NO794068L - PROCEDURE FOR THE PREPOSITIVE PRODUCT MANUFACTURER - Google Patents

PROCEDURE FOR THE PREPOSITIVE PRODUCT MANUFACTURER

Info

Publication number
NO794068L
NO794068L NO794068A NO794068A NO794068L NO 794068 L NO794068 L NO 794068L NO 794068 A NO794068 A NO 794068A NO 794068 A NO794068 A NO 794068A NO 794068 L NO794068 L NO 794068L
Authority
NO
Norway
Prior art keywords
foam
mixed
tree bark
sawdust
bark
Prior art date
Application number
NO794068A
Other languages
Norwegian (no)
Inventor
Heinz J Krause
Harri Hirz
Original Assignee
Pormit Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pormit Gmbh filed Critical Pormit Gmbh
Publication of NO794068L publication Critical patent/NO794068L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Saccharide Compounds (AREA)
  • Silicon Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Catalysts (AREA)

Abstract

1. Process for the production of a porosifier to be used for the production of porous shaped blocks of brick clay, characterized by compounding a combustible material of pulverulent to fine particulate nature with foam and then granulating it.

Description

Fremgangsmåte ved fremstilling av.et porøsitetsgivende middel. Method for the production of a porosity-giving agent.

Foreliggende oppfinnelse vedrører en fremgangsmåte ved fremstilling av et porøsitetsgivende middel for fremstilling av porøse formlegemer av leiremateriale. The present invention relates to a method for the production of a porosity-giving agent for the production of porous molded bodies of clay material.

I mursteinsindustrien har det lengde-vært kjent for å for-bedre varméisolasjonen til murstein og tilsette råmateriale for dampbare eller brennbare porøsitetsgivende midler. Et avsnitt i tidsskriftet "Ziegelindustrie" 9 (1978), side 500 - til 526 inneholder en sammenfatning hvori det er angitt mer enn 30 referanser som befatter seg med dette tema. In the brick industry, it has long been known to improve the thermal insulation of bricks and to add raw material for vaporizable or combustible porosity-giving agents. A section in the journal "Ziegelindustrie" 9 (1978), pages 500 - 526 contains a summary listing more than 30 references dealing with this topic.

Bare få av de tallrike angitte porøsitetsgivende midler har fått en praktisk betydning. Sannsynligvis sterkest utbredt er anvendelsen av polystyrenskum. Dette materialet tilsettes i form av kuler med diameter mellom 1 og 4 mm. En fin korn-andel er ikke tilstede. Derfor mangler mikroporøsiteten i de ferdige murstein som er spesielt viktig for å oppnå høye varmeisolasjonsverdier. Den maksimale tilsettbare mengde er temmelig<*>snevert begrenset'f ordi det ikke blir tilbake tilstrekkelig mange steg mellom de dannede hull, slik at fastheten blir lav og ujevn. Derfor er det knapt mulig ved tunge leirematerialer å oppnå de nødvendige verdier. Allerede i oppvarmningssonen forgasser styrenmaterialet ved ca. 160°C. Ved den unnvikende gass dannes uønskede, utad åpne kanaler i mursteinene. Den i og for seg høye varmeverdien til materialet går uutnyttet gjennom skorsteinen. Avgass-ene er en belastning for omgivelsene, når de ikke fjernes i kostbare etterforbrenningsanordninger. Som følge av materialets kompressibilitet har de formede gjenstander alltid tendens til å utvide seg etter pressingen, strekkes eller sprekke. Only a few of the numerous stated porosity-giving agents have gained practical importance. Probably the most widespread is the use of polystyrene foam. This material is added in the form of balls with a diameter between 1 and 4 mm. A fine grain proportion is not present. Therefore, the finished bricks lack microporosity, which is particularly important for achieving high thermal insulation values. The maximum amount that can be added is rather<*>narrowly limited' because there are not enough steps remaining between the formed holes, so that the firmness becomes low and uneven. Therefore, it is hardly possible to achieve the required values with heavy clay materials. Already in the heating zone, the styrene material gasifies at approx. 160°C. The escaping gas creates unwanted, outwardly open channels in the bricks. The intrinsically high heating value of the material goes unused through the chimney. The exhaust gases are a burden on the environment, when they are not removed in expensive post-combustion devices. As a result of the material's compressibility, the shaped objects always tend to expand after pressing, stretch or crack.

