (C14 alkyl)-tetrahydrofuranyl, or (C14 alkyl)—tetrahydropyranyl, each optionally substituted.
In other embodiments, R2 is H, C14 alkyl, (CMalkyl)(OR), / ,w ”a / , {1%}; ’ ’ ’ R R / 361m” / ’ WV?) 2) 33““th \j >R' wherein R is at each occurrence ndently H, or a substituted or unsubstituted C14 alkyl (for example, methyl); R’ is at each occurrence independently H, -OR, cyano, or a tuted or unsubstituted CH alkyl (for example, methyl); and p is 0-3.
In other ments of nds of formula (I), R2 is H, C14 alkyl, (C14alkyl)(OR), \f >R' wherein R is at each occurrence independently H, or a substituted or unsubstituted C1_2 alkyl; R’ is at each occurrence independently H, —OR, cyano, or a substituted or tituted C1_2 alkyl; and p is 0-1.
In other embodiments of compounds of formula (I), R3 is H.
In some such embodiments described herein, R1 is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. For example, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, 1H-pyrrolo[2,3-b]pyridyl, indazolyl, indolyl, lH—imidazo[4,5- b]pyridine, pyridyl, lH-imidazo[4,5-b]pyridin-2(3H)-onyl, 3H-imidazo[4,5-b]pyn'dyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted CH; alkyl, substituted or tituted cyclyl, aminocarbonyl, halogen, cyano, hydroxyalkyl and y. In others, R1 is pyridyl tuted with one or more substituents independently selected from the group consisting of C13 alkyl, substituted or unsubstituted heterocyclyl, halogen, aminocarbonyl, cyano, hydroxyalkyl, -0R, and -NR2, wherein each R is independently H, or a substituted or unsubstituted C14 alkyl. In still others, R1 is lH-pyrrolo[2,3-b]pyridyl or benzimidazolyl, optionally substituted with one or more substituents independently ed from the group consisting of substituted or unsubstituted C1_g alkyl, and -NR2, wherein R is independently H, or a substituted or unsubstituted C14 alkyl.
In certain embodiments, the compounds of formula (I) have an R1 group set forth herein and an R2 group set forth herein.
In some embodiments ofcompounds of formula (I), the compound inhibits TOR . In other embodiments of compounds of a (I), the compound inhibits DNA-PK. In certain embodiments of compounds of formula (I), the compound inhibits both TOR kinase and .
In some embodiments of compounds of formula (I), the compound at a tration of 10 μM inhibits TOR kinase, DNA-PK, PI3K, or a ation thereof by at least about 50%. Compounds of formula (I) may be shown to be inhibitors of the kinases above in any suitable assay system.
Representative TOR kinase inhibitors of formula (I) include compounds from Table A.
Table A. 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)((trans methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)(cismethoxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; pyrrolo[2,3-b]pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)((cismethoxycyclohexyl)methyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-ethyl(1H-pyrrolo[3,2-b]pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)((cismethoxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-benzo[d]imidazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-pyrrolo[2,3-b]pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)((transmethoxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)((transhydroxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1H-1,2,4-triazolyl)pyridinyl)(cishydroxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(cishydroxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)(tetrahydro-2H-pyranyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3- zin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)ethyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)- one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)((cishydroxycyclohexyl)methyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(tetrahydro-2H-pyranyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-indolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)((trans hydroxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)((cishydroxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)(transhydroxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)(transmethoxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(1H-1,2,4-triazolyl)pyridinyl)isopropyl-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(transmethoxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(transhydroxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(2-methoxyethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; luoromethyl(1H-1,2,4-triazolyl)phenyl)isopropyl-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 1-ethyl(5-fluoromethyl(1H-1,2,4-triazolyl)phenyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(2-hydroxypyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; ropyl(4-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; -(8-isopropyloxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazinyl)methylpicolinamide; 7-(1H-indazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(2-aminopyrimidinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(2-aminopyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(6-(methylamino)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-hydroxypyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- zin-2(1H)-one; 7-(4-(1H-pyrazolyl)phenyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(1H-indazolyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-indazolyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(pyrimidinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(6-methoxypyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 1-(2-methoxyethyl)(1H-pyrrolo[2,3-b]pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 1-ethyl(1H-pyrrolo[2,3-b]pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; l(1H-indazolyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(6-aminopyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 1-methyl(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 2-(2-hydroxypropanyl)(8-(transmethoxycyclohexyl)oxo-5,6,7,8- ydropyrazino[2,3-b]pyrazinyl)pyridine 1-oxide; 4-methyl(7-oxo((tetrahydro-2H-pyranyl)methyl)-5,6,7,8-tetrahydropyrazino[2,3- b]pyrazinyl)picolinamide; -(8-((cismethoxycyclohexyl)methyl)oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin yl)methylpicolinamide; 7-(1H-pyrazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 1-(transmethoxycyclohexyl)(4-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 3-((7-(2-methyl(4H-1,2,4-triazolyl)pyridinyl)oxo-3,4-dihydropyrazino[2,3- b]pyrazin-1(2H)-yl)methyl)benzonitrile; ansmethoxycyclohexyl)methyl)(4-methyl(1H-1,2,4-triazolyl)pyridinyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 3-(7-oxo(2-(tetrahydro-2H-pyranyl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin yl)benzamide; -(8-((transmethoxycyclohexyl)methyl)oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin- 2-yl)methylpicolinamide; 3-((7-(6-(2-hydroxypropanyl)pyridinyl)oxo-3,4-dihydropyrazino[2,3-b]pyrazin- 1(2H)-yl)methyl)benzonitrile; 7-(6-(2-hydroxypropanyl)pyridinyl)((1R,3R)methoxycyclopentyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)((1S,3R)methoxycyclopentyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)((1S,3S)methoxycyclopentyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 2-hydroxypropanyl)pyridinyl)((1R,3S)methoxycyclopentyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-indazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(2-methyl(4H-1,2,4-triazolyl)pyridinyl)(2-morpholinoethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(transhydroxycyclohexyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; hydroxycyclohexyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(2-morpholinoethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 1-isopropyl(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(1H-imidazo[4,5-b]pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- opyrazino[2,3-b]pyrazin-2(1H)-one; 1-((cismethoxycyclohexyl)methyl)(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(transhydroxycyclohexyl)(6-(2-hydroxypropanyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(cishydroxycyclohexyl)(6-(2-hydroxypropanyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 4-(7-oxo(2-(tetrahydro-2H-pyranyl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin yl)benzamide; indazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(1H-pyrrolo[2,3-b]pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-methyl(4H-1,2,4-triazolyl)pyridinyl)(tetrahydro-2H-pyranyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-((1S,3R)methoxycyclopentyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; ,3R)methoxycyclopentyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-((1R,3S)methoxycyclopentyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-((1S,3S)methoxycyclopentyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(1H-indolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 1-ethyl(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(1H-indolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; 7-(4-(2-hydroxypropanyl)phenyl)(transmethoxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(tetrahydro-2H-pyranyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-((transmethoxycyclohexyl)methyl)(2-methyl(1H-1,2,4-triazolyl)pyridinyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)((cismethoxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(2-methoxyethyl)(4-methyl(methylamino)-1H-benzo[d]imidazolyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(7-methyloxo-2,3-dihydro-1H-benzo[d]imidazolyl)((tetrahydro-2H-pyran yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-methyl(4H-1,2,4-triazolyl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(2-methoxyethyl)(4-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-benzyl(2-methyl(4H-1,2,4-triazolyl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin- one; 7-(3-fluoro(4H-1,2,4-triazolyl)phenyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(3-fluoro(4H-1,2,4-triazolyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- opyrazino[2,3-b]pyrazin-2(1H)-one; 7-(3-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(2-methoxyethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(transmethoxycyclohexyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(transmethoxycyclohexyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; luoromethyl(4H-1,2,4-triazolyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(3-fluoromethyl(1H-1,2,4-triazolyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(2-methoxyethyl)(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)((transmethoxycyclohexyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(cyclopentylmethyl)(6-(2-hydroxypropanyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(4-(2-hydroxypropanyl)phenyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one; (S)(6-(1-hydroxyethyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; (R)(6-(1-hydroxyethyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-methyl(4H-1,2,4-triazolyl)pyridinyl)((tetrahydro-2H-pyranyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(4-(2-hydroxypropanyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(4-(trifluoromethyl)benzyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(3-(trifluoromethyl)benzyl)-3,4- opyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(3-methoxypropyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(4-methyl(1H-1,2,4-triazolyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)- hydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(2-methoxyethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)((tetrahydro-2H-pyranyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(4-methyl(methylamino)-1H-benzo[d]imidazolyl)((tetrahydro-2H-pyran hyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-aminomethyl-1H-benzo[d]imidazolyl)((tetrahydro-2H-pyranyl)methyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-methyl(4H-1,2,4-triazolyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; (R)(6-(2-hydroxypropanyl)pyridinyl)methyl(2-(tetrahydro-2H-pyran yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; (S)(6-(2-hydroxypropanyl)pyridinyl)methyl(2-(tetrahydro-2H-pyran yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)-3,3-dimethyl(2-(tetrahydro-2H-pyran yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-aminomethyl-1H-benzo[d]imidazolyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(6-(2-hydroxypropanyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 7-(2-methyl(1H-1,2,4-triazolyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1H-1,2,4-triazolyl)phenyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; 1-(1-hydroxypropanyl)(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one; and 1-(2-hydroxyethyl)(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one, and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, metabolites, isotopologues and prodrugs thereof. 4.3 METHODS FOR MAKING TOR KINASE INHIBITORS The TOR kinase inhibitors can be obtained via standard, well-known synthetic methodology, see e.g., March, J. ed Organic Chemistry; Reactions Mechanisms, and Structure, 4th ed., 1992. ng materials useful for ing compounds of formula (III) and ediates therefore, are commercially available or can be prepared from commercially available materials using known synthetic methods and reagents.
