NO784141L - HEAT INSULATION SHEET. - Google Patents

HEAT INSULATION SHEET.

Info

Publication number
NO784141L
NO784141L NO784141A NO784141A NO784141L NO 784141 L NO784141 L NO 784141L NO 784141 A NO784141 A NO 784141A NO 784141 A NO784141 A NO 784141A NO 784141 L NO784141 L NO 784141L
Authority
NO
Norway
Prior art keywords
thermal insulation
insulation board
carbide
silicon carbide
boron
Prior art date
Application number
NO784141A
Other languages
Norwegian (no)
Inventor
Guenther Mohr
Hans Kummermehr
Original Assignee
Gruenzweig Hartmann Glasfaser
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6025741&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO784141(L) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gruenzweig Hartmann Glasfaser filed Critical Gruenzweig Hartmann Glasfaser
Publication of NO784141L publication Critical patent/NO784141L/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/08Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation
    • G21C11/081Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation consisting of a non-metallic layer of insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Civil Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Insulation (AREA)
  • Ceramic Products (AREA)
  • Building Environments (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

VarmeisolasjonsplateThermal insulation board

Description

Oppfinnelsen angår en varmeisolasjonsplate fremstilt ved pressing av en blanding av høydispers pyrogen kiselsyre (silica-aerogel) og aluminiumsilikat-ull under tilsetning av et opasitetsmiddel. For en definisjon av begrepet "pyrogen kiselsyre", se Rompps Chemie-Lexicon, 7.opplag, Bd. 5, side 3 2 20„ 1.S<p>alte., The invention relates to a thermal insulation board produced by pressing a mixture of highly dispersed fumed silicic acid (silica airgel) and aluminum silicate wool with the addition of an opacifying agent. For a definition of the term "pyrogenic silicic acid", see Rompp's Chemie-Lexicon, 7th edition, Vol. 5, page 3 2 20„ 1.S<p>alte.,

I de kjente varmeisolasjonsplater benyttes der som opasitetsmiddel TiC^, rutil, ilmenitt, kromoxyd, manganoxyd og jern-oxyd, men også grafitt eller kjønrøk. In the known thermal insulation boards TiC^, rutile, ilmenite, chromium oxide, manganese oxide and iron oxide are used as opacifiers, but also graphite or carbon black.

Av de oppregnede opasitetsmidler kan grafitt og kjønrøk anvendes ved høyere temperaturer kun i konstant fravær av oxygen. I motsatt fall vil nemlig grafitten og kjønrøken omdannes og de-res opasitetsbefordrende egenskaper gå tapt. Tilsvarende gjelder for enkelte av de ovennevnte oxyder, spesielt manganoxyd. Of the opacity agents listed, graphite and carbon black can only be used at higher temperatures in the constant absence of oxygen. Otherwise, the graphite and carbon black will be converted and their opacity-promoting properties will be lost. The same applies to some of the above-mentioned oxides, especially manganese oxide.

Men heller ikke de øvrige opasitetsmidler som anvendes, såsom Ti02, rutil og ilmenitt, gir så gode resultater som man But neither do the other opacity agents used, such as Ti02, rutile and ilmenite, give as good results as

kunne ønske. Ved atmosfæretrykk er nemlig varmeledningsevnen for varmeisolasjonsplater som inneholder slike opasitetsmidler, could wish. Namely, at atmospheric pressure, the thermal conductivity of thermal insulation boards containing such opacifiers,

sterkt avhengig av middeltemperaturen.strongly dependent on the mean temperature.

Her kommer oppfinnelsen inn. Ved hjelp av denne til-veiebringes en varmeisolasjonsplate hvis varmeledningsevne er vesentlig mindre avhengig av middeltemperaturen, og.for hvilken det dessuten kan ventes bedre opasitetsegenskaper, spesielt i høyere temperaturområder fra ca. 400°C og oppover. This is where the invention comes in. With the help of this, a thermal insulation board is provided whose thermal conductivity is significantly less dependent on the average temperature, and for which better opacity properties can also be expected, especially in higher temperature ranges from approx. 400°C and above.

Oppgaven som ligger til grunn for oppfinnelsen løses ved at der som opasitetsmiddel anvendes et carbid av silicium, bor, tantal eller wolfram, alene eller i blanding. The task underlying the invention is solved by using a carbide of silicon, boron, tantalum or tungsten, alone or in a mixture, as an opacifying agent.

Naturligvis er såvel siliciumcarbid som borcarbid dyre-re ved samme finhetsgrad- enn eksempelvis de ovennevnte hittilanvendte opasitetsmidler. Dog har det vist seg, når det gjelder carbider, og spesielt siliciumcarbid, at det kan gjøres bruk av filterstøv fra maleanlegg, som vanligvis ellers ikke finner.noen anvendelse. Dermed har det lykkedes å skaffe industriell anvendelse for et produkt som hittil er blitt betraktet som et av-fallsprodukt, 'og som det forøvrig ikke var helt problemfritt å kvitte seg med på grunn av materialets dårlige evne til å ta opp vann. Gjennom anvendelsen av slike carbider skaffes derved, ved siden av de tekniske forbedringer, også et nyttig bidrag til mil-jøvernet, i og med at disse carbider nu kan føres tilbake til Naturally, both silicon carbide and boron carbide are more expensive at the same degree of fineness than, for example, the above-mentioned opacity agents used so far. However, it has been shown, when it comes to carbides, and especially silicon carbide, that filter dust from painting plants can be used, which normally does not otherwise find any use. Thus, it has been possible to obtain an industrial application for a product which has hitherto been regarded as a waste product, and which was otherwise not entirely problem-free to get rid of due to the material's poor ability to absorb water. Through the use of such carbides, in addition to the technical improvements, a useful contribution to the environment is also obtained, in that these carbides can now be returned to

nyttig produksjon.useful production.