En viss betydning har også tilsetningen av sagflis fått som porøsitetsgivende middel. Dette har imidlertid alltid en fiber- eller nålformet struktur. Derved forstyrres strøm-ningsforholdet ved pressing. Kraftbehovet tiltar betydelig. Kompresjonen, blir ujevn, og det danner seg skiktstrukturer, hvilke nedsetter styrken og frostbestandigheten. Sagflisen j forbrennes i ovn ved temperaturer over 500°C. Herigjennom vanskeliggjøres ovnsføringen. For utbrenningen kan bare skje langsomt, idet på den ene side det nødvendige oksygen bare diffunderer langsomt inn og på den annen side en for rask utbrenning pga. den høye varmeverdien frigjør en for stor varmemengde, hvilken ved rask utbrenning fører til glødriing og ødeleggelse av mursteinslegemene. Av sistnevnte grunn kan bare en relativt liten tilsetning aksepteres og dermed også bare en lav porøsitet oppnås. Ofte er utbrenningen bare ufullstendig. Svarte kjerner fylt med rester blir tilbake som bevirker en forsemring av varméisolasjonen og styrken, påvirker utseendet sterkt og gir fare for etter-glødning. The addition of sawdust as a porosity-providing agent has also gained some importance. However, this always has a fibrous or needle-like structure. Thereby, the flow ratio is disturbed during pressing. The power requirement increases significantly. The compression becomes uneven, and layer structures form, which reduce strength and frost resistance. The sawdust j is burned in an oven at temperatures above 500°C. This makes it difficult to guide the oven. Because the burnout can only happen slowly, as on the one hand the necessary oxygen only diffuses in slowly and on the other hand too fast a burnout due to the high calorific value releases an excessive amount of heat, which in case of rapid burnout leads to glow drying and destruction of the brick bodies. For the latter reason, only a relatively small addition can be accepted and thus only a low porosity can be achieved. Often the burnout is only incomplete. Black cores filled with residues remain which cause a deterioration of the thermal insulation and strength, greatly affect the appearance and pose a risk of post-annealing.

Andre kjente tilsetninger som båre har fått liten praktisk betydning er f.eks. torv, kullstøv, perlitt, kornspelter eller fIotasjonsberg. Herunder opptrer i det vesentlige lignende ulemper som ved de først beskrevne stoffer. Other well-known additions which have only gained little practical importance are e.g. peat, coal dust, perlite, grain spelt or floating rock. Below are essentially similar disadvantages as with the first described substances.

Også anvendelse av kork er kjent. På grunn av sin megetThe use of cork is also known. Because of its very

høye pris kommer disse i praksis bare til anvendelse ved spesielt høyverdige stein for spesialanvendelser. high price, these are in practice only used for particularly high-quality stones for special applications.

Til grunn for oppfinnelsen ligger den oppgave å angi en fremgangsmåte for fremstilling av et porøsitetsgivende middel som ved normal ovnsdrift uten forstyrrende rester, uten miljø-belastning og uten overoppvarming av ovnsfyllingen kan ut-brennes under utnyttelse av den iboende varmeverdi, som muliggjør fremstillingen av lett murstein med stor styrke, The invention is based on the task of specifying a method for the production of a porosity-giving agent which, during normal kiln operation without disturbing residues, without environmental impact and without overheating the kiln filling, can be burned out while utilizing the inherent heating value, which enables the production of light bricks of great strength,

god varméisolasjon og god målstabilitet og derved er billig å fremstille ut fra godt tilgjengelige utgangsstoffer. good thermal insulation and good dimensional stability and is therefore cheap to produce from readily available starting materials.

Denne oppgave løses ifølge oppfinnelsen ved de handlingerAccording to the invention, this task is solved by the actions

som er angitt i krav l's karakteriserende del.which is stated in claim 1's characterizing part.

På denne måte fremstilles'et brennbart granulat med løs, skumaktig struktur. Derunder er bulkfaktoren til det ferdige skumkull ca. 3 til 4 ganger så stort som for utgangsstoffene. Derved nedsettes varmeverdien vesentlig overfor massivkornet. Den således reduserte varmeverdi kommer ovnsprosessen fullt til gode ved utbrenningen og muliggjør.en betraktelig brenn-energiinnsparing. Den er imidlertid lav nok til å unngå en materialbeskadigelse ved overoppvarming. Tross den løse strukturen er granulatet mekanisk stabilt.og praktisk talt inkompressibelt. In this way, a combustible granule with a loose, foamy structure is produced. Below that, the bulk factor of the finished foam coal is approx. 3 to 4 times as large as for the starting substances. Thereby, the heating value is significantly reduced compared to the solid grain. The thus reduced heat value fully benefits the furnace process during the burn-out and enables a considerable saving in combustion energy. However, it is low enough to avoid material damage in the event of overheating. Despite the loose structure, the granulate is mechanically stable and practically incompressible.