Particular methods for preparing compounds of formula (I) are sed in U.S. Patent No. 8,110,578, issued February 7, 2012, and U.S. Patent No. 8,569,494, issued r 29, 2013, each incorporated by reference herein in their entirety. 4.4 SECOND ACTIVE AGENTS Second active agents useful in combination with the TOR kinase inhibitors are provided below. 4.4.1 Histone Deacetylase (HDAC) inhibitors Second active agents ed herein are HDAC inhibitors. In certain embodiments, the HDAC inhibitor is Belinostat (PXD101), MS-275 (Entinostat or SNDX- 275) or Romidepsin (Istodax®). psin is a natural product which was isolated from Chromobacterium eum by Fujisawa Pharmaceuticals (Published Japanese Patent Application No. 64872, U.S. Patent 4,977,138, issued December 11, 1990, Ueda et al., J. Antibiot ) - 310, 1994; Nakajima et al., Exp Cell Res 241:126-133, 1998; and WO 02/20817; each of which is incorporated herein by reference. It is a bicyclic peptide consisting of four amino acid residues (D-valine, D-cysteine, dehydrobutyrine, and L-valine) and a novel acid (3- hydroxymercaptoheptenoic acid) containing both amide and ester bonds. In addition to the production from C. violaceum using fermentation, romidepsin can also be prepared by synthetic or ynthetic means. The total synthesis of romidepsin reported by Kahn et al. involves 14 steps and yields romidepsin in 18% overall yield (Kahn et al. J. Am. Chem. Soc. 118:7237-7238, 1996).
The chemical name of romidepsin is (1S,4S,7Z,10S,16E,21R)ethylidene- 4,21-bis(1-methylethyl)oxa-12,13-dithia-5,8,20,23-tetrazabicyclo[8.7.6]tricosene- 3,6,9,19,22-pentone. The empirical formula is C24H36N4O6S2. The lar weight is 540.71. At room temperature, romidepsin is a white powder.
The structure of romidepsin is shown below (formula I): (I). psin has been shown to have anti-microbial, immunosuppressive, and anti-tumor activities. It was tested, for example, for use in treating ts with hematological malignancies (e.g, ous T-cell lymphoma (CTCL), peripheral T-cell lymphoma (PTCL), multiple myeloma, etc.) and solid tumors (e.g., prostate cancer, pancreatic cancer, etc.) and is thought to act by selectively inhibiting deacetylases (e.g., histone deacetylase, tubulin deacetylase), thus promising new targets for the development of a new class of anti-cancer ies (Nakajima et al., Exp Cell Res 241:126-133, 1998). One mode of action of psin involves the inhibition of one or more classes of histone deacetylases (HDAC). Preparations and purification of romidepsin is described, for e, in U.S. Patent 4,977,138 and International PCT Application Publication WO 02/20817, each of which is incorporated herein by nce.
Exemplary forms of romidepsin include, but are not limited to, salts, esters, pro-drugs, isomers, isomers (e.g., enantiomers, diastereomers), tautomers, protected forms, reduced forms, ed forms, derivatives, and combinations thereof, with the desired activity (e.g., deacetylase inhibitory ty, aggressive inhibition, cytotoxicity). In certain embodiments, romidepsin is a pharmaceutical grade material and meets the standards of the U.S. Pharmacopoeia, Japanese Pharmacopoeia, or European Pharmacopoeia. In certain embodiments, the romidepsin is at least 95%, at least 98%, at least 99%, at least 99.9%, or at least 99.95% pure. In certain embodiments, the romidepsin is at least 95%, at least 98%, at least 99%, at least 99.9%, or at least 99.95% monomeric. In certain embodiments, no impurities are detectable in the romidepsin als (e.g., oxidized material, reduced material, dimerized or erized material, side products, etc.). psin typically includes less than 1.0%, less than 0.5%, less than 0.2%, or less than 0.1% of total other unknowns. The purity of psin may be assessed by appearance, HPLC, specific rotation, NMR spectroscopy, IR spectroscopy, UV/Visible spectroscopy, powder x-ray diffraction (XRPD) analysis, elemental analysis, LC-mass spectroscopy, or mass oscopy.
Romidepsin is sold under the tradename Istodax® and is approved in the United States for the treatment of cutaneous T-cell lymphoma (CTCL) in patients who have received at least one prior systemic therapy, and for the treatment of peripheral T-cell lymphoma (PTCL) in patients who have received at least one prior therapy. 4.5 METHODS OF USE Provided herein are methods for treating or preventing a cancer, comprising administering an effective amount of a TOR kinase inhibitor and an effective amount of a second active agent to a t having a cancer.
In certain embodiments, the cancer is a bloodborne tumor.
In certain embodiments, the cancer is a lymphoma, a leukemia or a multiple myeloma.
In certain embodiments, the cancer is non-Hodgkin’s lymphoma. In certain embodiments, the non-Hodgkin’s lymphoma is diffuse large B-cell ma (DLBCL), follicular lymphoma (FL), acute d leukemia (AML), mantle cell ma (MCL), or ALK+ anaplastic large cell lymphoma. In one embodiment, the non-Hodgkin’s lymphoma is advanced solid non-Hodgkin’s lymphoma. In one embodiment, the non-Hodgkin’s lymphoma is diffuse large B-cell lymphoma (DLBCL).
In certain embodiments, the cancer is diffuse large B-cell lymphoma (DLBCL).
In certain embodiments, the cancer is a B-cell lymphoma.
In n embodiments, the B-cell lymphoma is a B-cell non-Hodgkin’s lymphoma selected from diffuse large B-cell lymphoma, Burkitt’s lymphoma/leukemia, mantle cell lymphoma, tinal (thymic) large B-cell lymphoma, ular lymphoma, marginal zone lymphoma (including odal marginal zone B-cell lymphoma and nodal marginal zone B-cell lymphoma), lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. In some embodiments, the B-cell lymphoma is chronic lymphocytic leukemia/small lymphocytic lymphoma LL). In one embodiment, the B-cell lymphoma is Waldenstrom macroglobulinemia. In other embodiments, the CLL is characterized as the small lymphocytic lymphoma (SLL) variant of CLL.
In one embodiment, the B-cell non-Hodgkin’s lymphoma is refractory B-cell non-Hodgkin’s lymphoma. In one embodiment, the B-cell non-Hodgkin’s lymphoma is relapsed B-cell non-Hodgkin’s lymphoma.
In n embodiments, the cancer is a T-cell lymphoma. In one embodiment, the T-cell lymphoma is peripheral T-cell lymphoma, or cutaneous T-cell lymphoma.
The B-cell ers c cytic leukemia/small lymphocytic lymphoma (CLL/SLL) represent 2 ends of a spectrum of the same disease process differing in the degree of blood/marrow involvement (CLL) versus lymph node involvement (SLL).
In other embodiments, the cancer is a multiple myeloma.
In certain embodiments, the cancer is a cancer of the head, neck, eye, mouth, throat, esophagus, bronchus, , pharynx, chest, bone, lung, colon, rectum, stomach, prostate, urinary bladder, uterine, cervix, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system.
In other embodiments, the cancer is a solid tumor. In n embodiments, the solid tumor is a ed or refractory solid tumor.
In one embodiment, the solid tumor is a neuroendocrine tumor. In certain embodiments, the neuroendocrine tumor is a neuroendocrine tumor of gut origin. In certain embodiments, the neuroendocrine tumor is of non-pancreatic origin. In certain embodiments, the neuroendocrine tumor is non-pancreatic of gut origin. In certain embodiments, the neuroendocrine tumor is of unknown primary origin. In n embodiments, the neuroendocrine tumor is a symptomatic endocrine producing tumor or a nonfunctional tumor.
