NO812451L - WIND ROTOR. - Google Patents

WIND ROTOR.

Info

Publication number
NO812451L
NO812451L NO812451A NO812451A NO812451L NO 812451 L NO812451 L NO 812451L NO 812451 A NO812451 A NO 812451A NO 812451 A NO812451 A NO 812451A NO 812451 L NO812451 L NO 812451L
Authority
NO
Norway
Prior art keywords
rotor
wind
frame
axis
wings
Prior art date
Application number
NO812451A
Other languages
Norwegian (no)
Inventor
Risto T Joutsiniemi
Original Assignee
Risto T Joutsiniemi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risto T Joutsiniemi filed Critical Risto T Joutsiniemi
Publication of NO812451L publication Critical patent/NO812451L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Vindskruen er en vindrotor som utpreger seg ved at den roterer både når rotoraksen står vinkelrett på vinden (fig.1 og 2) og når den ligger i vindretningen (fig.3 og 4). Den fungerer med uendret effekt også i alle stillinger mellom vertikalstillingen (fig. 1 og 2) og horisontalstillingen (fig. 3 og 4) og vender alltid samme flater mot vinden uav-hengig av stillingen for rotoraksen (B). Rotorvingene har en noe kupolformet overflate (fig. 1 og 3). Disse faktorer har løst vanskelighetene med å gjøre en og sammen rotor effektiv både i lave vindhastigheter (fig. 1 og 2) og i storm (fig. 3 og 4). Rotoren består av to vinger som er vridd 180° skrueformet om deres rotasjonsakse (fig. 2) og hvis tverrsnitt utgjøres av to halvsirkler (fig. 4 - XX). Rotoren har ikke endeplater, slik at det er mulig for.luften å passere gjennom den'fra dens ene ende (fig. 4), idet rotoren når den befinner seg i horisontalstilling vender mot vinden med bare en sirkelformet flate (fig. 4).Til rotoren hører også et fundament (C,D) som muliggjør at den roterer vertikalt (fig. 1 og 2), horisontalt (fig. 3. og 4) og i alle stillinger derimellom, samtidig som den følger vindretningen.The wind screw is a wind rotor that is characterized by rotating both when the rotor axis is perpendicular to the wind (fig. 1 and 2) and when it is in the wind direction (fig. 3 and 4). It also works with unchanged power in all positions between the vertical position (Figs. 1 and 2) and the horizontal position (Figs. 3 and 4) and always faces the same surfaces towards the wind regardless of the position of the rotor axis (B). The rotor blades have a somewhat dome-shaped surface (Figs. 1 and 3). These factors have solved the difficulties of making one and the same rotor efficient both in low wind speeds (Figs. 1 and 2) and in storms (Figs. 3 and 4). The rotor consists of two wings which are rotated 180 ° helically about their axis of rotation (fig. 2) and whose cross-section consists of two semicircles (fig. 4 - XX). The rotor does not have end plates, so that it is possible for the air to pass through it from one end of it (Fig. 4), the rotor when in the horizontal position facing the wind with only a circular surface (Fig. 4). The rotor also includes a foundation (C, D) which enables it to rotate vertically (Figs. 1 and 2), horizontally (Figs. 3 and 4) and in all positions in between, at the same time as it follows the wind direction.

Description

Foreliggende oppfinnelse angår en vindrotor-anordning for energiproduksjon under spesielt krevende forhold, der vindhastigheten kan ha betydelige variasjoner, som f.eks. The present invention relates to a wind rotor device for energy production under particularly demanding conditions, where the wind speed can have significant variations, such as e.g.

på Grønland og i Sahara, der konvensjonelle vindroterer har vist seg alt for uholdbare. Forsterkning av slike vind-rotorer gjør dem uhensiktsmessig tunge. Vindskrue-rotoren fungerer ved vindhastigheter fra 3 m/s og oppover (fig. 1 og 2), men tåler også vindhastighter opp til 180 m/s (fig. 3 og 4). Den er konstruert til å fungere selv ved sand-stormer som forekommer daglig i Sahara med vindhastigheter opp til ca.85 m/s. På grunn av sin enkle konstruksjon er vindskruerotoren anvendelig selv ved meget lave temperaturer, der f.eks. hydraulisk kraftoverføring ikke kan benyttes. in Greenland and in the Sahara, where conventional wind turbines have proven far too unsustainable. Reinforcement of such wind rotors makes them unnecessarily heavy. The wind screw rotor works at wind speeds of 3 m/s and upwards (fig. 1 and 2), but can also withstand wind gusts up to 180 m/s (fig. 3 and 4). It is designed to function even during sandstorms that occur daily in the Sahara with wind speeds of up to approx. 85 m/s. Due to its simple construction, the wind screw rotor can be used even at very low temperatures, where e.g. hydraulic power transmission cannot be used.