I kravene 2 til 4 er angitt foretrukne eksempler på egnede utgangsstoffer som kan velges avhengig åv de stedlige•forhold. Som sagflis forstås- herunder fortrinnsvis slipemasse Claims 2 to 4 specify preferred examples of suitable starting materials which can be chosen depending on the local conditions. Sawdust is understood to include, preferably, abrasive compound

som har. en mer kornet enn fiberaktig struktur, hvor-which has. a more granular than fibrous structure, where-

under kornstørrelsen bør ligge under 1 mm. Spesielt gjennom valget av flygeaske som ved siden av karbon også inneholder en betydelig andel av ikke-brennbare stoffer får man mulighet til å redusere varmeverdien betraktelig. below the grain size should be below 1 mm. In particular, through the choice of fly ash which, in addition to carbon, also contains a significant proportion of non-combustible substances, you get the opportunity to reduce the heating value considerably.

En videre mulighet for å redusere varmeverdien"er angitt i krav 5. Derunder er bemerkelsesverdig at tilsetningen av ubehandlet perlitt til det rå leirematerialet ifølge oppfinn-erens erfaringer oftest ikke bringer den ønskede virkning, A further possibility to reduce the heat value" is indicated in claim 5. It is noteworthy that the addition of untreated perlite to the raw clay material, according to the inventor's experiences, most often does not bring the desired effect,

da de skumaktige perlittlegemer smuldrer'ved pressing. Hvis man likevel innstøper dem sammen med karbonstøv e.l. i skum, forblir de stabile. as the foamy pearl bodies crumble when pressed. If you nevertheless embed them together with carbon dust etc. in foam, they remain stable.

Ifølge krav 6 kan om nødvendig granulatets fasthet forbedres ved tilsetninger, f.eks. gips, vannglass, sulfittavlut, stiv-else eller dekstrin. According to claim 6, if necessary, the firmness of the granules can be improved by additions, e.g. gypsum, water glass, sulphite liquor, starch or dextrin.

En videre mulighet for å redusere varmeverdien består ifølge krav 7 i å tilsette findelt trebark. Denne har en meget lav varmeverdi som følge av sin løse struktur. Den dannes i treindustrien ved avbarkning for bearbeiding av bestemte felte stammer av forskjellige typer i store mengder som verdiløst avfall og er derfor praktisk talt gratis tilgjengelig. Da barken hittil knapt kunne utnyttes, måtte den enten legges på depoter, føres til et forbrenningsanlegg, eller According to claim 7, a further possibility to reduce the heating value consists in adding finely divided tree bark. This has a very low heating value as a result of its loose structure. It is formed in the wood industry by debarking for the processing of specific fields stems of various types in large quantities as worthless waste and is therefore practically available free of charge. As the bark could hardly be used until now, it either had to be put in depots, taken to an incineration plant, or

for å unngå skade på jorden gjennom det høye garvesyreinn- to avoid damage to the soil through the high tannic acid content

holdet så vidt mulig fordeles på store flater i skogen. I ethvert tilfelle var fjerningen forbundet med betydelige om-kostninger. the herd is distributed as far as possible over large areas in the forest. In any case, the removal was associated with significant costs.

De barkearter som er angitt i krav 8 utmerker seg ved en spesielt løs, porerik struktur gjennom den relativt raske veksten av nåletrær. The bark species specified in claim 8 are distinguished by a particularly loose, porous structure due to the relatively rapid growth of conifers.

Gjennom tiltaket ifølge krav 9 oppnås overraskende at det ved maling og etterfølgende tørking av barken oppnås en tilnærmet kubisk korning, hvilken bark ved tørr maling p.g.a. sin hovedsakelig fiberaktige struktur har tendens til dannelse Through the measure according to claim 9, it is surprisingly achieved that by grinding and subsequent drying of the bark, an approximately cubic graining is achieved, which bark when dry grinding due to its mainly fibrous structure tends to form

av langstrakte splinter.of elongated splinters.

Blandingen med skum skjer ved en variant av oppfinnelsen ifølge krav 10. The mixture with foam takes place in a variant of the invention according to claim 10.

Ved et volumforhold innenfor området ifølge krav 11 dannesAt a volume ratio within the range according to claim 11 is formed

en masse med gunstig konsistens for den videre behandling. Det optimale volumforhold avhenger av typen av faste ut-gangsstof fer . Når denne allerede i stor grad er mettet med kapillart bundet fuktighet, er en relativt liten skummengde nok. Når imidlertid disse faste stoffene kan oppta ytterligere mye fuktighet, trenger man mer skum. a mass with a favorable consistency for further processing. The optimum volume ratio depends on the type of solid starting materials. When this is already largely saturated with capillary-bound moisture, a relatively small amount of foam is enough. However, when these solids can absorb additional moisture, more foam is needed.