In certain embodiments, the neuroendocrine tumor is locally unresectable, metastatic moderate, well differentiated, low (grade 1) or intermediate (grade 2).
In one ment, the solid tumor is non-small cell lung cancer (NSCLC).
In another ment, the solid tumor is astoma multiforme (GBM).
] In another embodiment, the solid tumor is a carcinoma.
In another embodiment, the solid tumor is ductal carcinoma.
In r embodiment, the solid tumor is adenocarcinoma.
In another embodiment, the solid tumor is hepatocellular carcinoma (HCC).
In r embodiment, the solid tumor is breast cancer. In one embodiment, the breast cancer is hormone receptor positive. In one embodiment, the breast cancer is estrogen receptor positive (ER+, ER+/Her2 or ER+/Her2+). In one embodiment, the breast cancer is estrogen or ve (ER-/Her2+). In one embodiment, the breast cancer is triple negative (TN) (breast cancer that does not express the genes and/or protein corresponding to the estrogen receptor (ER), progesterone receptor (PR), and that does not overexpress the eu protein).
In another embodiment, the solid tumor is colorectal cancer (CRC).
In another embodiment, the solid tumor is salivary cancer.
In another embodiment, the solid tumor is atic .
In another embodiment, the solid tumor is adenocystic cancer.
In another embodiment, the solid tumor is adrenal .
In another ment, the solid tumor is esophageal , renal cancer, leiomyosarcoma, or paraganglioma.
In one embodiment, the solid tumor is an advanced solid tumor.
In another embodiment, the cancer is head and neck squamous cell carcinoma.
In another embodiment, the cancer is E-twenty six (ETS) overexpressing castration-resistant prostate cancer.
In another embodiment, the cancer is E-twenty six (ETS) overexpressing Ewings sarcoma.
In other embodiments, the cancer is a cancer associated with the pathways involving mTOR, PI3K, or Akt kinases and mutants or isoforms thereof. Other cancers within the scope of the methods provided herein e those associated with the pathways of the following kinases: PI3K, PI3K, PI3K, KDR, GSK3, GSK3, ATM, ATX, ATR, cFMS, and/or DNA-PK kinases and mutants or isoforms thereof. In some embodiments, the s associated with mTOR/ PI3K/Akt pathways include solid and blood-borne tumors, for example, multiple myeloma, mantle cell lymphoma, diffused large B-cell lymphoma, acute myeloid lymphoma, follicular lymphoma, chronic cytic leukemia; and solid tumors, for e, breast, lung, endometrial, ovarian, gastric, cervical, and prostate cancer; glioblastoma; renal carcinoma; hepatocellular carcinoma; colon oma; neuroendocrine tumors; head and neck ; and sarcomas, such as Ewing’s sarcoma.
In certain embodiments, ed herein are methods for achieving an International Workshop on Chronic Lymphocytic Leukemia (IWCLL) response definition of a complete se, partial response or stable e in a patient having chronic lymphocytic ia, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving a Response Evaluation Criteria in Solid Tumors (for example, RECIST 1.1) of complete response, partial response or stable e in a patient having a solid tumor, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving a National Cancer ute-Sponsored Working Group on Chronic Lymphocytic Leukemia (NCI-WG CLL) response definition of te response, partial response or stable disease in a patient having leukemia, comprising stering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain ments, provided herein are methods for achieving a Prostate Cancer Working Group 2 (PCWG2) Criteria of complete response, partial response or stable disease in a patient having te cancer, comprising administering an effective amount of a TOR kinase inhibitor in ation with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving an International Workshop Criteria (IWC) for non-Hodgkin’s lymphoma of complete response, partial response or stable disease in a patient having non-Hodgkin’s lymphoma, comprising stering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving an International Uniform Response Criteria (IURC) for multiple myeloma of complete se, partial response or stable disease in a patient having multiple myeloma, comprising administering an effective amount of a TOR kinase inhibitor in ation with a second active agent to said patient. In certain embodiments, provided herein are methods for achieving a Responses Assessment for Neuro-Oncology (RANO) Working Group for glioblastoma multiforme of complete response, partial response or stable disease in a patient having glioblastoma multiforme, comprising administering an effective amount of a TOR kinase inhibitor in combination with a second active agent to said t.
In n embodiments, provided herein are s for increasing survival without disease progression of a patient having a , comprising administering an effective amount of a TOR kinase inhibitor in combination with an effective amount of a second active agent to said patient.
In certain embodiments, provided herein are methods for treating a cancer, the methods comprising administering an effective amount of a TOR kinase inhibitor in combination with an effective amount of a second active agent to a patient having a cancer, wherein the treatment results in prevention or retarding of clinical progression, such as -related cachexia or increased pain.
In some embodiments, provided herein are methods for treating a cancer, the methods comprising administering an effective amount of a TOR kinase inhibitor in combination with an effective amount of a second active agent to a patient having a B-cell ma, wherein the treatment results in one or more of inhibition of disease progression, increased Time To Progression (TTP), increased Progression Free Survival (PFS), and/or increased Overall Survival (OS), among .
In some embodiments, the TOR kinase inhibitor is a compound as described herein. In one embodiment, the TOR kinase inhibitor is a compound of formula (I). In one embodiment, the TOR kinase inhibitor is a nd from Table A. In one embodiment, the TOR kinase inhibitor is Compound 1 (a TOR kinase inhibitor set forth herein having molecular formula C16H16N8O). In one embodiment, the TOR kinase inhibitor is Compound 2 (a TOR kinase inhibitor set forth herein having molecular a C21H27N5O3). In one embodiment, the TOR kinase tor is Compound 3 (a TOR kinase tor set forth herein having molecular formula C20H25N5O3). In one embodiment, the TOR kinase inhibitor is nd 4 (a TOR kinase inhibitor set forth herein having molecular formula C21H24N8O2). In another embodiment, Compound 1 is l(2-methyl(1H-1,2,4- triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, or a tautomer thereof, for example, l(2-methyl(4H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one, or 1-ethyl(2-methyl(1H-1,2,4-triazol yl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one. In one embodiment, Compound 2 is 7-(6-(2-hydroxypropanyl)pyridinyl)((1r,4r)methoxycyclohexyl)- 3,4-dihydropyrazino-[2,3-b]pyrazin-2(1H)-one, alternatively named 7-(6-(2-hydroxypropan- 2-yl)pyridinyl)((trans)methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin- 2(1H)-one, or 7-(6-(2-hydroxypropanyl)pyridinyl)((1R*,4R*) methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one. In another embodiment, Compound 3 is 1-((trans)hydroxycyclohexyl)(6-(2-hydroxypropanyl)pyridinyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, alternatively named 1-((1r,4r) hydroxycyclohexyl)(6-(2-hydroxypropanyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one. In another embodiment, Compound 4 is 7-(2-methyl(4H-1,2,4- triazolyl)pyridinyl)(2-(tetrahydro-2H-pyranyl)ethyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one. In one embodiment, Compound 3 is a metabolite of Compound 2.
A TOR kinase inhibitor administered in combination with a second active agent can be further combined with radiation therapy or surgery. In certain embodiments, a TOR kinase inhibitor is administered in combination with a second active agent to t who is undergoing radiation y, has previously undergone ion therapy or will be oing radiation therapy. In certain embodiments, a TOR kinase inhibitor is administered in combination with a second active agent to a patient who has undergone y, such as tumor removal surgery.
Further provided herein are methods for treating patients who have been previously treated for a cancer, as well as those who have not previously been d.
Because patients with a a cancer have heterogenous al stations and varying clinical outcomes, the treatment given to a patient may vary, depending on his/her prognosis.
The skilled clinician will be able to readily determine without undue experimentation specific secondary agents, types of surgery, and types of non-drug based standard y that can be ively used to treat an individual patient with a cancer.
In certain ments, a TOR kinase inhibitor is administered in combination with a second active agent to a patient in cycles. Cycling therapy involves the administration of an active s) for a period of time, followed by a rest for a period of time, and repeating this sequential administration. Cycling therapy can reduce the development of resistance, avoid or reduce the side effects, and/or improves the efficacy of the treatment.