Heller ikke høye temperaturer utgjør noe hinder for konstruksjonens funksjon. Nor do high temperatures pose any obstacle to the construction's function.

Vindrotoranordningen er i første rekke beregnet for produk-sjon av forholdsvis små mengder elektrisk energi under vanskelige forhold der bruk av store og energikrevende an-legg er uøkonomisk. Vindskruerotorens konstruksjon med-fører at den roterer under alle forhold og derved fyller sin oppgave som energi-giver, idet den roterer selv under beveg-else mellom loddrett (fig. 1 og 2) og vannrett (fig. 3 og 4) stilling. The wind rotor arrangement is primarily intended for the production of relatively small amounts of electrical energy under difficult conditions where the use of large and energy-demanding installations is uneconomical. The construction of the propeller rotor means that it rotates under all conditions and thereby fulfills its task as an energy provider, as it rotates even during movement between vertical (fig. 1 and 2) and horizontal (fig. 3 and 4) positions.

Følgende patenter vedrører og tangerer konstruksjonen:The following patents relate to and are tangential to the construction:

US Patent 4-112.311.US Patent 4-112,311.

Svensk Patent 65.940Swedish Patent 65,940

Tysk Patent 2.540.757.German Patent 2,540,757.

Vindskruerotorens konstruksjon ligger nærmest svensk patent 65.940, men den avgjørende forskjell er at vindrotoren i henhold til oppfinnelsen også roterer når rotasjonsaksen ligger i vindretningen (fig. 3 og 4). Den er en forbedring og videreutvikling av rotorer, der samme vinge-ide er benyttet. Denne rotor er utført uten endeplater. Rotorvingene kan tenkes fremstilt ved at et rør av stivt material er vridd 180° om en akse slik at det fremstår en skrueform (fig. 2). Deretter deles røret i lengden vinkelrett på aksen om hvilken den er vridd. Etter delingen har hvert tverrsnitt av røret to like store halvsirkler (fig. ,<x>2). The wind screw rotor's construction is closest to Swedish patent 65,940, but the decisive difference is that, according to the invention, the wind rotor also rotates when the axis of rotation lies in the direction of the wind (fig. 3 and 4). It is an improvement and further development of rotors, where the same wing idea is used. This rotor is made without end plates. The rotor blades can be thought of as being made by twisting a tube of rigid material 180° around an axis so that it appears in a screw shape (fig. 2). The pipe is then split lengthwise perpendicular to the axis around which it is twisted. After the division, each cross-section of the pipe has two semicircles of equal size (fig. ,<x>2).

Vindskruerotoren roterer i vertikalstilling (fig. 1 og 2)The propeller rotor rotates in a vertical position (fig. 1 and 2)

og beveges trinnløst til horisontalstilling (fig.3) i vindretningen under uavbrudt rotasjon. and is moved continuously to a horizontal position (fig.3) in the direction of the wind during continuous rotation.

I horisontalstilling utgjør den side som vender mot vinden en sirkelformel flate (fig. 4) som utnytter vindstyrken med så godt som hele overflaten. I vertikalstilling (fig. 1 og 2) har rotoren alltid enten en større (fig. 1) eller to mindre konkave flater vendt vekselvis mot vinden, slik at den konkave flate som vender mot vinden alltid er tilnærmet like stor. Også den konvekse flate som vender mot vinden arbeider på grunn av en åpning i midten av rotoren. ' Tverr-snittet av rotoren viser nemlig at de to halvsirkelformede deler er fortsatt i forhold til hverandre (fig. 4, X^,X2) slik at det dannes en åpning der luften kan passere. Rotorens to vinger er vridd 180° i forhold til hverandre sett nedenfra og oppover og mot rotasjonsretningen (fig.2). Dette medfører at en større del av vindstyrken konsentreres til den nedre del av rotoren enn til dens øvre del, hvilket øker konstruksjonens holdbarhet og selv under belastning er rotorens hastighet ca. 1,2 ganger vindens hastighet. In a horizontal position, the side facing the wind forms a circular surface (fig. 4) which utilizes the wind force with almost the entire surface. In the vertical position (fig. 1 and 2), the rotor always has either one larger (fig. 1) or two smaller concave surfaces facing the wind alternately, so that the concave surface facing the wind is always approximately the same size. Also the convex surface facing the wind works due to an opening in the middle of the rotor. The cross-section of the rotor shows that the two semi-circular parts are still in relation to each other (fig. 4, X^,X2) so that an opening is formed through which the air can pass. The rotor's two blades are twisted 180° in relation to each other seen from below and upwards and against the direction of rotation (fig.2). This means that a larger part of the wind force is concentrated to the lower part of the rotor than to its upper part, which increases the durability of the construction and even under load, the speed of the rotor is approx. 1.2 times the speed of the wind.