En annen mulighet for å bringe inn skummet er angitt i krav 12. Herunder innsuges skummidlet spesielt kraftig i barkens porer hhv. sagflisens porer. Den fuktighet som er til stede i porene forvandles til skum og fortrenges derved. Gjennom denne spontane fjerning av vann blir barken spesielt sprø, slik at den ved videre behandlinger spaltes i små, terning-lignende deler. Another possibility for bringing in the foam is indicated in claim 12. Here, the foaming agent is sucked particularly strongly into the pores of the bark or the pores of the sawdust. The moisture present in the pores is transformed into foam and thereby displaced. Through this spontaneous removal of water, the bark becomes particularly brittle, so that during further treatments it splits into small, cube-like parts.

Ifølge krav 13 kan granulatet også tilblandes bark og/eller sagflis etterpå. Derved fyller barken fremfor alt grovkorn-området, sagflisen finkornområdet. Da sagflisen har en relativt lav, men barken en relativt høy varmeverdi, lar også varmeverdien av totalblandingen seg kontrollere innenfor j et visst område gjennom valg av blandingsforholdet. Gjennom disse tilsetninger lar det porøsitetsgivende middel opptaks-evne for kapillar fuktighet seg videre styre. Når en meget høy fuktighet er hensiktsmessig prossessteknisk, tilsettes en stor andel.bark. En normal fuktighet på ca. 35% lar seg imidlertid realisere med ren skumkull, uten at strømningsevnen påvirkes. According to claim 13, the granulate can also be mixed with bark and/or sawdust afterwards. Thereby the bark primarily fills the coarse grain area, the sawdust the fine grain area. As the sawdust has a relatively low, but the bark a relatively high heat value, the heat value of the total mixture can also be controlled within j a certain range by choosing the mixture ratio. Through these additions, the absorption capacity of the porosity-giving agent for capillary moisture can be further controlled. When a very high humidity is suitable for process engineering, a large proportion of bark is added. A normal humidity of approx. However, 35% can be realized with pure foam coal, without the flow ability being affected.

En foretrukket blanding er angitt i krav 14..A preferred mixture is stated in claim 14.

Gjennom maling ifølge krav 15 forbedres kornstørrelsefordel-ingen. Through grinding according to claim 15, the grain size distribution is improved.

Ifølge krav 16 skal kornstørrelsen hensiktsmessig begrenses for at fastheten til de' gjenblivende steg spesielt ved hullede murstein ikke skal påvirkes ved for store porer. According to claim 16, the grain size must be appropriately limited so that the firmness of the remaining steps, especially in the case of perforated bricks, is not affected by excessively large pores.

Ved avstemming av kornstørrelsen til tett kulepakning ifølge krav 17 oppnås at også porene i mursteinene danner en tett pakning, uten at fastheten påvirkes alt for mye.. Derunder er det viktig at også en finkornandel er til stede som sørg-er for den spesielt ønskede mikroporøsitet. By matching the grain size to tight ball packing according to claim 17, it is achieved that the pores in the bricks also form a tight packing, without the firmness being affected too much. Below that, it is important that a proportion of fine grains is also present which ensures the particularly desired microporosity .

Ifølge krav 18 ligger varmeverdien fortrinnsvis i et område som er.ca. i/10 til halvparten av varmeverdien for ristet brunkull av middels kvalitet. Det nøyaktige valg av den optimale varmeverdi avhenger fremfor alt av mengden av det nødvendige porøsitetsgivende middel. According to claim 18, the heating value is preferably in an area which is approx. i/10 to half the calorific value of medium quality roasted lignite. The exact choice of the optimum heating value depends above all on the quantity of the required porosity-giving agent.

Ved fremgangsmåten ifølge oppfinnelsen går man f.eks. slik fram: lied et vanlig skumapparat fremstilles ut fra en blanding av ca. 99 % vann og ca. 1 % skumkonsentrat (vaskemiddel, fettalkoholsulfat, alkylsulfonat e.l.) et stabilt, mikro-porøst skum, hvis densitet bare er ca. 30 - 60 g/l. Separat fra dette fremstilles en blanding av følgende bestanddeler: In the method according to the invention, e.g. as follows: lied A normal foam apparatus is made from a mixture of approx. 99% water and approx. 1% foam concentrate (detergent, fatty alcohol sulphate, alkyl sulphonate etc.) a stable, micro-porous foam, whose density is only approx. 30 - 60 g/l. Separately from this, a mixture of the following components is prepared:

8 vektdeler brunkullstøv8 parts by weight of lignite dust

8 vektdeler sagflis8 parts by weight sawdust

27 vektdeler bark27 parts by weight bark

2,6 vektdeler perlittavfall2.6 parts by weight of perlite waste

27 vektdeler sulfittavlut som bindemiddel27 parts by weight of sulphite liquor as binder

26Vektdeler tilsetningsvann.26 Parts by weight additive water.