In some embodiments, a second active agent is administered twice daily, or BID, whereas a TOR kinase inhibitor is administered once daily, or QD. Alternatively and/or additionally, a second active agent may be administered once or twice daily for one or more 28-day cycles, whereas a TOR kinase inhibitor may be stered once daily for days 1 h 21 of one or more 28-day cycles. In some ments, a second active agent is administered twice daily on days 1 through 28 of one or more 28-day cycles and a TOR kinase tor is administered once daily on days 2 through 22 of one or more 28-day cycles. In some embodiments, a second active agent is administered twice daily on days 1 through 28 of one or more 28-day cycles and a TOR kinase inhibitor is administered once daily on days 1 through 28 of one or more 28-day cycles.
In some ments, the provided methods comprise administering a second active agent in combination with a TOR kinase tor daily for a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days. In some embodiments, a treatment regimen comprises at least one 28-day cycle. As used herein, the term “28-day cycle” means that the combination of a second active agent and a TOR kinase inhibitor is administered to a patient in need thereof for 28 consecutive days. In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered for at least one 28-day cycle. In some embodiments, the ation of a second active agent and a TOR kinase inhibitor is stered for at least two, at least three, at least four, at least five or at least six 28-day cycles. In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered for at least seven, at least eight, at least nine, at least ten, at least eleven or at least twelve 28-day cycles.
In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered for at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen or at least eighteen 28-day cycles.
In some embodiments, the combination of a second active agentand a TOR kinase inhibitor is administered for at least eighteen 28-day , and a second active agent is further administered for at least one additional 28-day cycle. In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered for at least eighteen 28-day cycles, and a second active agent is further administered for at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven or at least twelve additional 28-day cycles. In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered for at least eighteen 28-day cycles, and a second active agent is further stered for at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty-one, at least twenty-two, at least twenty-three or at least twenty-four additional 28-day cycles. In some embodiments, the combination of a second active agent and a TOR kinase inhibitor is administered to a patient for the duration of the t’s life. In some embodiments, the combination of a second active agent and a TOR kinase tor is administered for at least eighteen 28-day cycles, and a second active agent is further administered for the on of the patient’s life. In some embodiments, a second active agent is administered on days 1 through 28 (for example, one dose each day or two doses each day) of each 28-day cycle and a second active agent is administered on days 1 through 21 (for e, one dose each day) of one or more 28-day cycles. In some embodiments, a second active agent is administered on days 1 through 28 of one or more 28- day cycles and a second active agent is administered on days 2 through 22 of one or more 28- day cycles.
In some embodiments, two nt 28-day cycles may be separated by a rest period. Such a rest period may be one, two, three, four, five, six, seven or more days during which the patient is not administered either or both a second active agent and a TOR kinase inhibitor. In a preferred embodiment, two adjacent 28-day cycles are continuous.
In one ment, a TOR kinase inhibitor is administered in combination with a second active agent daily in single or divided doses for about 3 days, about 5 days, about one week, about two weeks, about three weeks, about four weeks (e.g., 28 days), about five weeks, about six weeks, about seven weeks, about eight weeks, about ten weeks, about fifteen weeks, or about twenty weeks, followed by a rest period of about 1 day to about ten weeks. In one embodiment, the methods provided herein contemplate g treatments of about one week, about two weeks, about three weeks, about four weeks, about five weeks, about six weeks, about eight weeks, about ten weeks, about fifteen weeks, or about twenty weeks. In some embodiments, a TOR kinase inhibitor is administered in combination with a second active agent in single or divided doses for about 3 days, about 5 days, about one week, about two weeks, about three weeks, about four weeks (e.g., 28 days), about five weeks, or about six weeks with a rest period of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, or 30 days. In some embodiments, the rest period is 1 day. In some embodiments, the rest period is 3 days. In some embodiments, the rest period is 7 days. In some embodiments, the rest period is 14 days. In some embodiments, the rest period is 28 days. The frequency, number and length of dosing cycles can be increased or decreased.
In one embodiment, the methods provided herein comprise: i) administering to the subject a first daily dose of a TOR kinase inhibitor in combination with a second active agent; ii) optionally resting for a period of at least one day where a second active agent is not administered to the subject; iii) administering a second dose of a TOR kinase inhibitor in combination with a second active agent to the subject; and iv) repeating steps ii) to iii) a plurality of times.
In one embodiment, the methods ed herein comprise administering to the subject a dose of a second active agent on day 1, followed by administering a TOR kinase tor in combination with a second active agent to the subject on day 2 and subsequent days.
In certain embodiments, a TOR kinase inhibitor in ation with a second active agent is stered continuously for between about 1 and about 52 weeks. In n embodiments, a TOR kinase inhibitor in combination with a second active agent is administered continuously for about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months. In certain embodiments, a TOR kinase inhibitor in combination with a second active agent is administered continuously for about 7, about 14, about 21, about 28, about 35, about 42, about 84, or about 112 days.
In certain embodiments, when a TOR kinase inhibitor is administered in combination with a second active agent, the TOR kinase inhibitor is administered continuously for 28 days, while a second active agent is administered continuously for 21 days followed by 7 days without administration of a second active agent. In one embodiment, in a 28 day cycle, a second active agent is administered alone on Day 1, a second active agent and the TOR kinase inhibitor are administered in combination on Days 2- 21 and the TOR kinase inhibitor is administered alone on Days 22-28. In some such ments, starting with Cycle 2 both a second active agent and the TOR kinase tor are administered on Day 1, a second active agent is continued through Day 21, while the TOR kinase inhibitor is continued through Day 28. The 28 day cycles, as described above, can be ued for as long needed, such as for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months or longer.
] In certain ments, when a TOR kinase inhibitor is administered in combination with a second active agent, in a 28 day cycle, a second active agent is administered alone on Days 1-7 and the TOR kinase inhibitor is administered alone on Days 8-28. Such 28 day cycles can be continued for as long needed, such as for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months or longer.
In n embodiments, when a TOR kinase inhibitor is administered in combination with a second active agent, the TOR kinase inhibitor is administered at an amount of about 2.5 mg to about 50 mg per day (such as about 2.5 mg, about 10 mg, about 15 mg, about 16 mg/day, about 20 mg, about 30 mg or about 45 mg per day) and a second active agent is administered at an amount of about 125 mg to about 1250 mg per day (such as about mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day). In certain embodiments, about 2.5 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 10 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 15 mg per day of a TOR kinase inhibitor is stered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 16 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 20 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 30 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. In certain embodiments, about 45 mg per day of a TOR kinase inhibitor is administered in combination with about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 375 mg, about 500 mg, about 750 mg, about 1000 mg or about 1250 mg per day of a second active agent. A TOR kinase inhibitor and a second active agent can each be independently administered once (QD), twice (BD) or three times (TID) per day.
In some embodiments, methods provided herein comprise administering to a patient in need thereof a therapeutically effective amount of a TOR kinase inhbitor in combination with a second active agent, wherein the therapeutically effective amount of a second active agent is about 250 mg to about 1250 mg per day. In some embodiments, the therapeutically effective amount of a second active agent is stered as one or more et doses. For example, in some embodiments, a therapeutically effective amount of a second active agent is 250 mg per day, n the therapeutically effective amount is administered as 125 mg twice daily (BID). In some ments, a eutically effective amount of a second active agent is 500 mg per day, n the therapeutically effective amount is administered as 250 mg twice daily (BID). In some embodiments, a therapeutically effective amount of a second active agent is 750 mg per day, wherein the therapeutically effective amount is administered as 375 mg twice daily (BID). In some embodiments, a therapeutically effective amount of a second active agent is 1000 mg per day, wherein the therapeutically effective amount is administered as 500 mg twice daily (BID).
In some embodiments, methods provided herein comprise stering to a patient in need thereof a therapeutically effective amount of a TOR kinase inhibitor in combination with a second active agent, wherein the therapeutically effective amount of a second active agent is about 125 mg to about 1250 mg per day, or about 125 mg to about 1125 mg per day, or about 125 mg to about 1000 mg per day, or about 125 mg to about 875 mg per day, or about 125 mg to about 750 mg per day, or about 125 mg to about 625 mg per day, or about 125 mg to about 500 mg per day, or about 125 mg to about 375 mg per day, or about 125 mg to about 250 mg per day, or about 250 mg to about 1250 mg per day, or about 250 mg to about 1125 mg per day, or about 250 mg to about 1000 mg per day, or about 250 mg to about 875 mg per day, or about 250 mg to about 750 mg per day, or about 250 mg to about 625 mg per day, or about 250 mg to about 500 mg per day, or about 250 mg to about 375 mg per day, or about 375 mg to about 1250 mg per day, or about 375 mg to about 1125 mg per day, or about 375 mg to about 1000 mg per day, or about 375 mg to about 875 mg per day, or about 375 mg to about 750 mg per day, or about 375 mg to about 625 mg per day, or about 375 mg to about 500 mg per day, or about 500 mg to about 1250 mg per day, or about 500 mg to about 1125 mg per day, or about 500 mg to about 1000 mg per day, or about 500 mg to about 875 mg per day, or about 500 mg to about 750 mg per day, or about 500 mg to about 625 mg per day, or about 625 mg to about 1250 mg per day, or about 625 mg to about 1125 mg per day, or about 625 mg to about 1000 mg per day, or about 625 mg to about 875 mg per day, or about 625 mg to about 750 mg per day, or about 750 mg to about 1250 mg per day, or about 750 mg to about 1125 mg per day, or about 750 mg to about 1000 mg per day, or about 875 mg to about 1250 mg per day, or about 875 mg to about 1125 mg per day, or about 875 mg to about 1000 mg per day.