Vindskruerotoren holdes i sin vertikalstilling av en fjær som er innebygget i tverraksen (A) for fundamentet (C). The wind screw rotor is held in its vertical position by a spring built into the transverse axis (A) of the foundation (C).

Når vindstyrken øker til verdier som innebærer en farlig belastning på vingene og rotorakslen (B), dreier rotoren seg trinnløst til horisontalstilling i vindretningen (fig. When the wind strength increases to values that entail a dangerous load on the wings and rotor shaft (B), the rotor rotates continuously to a horizontal position in the direction of the wind (fig.

3 og 4). Da den roterer også i denne stilling kan den utnytte også meget stor vindstyrke. Konstruksjonens fordel er de lave produksjonsomkostninger i forhold til dens effektivitet under de forhold for hvilke den er beregnet . 3 and 4). As it also rotates in this position, it can also utilize very high wind strength. The construction's advantage is the low production costs in relation to its effectiveness under the conditions for which it is designed.

Claims (5)

1. Vindrotor-anordning omfattende et fundament (D), en ramme (C) som er svingbart lagret på fundamentet, en rotor omfattende et par langstrakte vinger (X^ ,X2 ) med en ytre og en indre kant og et krumt, f.eks. halvsirkelformet tverrsnitt og anordnet symmetrisk i akseretningen om en geomet-risk akse slik at de konkave sider av vingene delvis over-lapper hverandre og slik at det mellom de indre kanter på vingene (X^ , ) er en aksial gjennomstrømningsåpning, samt en aksel (B) som strekker seg i retningen for den geomet-riske akse og som forbinder den ene ende av rotoren til rammen (C), karakterisert ved . at vingene (X^ , X2 ) er vridd skrueformet i forhold til hverandre, at akslen (B) er vippbart forbundet med rammen (C) og at der er en inn-retning for ettergivende å holde rotoren i en første aks-retning i forhold til rammen (C) og for å tillate rotoren å vippe i forhold til rammen (C) avhengig av styrken på den vind som virker på rotoren.1. Wind rotor device comprising a foundation (D), a frame (C) pivotably supported on the foundation, a rotor comprising a pair of elongated blades (X^ ,X2 ) with an outer and an inner edge and a curved, e.g. e.g. semicircular cross-section and arranged symmetrically in the axial direction about a geometric axis so that the concave sides of the wings partially overlap each other and so that between the inner edges of the wings (X^ , ) there is an axial flow opening, as well as a shaft (B ) which extends in the direction of the geometric axis and which connects one end of the rotor to the frame (C), characterized by . that the wings (X^ , X2 ) are twisted helically in relation to each other, that the shaft (B) is tiltably connected to the frame (C) and that there is an in-direction for yielding to hold the rotor in a first axis direction in relation to to the frame (C) and to allow the rotor to tilt relative to the frame (C) depending on the strength of the wind acting on the rotor. 2. Anordning som angitt i krav 1 , karakterisert ved at vingen (X^, X2 ) er vridd ca. 180° i forhold til hverandre.2. Device as stated in claim 1, characterized in that the wing (X^, X2 ) is twisted approx. 180° in relation to each other. 3. Anordning som angitt i krav 1, karakterisert ved at akslen (B) er innrett-et for vippebevegelse over ca. 90° fra den første akseretning .3. Device as specified in claim 1, characterized in that the shaft (B) is arranged for tilting movement over approx. 90° from the first axis direction. 4. Anordning som angitt i krav 1, karakterisert ved at lengden på rotoren er minst fire ganger dens diameter.4. Device as stated in claim 1, characterized in that the length of the rotor is at least four times its diameter. 5. Anordning som angitt i krav 1, karakterisert ved at innretningen for ettergivende å holde rotoren i den første akseretning er en fjær.5. Device as stated in claim 1, characterized in that the device for resiliently holding the rotor in the first axial direction is a spring.
NO812451A 1979-11-19 1981-07-16 WIND ROTOR. NO812451L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7909537A SE7909537L (en) 1979-11-19 1979-11-19 WIND CREW-WIND ROTOR

Publications (1)

Publication Number Publication Date
NO812451L true NO812451L (en) 1981-07-16

Family

ID=20339346

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812451A NO812451L (en) 1979-11-19 1981-07-16 WIND ROTOR.