Denne blandingen blandes med 1,4 vektdeler skum og blandes kraftig i f.eks. en betongblander eller en dobbelt akselbland-er. Derved dannes en skummet masse med pastalignende konsistens. Denne granuleres idet den f.eks. trykkes gjennom en hullplate med en skrue. Strengene tørkes og males. Male-.godset har allerede et kontinuerlig kornstørrelsesspektrum som kan komme temmelig nær en tett pakning. Gjennom sikting kan kjernestørrelsesspekteret optimeres videre, slik at f.eks. følgende fordeling oppstår: This mixture is mixed with 1.4 parts by weight of foam and mixed vigorously in e.g. a concrete mixer or a double axle mixer. This creates a foamy mass with a paste-like consistency. This is granulated as it e.g. pressed through a perforated plate with a screw. The strands are dried and painted. The grinding stock already has a continuous grain size spectrum which can come fairly close to a dense packing. Through sieving, the core size spectrum can be optimized further, so that e.g. the following distribution occurs:

Det således erholdte materiale har også i tørr tilstand en The material thus obtained also in the dry state has a

løs skumstruktur. Kornene er stabile og ikke sammentrykk-bare. Materialet kan forsendes og lagres. loose foam structure. The grains are stable and not compressible. The material can be shipped and stored.

Materialets fuktighet innstilles slik at den stemmer overens med fuktigheten til det rå leirematerialet hvilket er optimalt for pressing. Denne.ligger generelt mellom 17 og 37 %. Ved denne fuktighet har det porøsitets<g>ivende middel ennå strømm-ingsevne, da dets vanninnhold er kapillart bundet som følge av den porøse struktur. The material's humidity is set so that it matches the humidity of the raw clay material, which is optimal for pressing. This is generally between 17 and 37%. At this humidity, the porosity<g>iving agent still has the ability to flow, as its water content is capillary bound as a result of the porous structure.

Ved lette rå leirematerialer er en tilsetning på 10 til 20 volumprosent tilstrekkelig til å gi en legemsvekt på maksi-malt 1,4 5 kg/l. Ved tunge leirematerialer ligger den nød-vendige mengde porøsitetsgivende middel på ca. 25 til 40 %. Disse mengder lar seg lett innblande som følge av den gun-stige kornformen og det porøsitetsgivende middels overflate-beskaffenhet.. Det ér til å med mulig å tilsette betydelig større mengder og på denne måten regulere legemenes vekt.langt under den foreskrevne størrelse, hvilket ikke kunne, oppnås ved vanlige porøsitetsgivende midler. In the case of light raw clay materials, an addition of 10 to 20 percent by volume is sufficient to give a body weight of a maximum of 1.45 kg/l. In the case of heavy clay materials, the required amount of porosity-giving agent is approx. 25 to 40%. These amounts can be easily mixed in as a result of the favorable grain shape and the porosity-giving medium surface condition. It is possible to add significantly larger amounts and in this way regulate the body's weight. could be achieved by usual means of imparting porosity.

Det har vist seg at blandingen kan presses med betydelig redu-sert kraftforbruk. Ved et forsøk ble det på en presse målt en strømstyrke på 40 A i sammenligning med 100 A ved anvendelse av et vanlig porøsitetsgivende middel. Åpenbart forbedres strømningsevnen betydelig gjennom skummidlet, slik at partiklene innordner seg i den gunstigste spennirigsfrie S'til = ling under liten motstand. De uønskede spiralstrukturer, hvilke som kjent kan oppstå i skrupressen ved hastighetsfor-skjellen mellom midten av strengen og det ytre området, opptrer ikke ienger. It has been shown that the mixture can be pressed with significantly reduced power consumption. In an experiment, a current of 40 A was measured on a press in comparison with 100 A when using a common porosity-giving agent. Obviously, the flowability is significantly improved through the foaming agent, so that the particles conform to the most favorable tension-free S'til = ling under little resistance. The unwanted spiral structures, which are known to occur in the screw press due to the speed difference between the center of the string and the outer area, no longer appear.

Ved brenning av murstein forbrennes det porøsitetsgivende middel fullstendig i den normale brenntiden. Det oksygen som dif funderer inn fra ovnsatmosfæren i forbindelse med oksygenet som er innesluttet i de skummede korn er tilstrekkelig for"dette. Det dannede karbondioksyd unnviker åpenbart gjennom diffusjon. I hvert fall observerer man ingen gass-kanaler i de ferdige mursteinene. Varmeverdien til det porøsitetsgivende middel kommer fullt til nytte i brenn-prosessen.. Er varmeverdien til det porøsitetsgivende middel f.eks. 8 x 10 3 kJ/kg og går man ut fra en tilsetning på 30 volum-% til det rå leirematerialet, får man en varmeinnspar-ing på ca. 8 x 10 5 kJ/m 3 hullede murstein. When brick is fired, the porosity-giving agent is completely burned in the normal firing time. The oxygen that diffuses in from the kiln atmosphere in connection with the oxygen contained in the foamed grains is sufficient for this. The carbon dioxide formed obviously escapes through diffusion. In any case, no gas channels are observed in the finished bricks. The heating value of the porosity-giving agent comes to full use in the firing process.. If the heat value of the porosity-giving agent is, for example, 8 x 10 3 kJ/kg, and if you assume an addition of 30% by volume to the raw clay material, you get a heat saving -ing of about 8 x 10 5 kJ/m 3 perforated bricks.