In some embodiments, methods provided herein comprise administering to a patient in need thereof a therapeutically effective amount of a TOR kinase inhibitor in combination with a second active agent, wherein the eutically effective amount of a second active agent per day is about 125 mg, 130 mg, 135 mg, 140 mg, 145 mg, 150 mg, 155 mg, 160 mg, 165 mg, 170 mg, 175 mg, 180 mg, 185 mg, 190 mg, 195 mg, 200 mg, 205 mg, 210 mg, 215 mg, 220 mg, 225 mg, 230 mg, 235 mg, 240 mg, 245 mg, 250 mg, 255 mg, 260 mg, 265 mg, 270 mg, 275 mg, 280 mg, 285 mg, 290 mg, 295 mg, 300 mg, 305 mg, 310 mg, 315 mg, 320 mg, 325 mg, 330 mg, 335 mg, 340 mg, 345 mg, 350 mg, 355 mg, 360 mg, 365 mg, 370 mg, 375 mg, 380 mg, 385 mg, 390 mg, 395 mg, 400 mg, 405 mg, 410 mg, 415 mg, 420 mg, 425 mg, 430 mg, 435 mg, 440 mg, 445 mg, 450 mg, 455 mg, 460 mg, 465 mg, 470 mg, 475 mg, 480 mg, 485 mg, 490 mg, 495 mg, 500 mg, 505 mg, 510 mg, 515 mg, 520 mg, 525 mg, 530 mg, 535 mg, 540 mg, 545 mg, 550 mg, 555 mg, 560 mg, 565 mg, 570 mg, 575 mg, 580 mg, 585 mg, 590 mg, 595 mg, 600 mg, 605 mg, 610 mg, 615 mg, 620 mg, 625 mg, 630 mg, 635 mg, 640 mg, 645 mg, 650 mg, 655 mg, 660 mg, 665 mg, 670 mg, 675 mg, 680 mg, 685 mg, 690 mg, 695 mg, 700 mg, 705 mg, 710 mg, 715 mg, 720 mg, 725 mg, 730 mg, 735 mg, 740 mg, 745 mg, 750 mg, 755 mg, 760 mg, 765 mg, 770 mg, 775 mg, 780 mg, 785 mg, 790 mg, 795 mg, 800 mg, 805 mg, 810 mg, 815 mg, 820 mg, 825 mg, 830 mg, 835 mg, 840 mg, 845 mg, 850 mg, 855 mg, 860 mg, 865 mg, 870 mg, 875 mg, 880 mg, 885 mg, 890 mg, 895 mg, 900 mg, 905 mg, 910 mg, 915 mg, 920 mg, 925 mg, 930 mg, 935 mg, 940 mg, 945 mg, 950 mg, 955 mg, 960 mg, 965 mg, 970 mg, 975 mg, 980 mg, 985 mg, 990 mg, 995 mg, 1000 mg, 1005 mg, 1010 mg, 1015 mg, 1020 mg, 1025 mg, 1030 mg, 1035 mg, 1040 mg, 1045 mg, 1050 mg, 1055 mg, 1060 mg, 1065 mg, 1070 mg, 1075 mg, 1080 mg, 1085 mg, 1090 mg, 1095 mg, 1100 mg, 1105 mg, 1110 mg, 1115 mg, 1120 mg, 1125 mg, 1130 mg, 1135 mg, 1140 mg, 1145 mg, 1150 mg, 1155 mg, 1160 mg, 1165 mg, 1170 mg, 1175 mg, 1180 mg, 1185 mg, 1190 mg, 1195 mg, 1200 mg, 1205 mg, 1210 mg, 1215 mg, 1220 mg, 1225 mg, 1230 mg, 1235 mg, 1240 mg, 1245 mg or 1250 mg.
In some embodiments, the methods of treatment provided herein comprise administering to a patient in need thereof about 125 mg BID to about 500 mg BID a second active agent in combination with about 2.5 mg to about 50 mg per day (such as about 2.5 mg, about 10 mg, about 15 mg, about 16 mg/day, about 20 mg, about 30 mg or about 45 mg per day) of a TOR kinase inhibitor. In some embodiments, provided methods comprise administering to a patient in need thereof 375 mg BID to about 500 mg BID a second active agent in combination with about 2.5 mg to about 50 mg (such as about 2.5 mg, about 10 mg, about 15 mg, about 16 mg/day, about 20 mg, about 30 mg or about 45 mg per day) of a TOR kinase inhibitor. 4.6 PHARMACEUTICAL COMPOSITIONS AND ROUTES OF ADMINISTRATION Provided herein are compositions comprising an effective amount of a TOR kinase tor and an effective amount of a second active agent and compositions sing an effective amount of a TOR kinase tor and a second active agent and a pharmaceutically able carrier or vehicle. [00189A] In a particular embodiment, provided herein is a pharmaceutical composition comprising 1-ethyl(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, ate, solvate, stereoisomer, tautomer or isotopologue thereof, a histone deacetylase tor, and a pharmaceutically acceptable carrier or vehicle.
In some embodiments, the pharmaceutical itions described herein are suitable for oral, parenteral, mucosal, transdermal or topical administration.
The compositions can be administered to a patient orally or parenterally in the conventional form of preparations, such as capsules, microcapsules, s, granules, powder, troches, pills, suppositories, injections, suspensions and syrups. le formulations can be prepared by methods commonly employed using conventional, organic or inorganic additives, such as an excipient (e.g., sucrose, , mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate or calcium carbonate), a binder (e.g., ose, 53 (followed by 53A) methylcellulose, hydroxymethylcellulose, polypropylpyrrolidone, polyvinylpyrrolidone, gelatin, gum arabic, polyethyleneglycol, e or starch), a disintegrator (e.g., starch, carboxymethylcellulose, hydroxypropylstarch, low substituted hydroxypropylcellulose, sodium bicarbonate, calcium phosphate or calcium citrate), a lubricant (e.g., ium stearate, light anhydrous silicic acid, talc or sodium lauryl sulfate), a flavoring agent (e.g., 53A (followed by 54) citric acid, menthol, glycine or orange powder), a preservative (e.g, sodium benzoate, sodium bisulfite, methylparaben or propylparaben), a stabilizer (e.g., citric acid, sodium e or acetic acid), a suspending agent (e.g., cellulose, nyl pyrroliclone or aluminum stearate), a dispersing agent (e.g., hydroxypropylmethylcellulose), a diluent (e.g., , and base wax (e.g., cocoa butter, white petrolatum or polyethylene glycol). The effective amount of the TOR kinase inhibitor in the pharmaceutical composition may be at a level that will exercise the desired effect; for example, about 0.005 mg/kg of a patient’s body weight to about 10 mg/kg of a patient’s body weight in unit dosage for both oral and parenteral administration.
The dose of a TOR kinase tor and the dose of a second active agent to be administered to a patient is rather widely variable and can be subject to the judgment of a -care practitioner. In general, the TOR kinase inhibitors and a second active agent can be administered one to four times a day in a dose of about 0.005 mg/kg of a patient’s body weight to about 10 mg/kg of a t’s body weight in a patient, but the above dosage may be properly varied depending on the age, body weight and medical condition of the patient and the type of administration. In one embodiment, the dose is about 0.01 mg/kg of a patient’s body weight to about 5 mg/kg of a patient’s body , about 0.05 mg/kg of a patient’s body weight to about 1 mg/kg of a patient’s body weight, about 0.1 mg/kg of a patient’s body weight to about 0.75 mg/kg of a patient’s body weight or about 0.25 mg/kg of a patient’s body weight to about 0.5 mg/kg of a patient’s body weight. In one embodiment, one dose is given per day. In any given case, the amount of the TOR kinase inhibitor administered will depend on such factors as the solubility of the active component, the formulation used and the route of administration.