Country Status (7)

Country Link
EP (1) EP0040193B1 (en)
JP (1) JPS56501686A (en)
DE (1) DE3068397D1 (en)
DK (1) DK320381A (en)
NO (1) NO812451L (en)
SE (1) SE7909537L (en)
WO (1) WO1981001443A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3270242D1 (en) * 1981-07-03 1986-05-07 Univ Open Vertical axis wind turbines
JPS6067786A (en) * 1983-09-22 1985-04-18 Hayashibara Takeshi Windmill
DE3928538A1 (en) * 1989-08-29 1991-03-07 Louis L Lepoix Wind turbine shaft - is comprised of S-profile formed bodies
FI972806A (en) 1997-06-30 1998-12-31 Shield Oy Spiral wind rotor and method of manufacturing the same
MD2126C2 (en) * 2001-07-25 2003-09-30 Михаил ПОЛЯКОВ Windmill (variants)
DE10227404B4 (en) * 2002-06-20 2008-05-21 Krüger, Wolfgang Drive rotor for vertically running wind turbines
WO2004011798A2 (en) 2002-07-31 2004-02-05 The Board Of Trustees Of The University Of Illinois Wind turbine device
GB2404227B (en) * 2003-07-24 2006-02-01 Xc02 Conisbee Ltd Vertical-axis wind turbine
US7362004B2 (en) 2003-07-29 2008-04-22 Becker William S Wind turbine device
US7344353B2 (en) * 2005-05-13 2008-03-18 Arrowind Corporation Helical wind turbine
US7948110B2 (en) 2007-02-13 2011-05-24 Ken Morgan Wind-driven electricity generation device with Savonius rotor
US8087897B2 (en) 2008-02-01 2012-01-03 Windside America Fluid rotor
DE102008019849A1 (en) 2008-04-19 2009-10-22 Carsten Moepert Wind screw for converting kinetic energy of wind into mechanical rotary motion for driving electric generators by wind energy plants or other rotary drives, has rotor shaft rotating around longitudinal axis
US8905704B2 (en) 2010-11-15 2014-12-09 Sauer Energy, Inc. Wind sail turbine
US8864440B2 (en) 2010-11-15 2014-10-21 Sauer Energy, Incc. Wind sail turbine
USD875682S1 (en) 2018-02-19 2020-02-18 Windside America Ltd. Arched rib for a turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE187865C (en) *
US953891A (en) * 1909-07-26 1910-04-05 John H Atkins Current-motor.
US974995A (en) * 1909-10-15 1910-11-08 Internat Aerial Power Company Wind-motor.
FR2295259A1 (en) * 1974-07-26 1976-07-16 Simion Jean Wind driven turbine with fixed pitch blades - and speed control by varying angle of inclination of rotor axis

Also Published As

Publication number Publication date
DK320381A (en) 1981-07-17
WO1981001443A1 (en) 1981-05-28
SE7909537L (en) 1981-05-20
EP0040193B1 (en) 1984-07-04
DE3068397D1 (en) 1984-08-09
JPS56501686A (en) 1981-11-19
EP0040193A1 (en) 1981-11-25

Similar Documents

Publication Publication Date Title
NO812451L (en) WIND ROTOR.
KR101439337B1 (en) Wind power generating apparatus and wind blade structure
US4180369A (en) Wind mills
RU2687546C2 (en) Blade wheel with one rim for wind turbine generator plant
US6692230B2 (en) Balanced, high output, rapid rotation wind turbine (Weathervane multi-rotor windmill)
US20030049128A1 (en) Wind turbine
NO324756B1 (en) Liquid wind turbine with stiffening system
US4525122A (en) Wind-powered machine
US9041240B2 (en) Wind turbine apparatus
NO166635B (en) ILDFAST LINING MATERIAL FOR ELECTROLYTIC REDUCTION CELL FOR ALUMINUM PRODUCTION AND PROCEDURE IN PREPARING THIS.
BRPI0710695A2 (en) rotary power generation facility for obtaining electricity from a water stream
US4443154A (en) Windmill tower shadow eliminator
KR20180004713A (en) Rotor for electric generators
CN104564517A (en) Vertical axis wind wheel with resistance-type supporting rods and variable rotary inertia
KR101010428B1 (en) Wind power generation system
US11946449B2 (en) Flow turbine rotor with twisted blades
CN102926926A (en) Setover-type vertical-shaft wind machine capable of limiting rotating of blades
CN106837687A (en) Fan blade component and wind power generating set with vertical shaft
EP3411592B1 (en) Wind wheel with blade elbow bend
SU1765489A1 (en) Wind power station impeller
RU2164623C1 (en) Windwheel
GB2029909A (en) Fluid motor
KR100308339B1 (en) Wing of fan-driven generator
JP7040792B2 (en) Lift type vertical axis feng shui wheel
JP6398095B2 (en) Power equipment