I et nøytralt laboratorium ble en serie murstein som var brent under tilsetning av 30 % av det porøsitetsgivende middel som fremstilles ifølge foreliggende oppfinnelse i et normalt produksjonsanlegg (murstein 1) sammenlignet med murstein som.var fremstilt i samme anlegg under anvendelse av In a neutral laboratory, a series of bricks that had been fired with the addition of 30% of the porosity-giving agent produced according to the present invention in a normal production plant (brick 1) was compared with bricks that had been produced in the same plant using

50 volum-% polystyrenskumkuler (murstein 2). Man fikk følg-ende middelverdier: 50% by volume polystyrene foam balls (brick 2). The following mean values were obtained:

Varmeledningsevnen ble målt ifølge den norm DIN 51048 foreskrevne varmtråd-metode. Varmtråd-metoden gir erfarings-messig ca. 30-50 % høyere verdier overfor den hittil i Tyskland mest anvendte kalorimetriske metoden (f.eks. ifølge' AS TM) eller overfor sammenligningsmetodén. Detté "må tas "heh-syn til ved én sammenligning av de angitte resultater .med de. foreliggende verdier i den tilgjengelige faglitteratur. The thermal conductivity was measured according to the standard DIN 51048 prescribed hot wire method. In terms of experience, the hot wire method gives approx. 30-50% higher values compared to the calorimetric method most used in Germany to date (e.g. according to AS TM) or compared to the comparison method. This must be taken seriously by comparing the stated results with those. present values in the available literature.

Med hensyn til disse egenskaper stemmer altså verdiene praktisk talt overens med begge mursteinstyper. Ifølge offent-lige forsøkskarakterer ble det for murstein 1 dog fastslått en midlere trykkfasthet på 11,3 N/mm 2 i sammenligning med 7,5 N/mm 2 ved vanlige murstein som er fremstilt under anvendelse av. skummet polystyren. - With regard to these properties, the values practically agree with both brick types. According to public test grades, an average compressive strength of 11.3 N/mm 2 was determined for brick 1, in comparison with 7.5 N/mm 2 for normal bricks that are produced using foamed polystyrene. -

Fremgangsmåten lar seg.variere på mange måter innenfor rammen, av kravene. Således kan f.eks. steinkullstøv selvfølgelig også anvendes i stedet for brunkullstøv når førstnevnte er lettere tilgjengelig. Det er ingenting i veien for å øke kullandelen i totalblandingen betydelig i forhold til det angitte eksempel. The procedure can be varied in many ways within the framework of the requirements. Thus, e.g. hard coal dust is of course also used instead of lignite dust when the former is more readily available. There is nothing in the way of significantly increasing the proportion of coal in the total mixture compared to the given example.

Blandingen av de faste utgangsstoffer med skummet kan utfør-es uten særlig problemer og i hvilke som helst blandere. Gjennom tilmålt lengre blanding kan det for det meste også oppnås at massen blir smuldrende, slik at det er unødvendig med en ytterligere arbeidsoperasjon for granulering. Pak-ningstettheten og dermed den maksimale porøsitetsgrad hos mursteinene lar seg innstille ved sikting. The mixing of the solid starting materials with the foam can be carried out without particular problems and in any mixers. By mixing for a longer period of time, it can also mostly be achieved that the mass becomes crumbly, so that a further work operation for granulation is unnecessary. The packing density and thus the maximum degree of porosity of the bricks can be set by sifting.

Til forskjell for fremgangsmåten ifølge det angitte utførel-seseksempel kan det porøsitetsgivende middels fuktighet også innstilles høyere eller lavere før tilblandingen til det rå leirematerialét enn fuktigheten til det rå léirematerialet. Dette gjelder når det rå leirematerialet er fuktigere eller tørrere enn det som er optimalt for pressingen. Det porøsi-tetsgivende middels fuktighet velges da slik at totalblandingen får det foreskrevne vanninnhold. In contrast to the method according to the specified embodiment, the humidity of the porosity-giving medium can also be set higher or lower before the addition of the raw clay material than the moisture of the raw clay material. This applies when the raw clay material is moister or drier than is optimal for pressing. The moisture of the porosity-giving medium is then selected so that the total mixture has the prescribed water content.