In another embodiment, provided herein are unit dosage formulations that comprise between about 1 mg and about 2000 mg, about 1 mg and about 200 mg, about mg and about 1400 mg, about 125 mg and about 1000 mg, about 250 mg and about 1000 mg, about 500 mg and about 1000 mg, about 1 mg to about 30 mg, about 1 mg to about mg or about 2.5 mg to about 20 mg of a TOR kinase inhibitor alone or in combination with a second active agent. In another embodiment, provided herein are unit dosage formulations that comprise 1 mg, 2.5 mg, 5 mg, 7.5 mg, 8 mg, 10 mg, 15 mg, 20 mg, 30 mg, mg, 45 mg, 50 mg, 70 mg, 100 mg, 125 mg, 140 mg, 175 mg, 200 mg, 250 mg, 280 mg, 350 mg, 500 mg, 560 mg, 700 mg, 750 mg, 1000 mg or 1400 mg of a TOR kinase inhibitor alone or in combination with a second active agent. In another embodiment, provided herein are unit dosage formulations that comprise about 2.5 mg, about 7.5 mg, about 8 mg, about 10 mg, about 15 mg, about 20 mg, about 30 mg or about 45 mg of a TOR kinase inhibitor alone or in combination with a second active agent.
In a particular embodiment, provided herein are unit dosage formulations comprising about 7.5 mg, about 8 mg, about 10 mg, about 15 mg, about 30 mg, about 45 mg, about 50 mg, about 75 mg, about 100 mg or about 400 mg of a TOR kinase inhibitor in combination with a second active agent. In a ular embodiment, provided herein are unit dosage formulations comprising about 5 mg, about 7.5 mg or about 10 mg of a TOR kinase tor in combination with a second active agent.
In certain embodiments, provided herein are unit dosage formulations comprising about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg or about 250 mg of a second active agent alone or in combination with a TOR kinase inhibitor.
A TOR kinase inhibitor can be administered in combination with a second active agent once, twice, three, four or more times daily.
A TOR kinase inhibitor can be administered in combination with a second active agent orally for reasons of convenience. In one ment, when administered orally, a TOR kinase inhibitor in combination with a second active agent is administered with a meal and water. In another embodiment, the TOR kinase inhibitor in combination with a second active agent is dispersed in water or juice (e.g., apple juice or orange juice) and administered orally as a suspension. In another embodiment, when administered orally, a TOR kinase inhibitor in ation with a second active agent is administered in a fasted state.
The TOR kinase inhibitor can also be administered in combination with a second active agent intravenously, such as intravenous infusion, or subcutaneously, such as aneous injection. The mode of administration is left to the tion of the health-care tioner, and can depend in-part upon the site of the medical condition.
In one embodiment, provided herein are capsules containing a TOR kinase inhibitor in combination with a second active agent without an additional carrier, excipient or vehicle.
In another embodiment, provided herein are compositions comprising an effective amount of a TOR kinase tor, an effective amount of a second active agent, and a pharmaceutically acceptable carrier or e, wherein a ceutically acceptable carrier or vehicle can se an excipient, diluent, or a mixture thereof. In one embodiment, the composition is a pharmaceutical composition.
] The compositions can be in the form of tablets, chewable tablets, capsules, solutions, parenteral solutions, troches, suppositories and suspensions and the like.
Compositions can be ated to contain a daily dose, or a convenient fraction of a daily dose, in a dosage unit, which may be a single tablet or capsule or convenient volume of a liquid. In one embodiment, the solutions are prepared from water-soluble salts, such as the hydrochloride salt. In general, all of the compositions are prepared ing to known methods in pharmaceutical chemistry. Capsules can be prepared by mixing a TOR kinase inhibitor with a suitable carrier or diluent and filling the proper amount of the mixture in capsules. The usual carriers and diluents include, but are not limited to, inert powdered substances such as starch of many different kinds, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and e, grain flours and r edible powders.
Tablets can be prepared by direct compression, by wet granulation, or by dry granulation. Their formulations usually incorporate diluents, binders, lubricants and disintegrators as well as the compound. Typical diluents include, for example, various types of starch, e, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar. Powdered cellulose derivatives are also . In one embodiment, the pharmaceutical composition is lactose-free. Typical tablet binders are nces such as starch, gelatin and sugars such as lactose, fructose, glucose and the like. l and synthetic gums are also convenient, including acacia, alginates, methylcellulose, polyvinylpyrrolidine and the like. Polyethylene glycol, ethylcellulose and waxes can also serve as binders.
A lubricant might be necessary in a tablet formulation to prevent the tablet and punches from sticking in the die. The lubricant can be chosen from such slippery solids as talc, magnesium and m stearate, stearic acid and enated vegetable oils. Tablet egrators are substances that swell when wetted to break up the tablet and release the compound. They include starches, clays, celluloses, algins and gums. More particularly, corn and potato starches, methylcellulose, agar, ite, wood cellulose, powdered natural sponge, cation-exchange resins, alginic acid, guar gum, citrus pulp and carboxymethyl cellulose, for example, can be used as well as sodium lauryl sulfate. Tablets can be coated with sugar as a flavor and sealant, or with film-forming protecting agents to modify the dissolution properties of the tablet. The compositions can also be formulated as chewable tablets, for example, by using substances such as mannitol in the formulation.
When it is desired to administer a TOR kinase inhibitor in combination with a second active agent as a suppository, typical bases can be used. Cocoa butter is a traditional suppository base, which can be modified by addition of waxes to raise its melting point slightly. Water-miscible suppository bases comprising, particularly, polyethylene glycols of various molecular weights are in wide use.
The effect of the TOR kinase inhibitor in combination with a second active agent can be delayed or prolonged by proper formulation. For example, a slowly soluble pellet of the TOR kinase tor in combination with a second active agent can be prepared and incorporated in a tablet or capsule, or as a slow-release implantable device. The technique also es making s of several different dissolution rates and filling capsules with a mixture of the pellets. Tablets or capsules can be coated with a film that resists dissolution for a predictable period of time. Even the parenteral preparations can be made long-acting, by dissolving or suspending the TOR kinase inhibitor in combination with a second active agent in oily or emulsified vehicles that allow it to disperse slowly in the serum.
In some ments, a pharmaceutically acceptable composition comprising a second active agent ses from about 5% to about 60% of a second active agent, or a pharmaceutically acceptable salt thereof, based upon total weight of the composition. In some embodiments, a pharmaceutically acceptable composition comprising a second active agent comprises from about 5% to about 15% or about 7% to about 15% or about 7% to about 10% or about 9% to about 12% of a second active agent, based upon total weight of the composition. In some embodiments, provided methods comprise stering to a t in need thereof a ceutically acceptable ition comprising from about 25% to about 75% or about 30% to about 60% or about 40% to about 50% or about 40% to about 45% of a second active agent, based upon total weight of the formulation. In certain embodiments, provided regimens comprise administering to a patient in need thereof a pharmaceutically acceptable composition comprising from about 6%, about 7%, about 8%, about 9%, about %, about 11%, about 12%, about 13%, about 20%, about 30%, about 40%, about 41%, about 42%, about 43%, about 44%, about 45%, about 50%, about 60%, about 70%, or about 75% of a second active agent, based upon total weight of given composition or formulation.
In certain embodiments, the Compound 2 is administered in a formulation set forth in U.S. Patent Application Publication No. 2013-0142873, published June 6, 2013, which is incorporated herein in its ty (see particularly paragraph [0323] to paragraph , and paragraph [0636] to paragraph ). In other embodiments, the Compound 2 is administered in a formulation set forth in U.S. Provisional Patent Application No. ,506, filed May 29, 2013, which is incorporated herein in its entirety (see particularly paragraph [0246] to paragraph [0403], and paragraph [0571] to paragraph [0586]).
In certain embodiments, the Compound 1 is administered in a formulation set forth in U.S. Provisional Application No. 61/813,064, filed April 17, 2013, which is orated herein in its entirety (see particularly paragraph [0168] to paragraph [0189] and paragraph [0262] to paragraph ). In other embodiments, the Compound 1 is administered in a formulation set forth in U.S.
Provisional Patent Application No. 61/911,201, filed December 3, 2013, which is incorporated herein in its entirety (see particularly paragraph [0170] to paragraph [0190], and paragraph [0264] to paragraph [0296]). 4.7 KITS ] In certain embodiments, provided herein are kits sing a TOR kinase inhibitor and a second active agent, such as those described herein. [00209A] In a particular embodiment, provided herein is a kit comprising l(2-methyl (1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof, and a histone deacetylase inhibitor.
In certain ments, ed herein are kits comprising one or more unit dosage forms of a TOR kinase inhibitor, such as those described , and one or more unit dosage forms of a second active agent, such as those described herein.
In certain embodiments, the kits provided herein further comprise instructions for use, such as for administering a TOR kinase inhibitor and a second active agent, such as those described herein.