Claims (18)

1. Fremgangsmåte ved fremstilling av et <p> orøsitetsgivende middel for. fremstilling av porøse formlegemer av leiremateriale, karakterisert ved at et brennbart pulverformet til finkornet materiale blandes med skum og granuleres.1. Procedure for the production of an <p> opacity-giving agent for. production of porous molded bodies of clay material, characterized by a combustible powdery to fine-grained material being mixed with foam and granulated. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som brennbart materiale anvendes kullstøv.2. Method according to claim 1, characterized in that coal dust is used as combustible material. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det anvendes sagflis. .3. Method according to claim 1 or 2, characterized in that sawdust is used. . 4.. Fremgangsmåte ifølge ett av kravene 1-3, karakterisert ved at det anvendes flygeaske.4.. Method according to one of claims 1-3, characterized in that fly ash is used. 5. Fremgangsmåte ifølge ett av kravene 1-4, karakterisert ved at man tilsetter perlitt.5. Method according to one of claims 1-4, characterized in that perlite is added. 6. Fremgangsmåte ifølge ett av kravene 1-5, karakterisert ved at man tilsetter bindemidler.6. Method according to one of claims 1-5, characterized in that binders are added. 7. Fremgangsmåte ifølge ett av kravene 1-6, karakterisert ved at det tilsettes findelt trebark.7. Method according to one of claims 1-6, characterized in that finely divided tree bark is added. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at det tilsettes bark fra edelgran, gran eller furu.8. Method according to claim 7, characterized in that bark from Norway spruce, spruce or pine is added. 9. Fremgangsmåte ifølge krav 7 eller 8, karakterisert ved at trebarken males våt.9. Method according to claim 7 or 8, characterized in that the tree bark is ground wet. 10. Fremgangsmåte ifølge ett av kravene 1-9, karakterisert ved at de faste råstoffer først blandes med hverandre og deretter sammen med skummet.10. Method according to one of claims 1-9, characterized in that the solid raw materials are first mixed with each other and then together with the foam. 11. Fremgangsmåte ifølge krav 10, k a r a k t.e r i - i sert ved at man anvender et volumforhold mellom faste råstoffer og skum som ligger mellom 2:1 og 1:2.11. Method according to claim 10, characterized by using a volume ratio between solid raw materials and foam that is between 2:1 and 1:2. 12. Fremgangsmåte ifølge krav 3, 7 eller 8, karakterisert ved at trebarken og/eller sagflisen 1 våt tilstand gjennomblandes med skummiddel og at derpå de øvrige faste stoffer tilblandes.12. Method according to claim 3, 7 or 8, characterized in that the tree bark and/or the sawdust 1 wet state is thoroughly mixed with a foaming agent and then the other solid substances are mixed in. 13. Fremgangsmåte ifølge ett av kravene 1 - 12; karakterisert ved at det ferdige granulatet tilblandes ytterligere finfordelt trebark og/eller sagflis.13. Method according to one of claims 1 - 12; characterized in that the finished granulate is further mixed with finely divided tree bark and/or sawdust. 1 4. Fremgangsmåte ifølge ett av. kravene 7-11, karakterisert ved at man anvender følgende blanding (i vekt-%)1 4. Method according to one of claims 7-11, characterized by using the following mixture (in % by weight) 5 til 30 % brunkullstøv5 to 30% lignite dust 5 til 20 %. tremel 20 til 5-0 % malt trebark5 to 20%. wood flour 20 to 5-0% ground tree bark 2 til 5 % perlitt2 to 5% perlite 15 til 30 % sulfittavlut15 to 30% sulfite leachate 15 til 30 % tilsatsvann15 to 30% additive water 1 til. 2 % skum idet skummet består av 98 til 99 % vann og 1 til .2 % vaskemiddel .1 more. 2% foam as the foam consists of 98 to 99% water and 1 to .2% detergent. 15. Fremgangsmåte ifølge ett av kravene 1-14, karakterisert ved at granulatet males'.15. Method according to one of claims 1-14, characterized in that the granules are ground. 16. Fremgangsmåte ifølge ett av kravene 1-15, karakterisert ved at den maksimale korn-størrelse begrenses til 5 mm ved frasikting.16. Method according to one of the claims 1-15, characterized in that the maximum grain size is limited to 5 mm by sieving. 17. Fremgangsmåte ifølge krav 16, karakterisert ved at kornstørrelsespekteret innstilles på tetteste pakning.17. Method according to claim 16, characterized in that the grain size spectrum is set to tightest packing. 18. Fremgangsmåte ifølge ett av kravene 1-17, karakterisert ved at man holder varmeverdien i et område på 1 - 6 x 10 6 kJ/m 3 , fortrinnsvis 1-4x10 <6> kJ/m 3 beregnet på det øste materialet.18. Method according to one of claims 1-17, characterized in that the heating value is kept in a range of 1-6 x 10 6 kJ/m 3 , preferably 1-4x10 <6> kJ/m 3 calculated on the dried material.
NO794068A 1978-12-13 1979-12-12 PROCEDURE FOR THE PREPOSITIVE PRODUCT MANUFACTURER NO794068L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19782853709 DE2853709A1 (en) 1978-12-13 1978-12-13 METHOD FOR PRODUCING A POROSING AGENT

Publications (1)

Publication Number Publication Date
NO794068L true NO794068L (en) 1980-06-16

Family

ID=6056989

Family Applications (1)

Application Number Title Priority Date Filing Date
NO794068A NO794068L (en) 1978-12-13 1979-12-12 PROCEDURE FOR THE PREPOSITIVE PRODUCT MANUFACTURER

Country Status (6)

Country Link
EP (1) EP0012407B1 (en)
AT (1) ATE396T1 (en)
DE (2) DE2853709A1 (en)
DK (1) DK527779A (en)
FI (1) FI793802A (en)
NO (1) NO794068L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD242325A3 (en) * 1983-05-27 1987-01-28 Reiner Kinder METHOD FOR PRODUCING HIGH-POROUS MINERAL KOERPERS WITH POLYFORMER STRUCTURE
DE3614943C1 (en) * 1986-05-02 1987-04-30 Guenther Dipl-Ing Mallow Use of glazed perlite grains for producing tiles
DE3921278A1 (en) * 1988-07-16 1990-01-18 Perlite Gmbh Process for producing shaped ceramic parts
DE202006012748U1 (en) * 2006-08-18 2006-10-19 Schlagmann Baustoffwerke Gmbh & Co. Kg Thermal insulation tile has thermal conductivity of no more than 0.27 W(m-K), preferably no more than 0.26 W(m-K) and no less than 0.22 W(m-K), preferably no less than 0.24 W(m-K)
FR3031742B1 (en) 2015-01-21 2016-12-23 Ab7 Innovation PROCESS FOR THE PRODUCTION OF A HYDRO- AND / OR LIPO-ABSORBENT NON-POROUS COMPOSITE MATERIAL OF LIQUID ACTIVE COMPOSITIONS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE583969C (en) * 1932-04-03 1933-09-13 Carl Francke Method for producing building blocks
DE1141933B (en) * 1960-09-19 1962-12-27 Dolomitwerke Gmbh Use of blaehgraphite for the production of heat-insulating, lightweight bodies
FR1283693A (en) * 1961-03-15 1962-02-02 Chamotte Ind Process for preparing lightweight ceramic bonded refractory bricks
AT247772B (en) * 1961-04-06 1966-06-27 Fredrik Wilhelm Anton Dr Kurz Process for the production of a pore former

Also Published As

Publication number Publication date
FI793802A (en) 1980-06-14
DE2961174D1 (en) 1982-01-07
DK527779A (en) 1980-06-14
ATE396T1 (en) 1981-11-15
EP0012407A1 (en) 1980-06-25
DE2853709A1 (en) 1980-07-03
EP0012407B1 (en) 1981-10-28

Similar Documents

Publication Publication Date Title
Russ et al. Application of spent grains to increase porosity in bricks
US4341562A (en) Lightweight aggregate
US5177036A (en) Ceramic material
EA025300B1 (en) Method of making particulate material
NO794068L (en) PROCEDURE FOR THE PREPOSITIVE PRODUCT MANUFACTURER
WO1991006514A1 (en) Method for production of construction articles; technological line; method and device for burning; mixture; construction article
GB2053876A (en) Process for manufacturing lightweight aggregate
NO794067L (en) PROCEDURE FOR THE PREPARATION OF POROUS CERAMIC FORMULAS
RU2277520C1 (en) Method for making wall ceramic articles (variants)
Vaickelionis et al. Production of expanded clay pellets by using non-selfbloating clay, lakes sapropel and glycerol
JPH04503156A (en) animal litter
JP6118598B2 (en) Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid
Kłosek-Wawrzyn et al. Influence of pregranulation and low-pressure compaction on the properties of ceramic materials incorporating clay and spent coffee grounds
RU2090528C1 (en) Method of manufacturing aluminosilicate non-vitrified sand
RU2107050C1 (en) Raw material mixture for manufacturing of porous building materials
JPH08169780A (en) Production of carbonized body
JP2001220235A (en) Hybrid type carbide
DE19654532A1 (en) Porous brick or other clay product
DE19700727A1 (en) Brick or other clay product
US3956003A (en) Spherical aggregates
Dogan-Saglamtimur et al. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse. Materials 2021, 14, 877
Bose Development of Light Weight Bricks for Energy Efficient Buildings Using Rice Husk
JP2001220215A (en) Hybrid type carbide and method of producing the same
CS220275B1 (en) Composition for manufacturing products from burnt brickmaker&#39;s shatter
RU2017788C1 (en) Fuel lump peat production method