. EXAMPLES .1 CELL BASED ASSAYS Compound 1 Combinatorial Effects with Second Active Agents in Breast Cancer Cell Lines.
Anti-Proliferation Assay. Cells were thawed from a liquid nitrogen ved state.
Once cells expanded and divided at their expected doubling times, ing began. Cells were seeded in growth media in 384-well tissue culture treated plates at cell densities as listed in Table 1. 58 (followed by 58A) ] Table 1: Breast cancer cell line panel Cell Line Name Tumor Growth Media Cell Density (cells/well) BT-20 Carcinoma Eagles MEM with 10% FBS 500 BT-474 Carcinoma Hybri-Care with 10% FBS 500 BT-549 Carcinoma, Ductal RPMI with 10% FBS and 0.023 500 58A (followed by 59) Cell Line Name Tumor Growth Media Cell Density (cells/well) IU/ml Bovine Insulin HCC1187 Carcinoma, Ductal RPMI with 10% FBS 500 HCC-1428 Adenocarcinoma RPMI with 10% FBS 500 HCC1806 Carcinoma, Ductal RPMI with 10% FBS 500 7 Carcinoma, Ductal RPMI with 10% FBS 500 HCC70 Carcinoma, Ductal RPMI with 10% FBS 500 Carcinoma DMEM with 10% FBS and 500 HsT 0.01mg/ml Bovine Insulin Adenocarcinoma Eagles MEM with 10% FBS 500 MCF7 and 0.01mg/ml Bovine Insulin Carcinoma RPMI with 10% FBS (with 5% 500 MDA-MB-157 CO2) Adenocarcinoma RPMI with 10% FBS (with 5% 500 MDA-MB-231 CO2) Adenocarcinoma RPMI with 10% FBS (with 5% 500 MDA-MB-436 CO2) plus Supplements Adenocarcinoma RPMI with 10% FBS (with 5% 500 MDA-MB-453 CO2) Adenocarcinoma DMEM with 10% FBS (with 500 MDA-MB-468 % CO2) 0 Carcinoma, Ductal RPMI with 10% FBS 500 MDA-MB oma, Ductal RPMI with 10% FBS 500 Cells were equilibrated in assay plates via centrifugation and placed in incubators attached to the Dosing Modules at 37 °C for twenty-four hours before treatment.
At the time of treatment, a set of assay plates (which did not receive treatment) were collected and ATP levels were measured by adding ATP Lite (Perkin Elmer). These T zero (T0) plates were read using ultra-sensitive luminescence on Envision Plate s. Treated assay plates were incubated with compound (single compound or combination) for ytwo hours. After seventy-two hours, platesweare developed for endpoint analysis using ATPLite. All data points were ted via automated processes; quality controlled; and analyzed. Assay plates were accepted if they passed the following quality control standards: relative luciferase values were consistent hout the entire ment, Z-factor weare r than 0.6, untreated/vehicle controls behaved consistently on the plate.
The calculation for synergy score is provided below.
Growth Inhibition (GI) was used as a measure of cell viability. The cell viability of vehicle was measured at the time of dosing (T0) and after seventy-two hours (T72).
A GI reading of 0% represents no growth inhibition - cells treated with compound and T72 vehicle signals are matched. A GI 100% represents complete growth tion - cells treated by compound and T0 vehicle signals are matched. Cell numbers have not increased during the treatment period in wells with GI 100% and may suggest a cytostatic effect for nds reaching a plateau at this effect level. A GI 200% represents complete death of all cells in the culture well. Compounds reaching an activity u of GI 200% are considered cytotoxic.
GI is calculated by applying the following test and equation: If T < V0 : -(T-V0)/V0] If T ≥ V0 : 100*[1-(T-V0)/(V-V0)] where T is the signal measure for a test article, V is the vehicle-treated control measure, and V0 is the vehicle control measure at time zero. This formula is derived from the Growth Inhibition calculation used in the National Cancer Institute’s NCI-60 high throughput screen.
Synergy Score Analysis. Synergy scores were determined using the Chalice Software (Zalicus Inc., Cambridge MA). Briefly, to measure combination effects in excess of Loewe vity, a scalar measure to characterize the strength of istic interaction termed the Synergy Score was used. The y Score is calculated as: Synergy Score = log fX log FY∑max(0,Idata)(Idata – ILoewe) wherein Idata is the observed tion at a given combination of drug concentrations.
The calculation for additivity is: ILoewe that ies (X/XI) + (Y/YI) = 1, where XI and YI are the single agent effective concentrations for the observed ation effect I.
Activity observed in excess of Loewe additivity identifies potential synergistic interaction.
The fractional inhibition for each component agent and combination point in the matrix was calculated relative to the median of all vehicle-treated control wells. The Synergy Score on integrates the experimentally -observed activity volume at each point in the matrix in excess of a model surface numerically derived from the activity of the ent agents using the Loewe model for additivity. Additional terms in the Synergy Score on (above) were used to normalize for s dilution factors used for individual agents and to allow for comparison of synergy scores across an entire experiment. The inclusion of positive inhibition gating or an Idata multiplier removes noise near the zero effect level, and biases results for synergistic interactions at that occur at high activity levels.
Self-Cross-Based ation Screen Analysis. Combinations where the synergy score is greater than the mean self-cross plus two standard deviations (2σ’s) can be considered candidate synergies at the 95% confidence level.
] In order to objectively ish hit criteria for the combination screen analysis, twenty compounds were selected to be self-crossed across the seventeen cell line panel as a means to empirically determine a baseline additive, non-synergistic se. The identity of the twenty self-cross compounds was determined by selecting compounds with a variety of maximum response values and single agent dose response steepness. Those drug combinations which yielded effect levels that statistically superseded those baseline additivity values were considered synergistic.
Compound 1 had varying activity across the seventeen cell line panel. For each cell line, a three-fold, ten-point dose titration was performed in 384-well plate .
For cell lines where the GI50 reached inhibition levels of greater than fifty percent, the median GI50 was 0.14 µM. Synergy scores for treatment of breast cancer cell line panel with Compound 1 and second active agents are provided in Table 2. Synergy scores that exceed the mean self-cross thresholds plus two standard deviations (2σ) are depicted in bold.
Conclusion: As can be seen in Table 2, Compound 1 in ation with certain second active agents showed synergistic effects in multiple breast cancer cell lines .
Table 2: Effects of Compound 1 in combination with second active agents on cell line colony ion of certain breast cancer cell lines. Synergy scores that exceed the mean ross thresholds plus two standard deviations (2σ) are depicted in bold. Each data point ents the mean of n = 3 ments in triplicate. ***p<0.001 vs theoretical additivity by unpaired t test.
Cell Line Synergy Score Synergy Score Synergy Score Mean Self Belinostat MS-275 Romidepsin Cross Score + BT-20 9.26 5.84 8.00 3.23 BT-474 6.88 7.79 6.00 3.37 BT-549 9.09 11.80 12.00 3.94 87 4.60 7.64 6.10 4.80 HCC-1428 7.23 1.65 4.80 3.22 HCC-1500 4.58 2.18 4.80 4.17 Cell Line Synergy Score Synergy Score Synergy Score Mean Self Belinostat MS-275 Romidepsin Cross Score + HCC-1806 11.40 10.00 8.39 5.05 HCC-1937 14.50 9.75 12.50 2.89 HCC-70 10.10 9.37 6.74 3.45 HsT 7.48 8.44 9.01 4.09 MCF7 7.66 7.69 6.17 3.07 MDA-MB-157 7.58 8.10 5.71 4.68 MDA-MBVII 3.21 6.71 6.30 2.82 MDA-MB-231 12.40 11.70 9.27 2.61 MDA-MB-436 7.84 7.83 5.84 1.91 MDA-MB-453 14.80 14.60 13.80 2.99 MDA-MB-468 6.75 9.25 7.26 4.66 .2 COMPOUND 1 AND COMPOUND 2 COMBINATORIAL EFFECTS WITH ROMIDEPSIN IN CANCER CELL LINES Anti-Proliferation Assay. Combination treatment with Romidepsin and Compound 1 or Compound 2 was evaluated in a romidepsin sensitive cell line (5637 – bladder cancer) and a romidepsin resistant cell line (SKOV3 – n ). Cells were thawed from a liquid nitrogen ved state. Once cells were expanded and divided at their expected doubling times, ing began. Cells were seeded in their respective growth media in 96-well tissue culture treated plates at 2000 cells/well and placed in incubators at 37 °C the night before treatment. At the time of treatment, a set of assay plates (which did not receive treatment) were collected and ATP levels were measured by adding CellTiter-Glo (Promega). These T zero (T0) plates were read using luminescence on Spectramax Plate Readers. Treated assay plates were incubated with nd for seventy-two hours. After seventy-two hours, plates were developed for nt analysis using CellTiter-Glo. The calculation for synergy score is provided below.
Growth Inhibition (GI) was used as a measure of cell viability. The cell viability of e was measured at the time of dosing (T0) and after seventy-two hours (T72).
A GI reading of 0% represents no growth inhibition - cells treated with compound and T72 vehicle signals are matched. A GI 100% ents complete growth inhibition - cells treated by compound and T0 vehicle signals are d. Cell numbers did not increase during the treatment period in wells with GI 100% and may suggest a atic effect for compounds reaching a plateau at this effect level. A GI 200% represents complete death of all cells in the culture well. Compounds reaching an activity plateau of GI 200% are considered cytotoxic.
GI is calculated by applying the following test and equation: If T < V0 : 100*[1-(T-V0)/V0] If T ≥ V0 : 100*[1-(T-V0)/(V-V0)] ] Where T is the signal measure for a test article, V is the vehicle-treated control measure, and V0 is the e control measure at time zero. This formula is derived from the Growth Inhibition ation used in the National Cancer Institute’s NCI-60 high throughput screen.
The Bliss independence model was used to assess synergy in the following experiment. We measured the reduction in cell growth, compared to vehicle d controls after treatment with compounds A and B, and the combination of compounds A and B. The Bliss independence model assumes that the fraction of cells unaffected by a combination of two compounds equals the t of fraction of cells unaffected by the individual drugs: FuAB= FuA x FuB wherein Fu is fraction unaffected.
We next compared the expected compound effect to the ed compound effect, and calculated the differences between the observed and the expected cell viability, expressed as % of control. It the diffence was greater than 10%, the effect was considred synergistic.
Table 3: Romidepsin combination ent with Compound 1 and nd 2.
Cell Lines 5637(S) SKOV3(R) Compound 1 16% 23% Compound 2 19% 27% Values = differences between ed and ed cell viability (% of control).
Conclusion: Since the reduction of cell viability of Compound 1 and Compound 2 is greater than expected according to the Bliss independence model, ism was observed for the treatment with the combination of romidepsin and Compound 1 or Compound 2.
A number of references have been cited, the disclosures of which are incorporated herein by reference in their entirety. The ments disclosed herein are not to be limited in scope by the ic embodiments disclosed in the examples which are intended as illustrations of a few aspects of the disclosed embodiments and any embodiments that are functionally equivalent are encompassed by the present disclosure. Indeed, various cations of the embodiments disclosed herein are in addition to those shown and described herein will become apparent to those skilled in the art and are intended to fall within the scope of the appended claims.

Claims (28)

CLAIMS 1. What is d is:
1. The use of 1-ethyl(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof and a histone deacetylase inhibitor in the manufacture of a medicament for the treatment of cancer.
2. The use of 1-ethyl(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4- dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically able salt, clathrate, solvate, stereoisomer, tautomer or ologue thereof in the manufacture of a medicament for the treatment of cancer, wherein the treatment comprises administration of 1-ethyl(2- methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof in ation with a e deacetylase inhibitor.
3. The use of a histone deacetylase inhibitor in the manufacture of a medicament for the ent of cancer, wherein the ent comprises administration of the histone deacetylase inhibitor in combination with1-ethyl(2-methyl(1H-1,2,4-triazol yl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue f.
4. The use of any one of claims 1-3, wherein the cancer is a cancer of the head, neck, eye, mouth, throat, esophagus, bronchus, larynx, pharynx, chest, bone, lung, colon, rectum, stomach, prostate, urinary bladder, uterine, cervix, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system.
5. The use of any one of claims 1-4, n the cancer is a solid tumor.
6. The use of claim 5, n the solid tumor is a relapsed or refractory solid tumor.
7. The use of claim 5, n the solid tumor is an advanced solid tumor.
8. The use of claim 5, wherein the solid tumor is a neuroendocrine tumor, glioblastoma multiforme (GBM), hepatocellular carcinoma (HCC), breast cancer, colorectal cancer (CRC), salivary cancer, pancreatic cancer, adenocystic cancer, adrenal cancer, esophageal cancer, renal cancer, osarcoma, paraganglioma, head and neck squamous cell carcinoma, E-twenty six (ETS) pressing castration-resistant prostate cancer or E- twenty six (ETS) overexpressing Ewings sarcoma.
9. The use of any one of claims 1-8, wherein the cancer is a cancer associated with the pathways involving mTOR, PI3K, or Akt kinases.
10. The use of any one of claims 1-9, wherein the histone deacetylase inhibitor is Belinostat.
11. The use of any one of claims 1-9, wherein the histone deacetylase inhibitor is MS-275.
12. The use of any one of claims 1-9, n the e deacetylase inhibitor is Romidepsin.
13. A pharmaceutical composition comprising 1-ethyl(2-methyl(1H-1,2,4- lyl)pyridinyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, ate, solvate, stereoisomer, tautomer or isotopologue thereof, a histone deacetylase inhibitor, and a pharmaceutically acceptable carrier or vehicle.
14. A pharmaceutical composition of claim 13, which is suitable for oral, eral, mucosal, transdermal or topical administration.
15. A pharmaceutical composition of claim 13 or 14, which is in the form of tablets, chewable tablets, capsules, microcapsules, pills, solutions, parenteral solutions, troches, suppositories, granules, powder, injections, suspensions or syrups.
16. The pharmaceutical composition of any one of claims 13-15, wherein the e ylase inhibitor is Belinostat.
17. The pharmaceutical composition of any one of claims 13-15, wherein the histone deacetylase inhibitor is MS-275.
18. The pharmaceutical composition of any one of claims 13-15, wherein the histone ylase inhibitor is Romidepsin.
19. A kit comprising l(2-methyl(1H-1,2,4-triazolyl)pyridinyl)- 3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof, and a histone deacetylase inhibitor.
20. The kit of claim 19, wherein the kit comprises one or more unit dosage forms of 1-ethyl(2-methyl(1H-1,2,4-triazolyl)pyridinyl)-3,4-dihydropyrazino[2,3- b]pyrazin-2(1H)-one or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer or isotopologue thereof, and one or more unit dosage forms of a histone deacetylase inhibitor.
21. The kit of claim 19 or 20, wherein the histone deacetylase inhibitor is Belinostat.
22. The kit of claim 19 or 20, n the histone ylase inhibitor is MS-275.
23. The kit of claim 19 or 20, wherein the histone ylase inhibitor is Romidepsin.
24. A use according to claim 1, substantially as herein described or exemplified.
25. A use according to claim 2, substantially as herein described or exemplified.
26. A use according to claim 3, ntially as herein described or exemplified.
27. A pharmaceutical composition according to claim 13, substantially as herein bed or exemplified.
28. A kit according to claim 19, substantially as herein described or exemplified. Signal ceuticals, LLC By Their Attorneys HENRY HUGHES Per:
NZ629859A 2014-04-16 2014-09-02 Methods for treating cancer using tor kinase inhibitor combination therapy NZ629859B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461980125P 2014-04-16 2014-04-16
US61/980125 2014-04-16

Publications (2)

Publication Number Publication Date
NZ629859A NZ629859A (en) 2015-12-24
NZ629859B true NZ629859B (en) 2016-03-30

Family

ID=

Similar Documents

Publication Publication Date Title
JP7014731B2 (en) Substituted aminopurine compounds, their compositions, and therapeutic methods using them.
US10183019B2 (en) Treatment of cancer with dihydropyrazino-pyrazines
AU2014253978B2 (en) Combination therapy comprising a TOR kinase inhibitor and a 5-Substituted Quinazolinone Compound for treating cancer
US10004735B2 (en) Methods for treating cancer using TOR kinase inhibitor combination therapy comprising administering substituted pyrazino[2,3-b]pyrazines
EP2817029B1 (en) Methods for treating non-small cell lung cancer using tor kinase inhibitor combination therapy
US9358232B2 (en) Methods for treating cancer using TOR kinase inhibitor combination therapy
US10391092B2 (en) Methods for treating cancer using dihydropyrazino-pyrazine compound combination therapy
EP2825169B1 (en) Treatment of cancer with tor kinase inhibitors
US9782427B2 (en) Methods for treating cancer using TOR kinase inhibitor combination therapy
CA2867174A1 (en) Treatment of cancer with tor kinase inhibitors
CA2902858A1 (en) Treatment of cancer with tor kinase inhibitors
EP3131550B1 (en) Methods for treating cancer using tor kinase inhibitor combination therapy with a histone deacetylase inhibitor
NZ629859B (en) Methods for treating cancer using tor kinase inhibitor combination therapy
NZ629860B (en) Methods for treating cancer using tor kinase inhibitor combination therapy