De angitte carbider utmerker seg ved høy termisk og kje-misk stabilitet også ved høyere temperaturer og oppviser d'essuten den nødvendige lave transmisjon i et bredt IR-spektralområde. The indicated carbides are distinguished by high thermal and chemical stability also at higher temperatures and also exhibit the necessary low transmission in a wide IR spectral range.

I den vedføyede grafiske fremstilling vises den typiske ytelse av varmeisolasjonsplater hvor det er anvendt Ti02(kurve 1), siliciumcarbid (kurve 2) og borcarbid (kurve 3). In the attached graphic presentation, the typical performance of thermal insulation boards is shown where Ti02 (curve 1), silicon carbide (curve 2) and boron carbide (curve 3) have been used.

Det vil uten videre sees av den grafiske fremstilling at anvendelse av siliciumcarbid, og spesielt av borcarbid, re-sulterer i tydelig forbedring av varmeledningsevnens -A avhengighet av middeltemperaturen t m, spesielt ved de høyere middeltem-peraturer over 100°C. It will readily be seen from the graphic representation that the use of silicon carbide, and especially boron carbide, results in a clear improvement in the dependence of the thermal conductivity -A on the mean temperature t m, especially at the higher mean temperatures above 100°C.

Selvsagt kan man for varmeisolasjonsplater, som inneholder TiC>2som opasitetsmiddel, forbedre varmeledningsevnen i det øvre temperaturområde ved å øke varmeisolasjonsplatens tett-het. Også her frembyr imidlertid anvendelsen av carbider som opasitetsmiddel en fordel, for så vidt som varmeisolasjonsplater av samme tykkelse blir ca. 60 % lettere', hvilket i mange tilfel-ler er ønskelig. Selvfølgelig kan også varmeisolasjonsplater som er fremstilt under anvendelse av siliciumcarbid eller borcarbid som opasitetsmiddel, forbedres med hensyn til varmeledningsevnens -A avhengighet av middeltemperaturen t , ved at tett-heten økes. Of course, for thermal insulation boards, which contain TiC>2 as an opacifier, the thermal conductivity in the upper temperature range can be improved by increasing the density of the thermal insulation board. Here too, however, the use of carbides as an opacifier offers an advantage, insofar as thermal insulation boards of the same thickness become approx. 60% lighter', which is desirable in many cases. Of course, thermal insulation boards produced using silicon carbide or boron carbide as opacifier can also be improved with respect to the dependence of the thermal conductivity -A on the mean temperature t by increasing the density.

Opasitetsmidlene som anvendes i henhold til oppfinnelsen, bør ha en slik kornstørrelse at den rest som blir tilbake på en DIN-sikt av 10/xm maskevidde, utgjør mindre enn 5 %. The opacity agents used according to the invention should have such a grain size that the residue remaining on a DIN sieve of 10/xm mesh size is less than 5%.

For isolasjonsformål på atomområdet, dvs. for varmeisolasjon av kjernereaktorer av de forskjelligste konstruksjoner i kjernetekniske anlegg og for varmeisolasjon av deler av oppred-ningsanlegg, spesielt når neutronstråling med termisk energi gjør seg gjeldende, oppnåes ytterligere fordeler ved anvendelse av borcarbid, som følge av dets brede virkningsspektrum overfor ter-miske neutroner. For insulation purposes in the nuclear area, i.e. for thermal insulation of nuclear reactors of the most diverse constructions in nuclear engineering facilities and for thermal insulation of parts of reprocessing facilities, especially when neutron radiation with thermal energy is used, further advantages are achieved by using boron carbide, as a result of its broad spectrum of action against thermal neutrons.

To utførelseseksempler skal gies:Two execution examples shall be given:

En varmeisolasjonsplate av følgende sammensetning ble fremstilt: A thermal insulation board of the following composition was produced:

59,6 vekt% pyrogen:. kiselsyre59.6 wt% pyrogen:. silicic acid

34,8 " siliciumcarbid34.8" silicon carbide

5,6 " mineralull5.6" mineral wool

I en annen utførelsesform ble det anvendt:In another embodiment, it was used:

68,4 vekt% pyrogen .kisélsyre68.4% by weight pyrogen .silicic acid

26,04 " borcarbid26.04" boron carbide

5,6 " mineralull5.6" mineral wool

Å anvende carbider i ildfaste isolasjonsmaterialer er i og for seg kjent. Således er det fra US patentskrift nr. 4.014.704 kjent å tilsette siliciumcarbid til et ildfast fiberisolasjonsmateriale bestående i det vesentlige av aluminiumsili-katfibre. Denne masse skal spesielt anvendes for fremstilling av støpetrakter for metallsmelter. Bortsett fra at kornstørrel-sen av det der anvendte siliciumcarbid er vesentlig større enn den som anvendes i henhold til oppfinnelsen, blir det i dette fiberisolasjonsmateriale heller ikke brukt pyrogenkiselsyre eller silika-aerogel som vesentlige bestanddeler. Using carbides in refractory insulation materials is known per se. Thus, it is known from US Patent No. 4,014,704 to add silicon carbide to a refractory fiber insulation material consisting essentially of aluminum silicate fibers. This mass is to be used in particular for the production of casting funnels for metal smelters. Apart from the fact that the grain size of the silicon carbide used there is significantly larger than that used according to the invention, fumed silica or silica airgel are not used as essential components in this fiber insulation material either.

Fra DT-OS nr. 20 05 838 er det kjent et beskyttelses-over trekk for romfartøyer, som er ment å skulle skalle av ved termisk belastning. Her tilsettes siliciumcarbid, siliciumdi-oxyd og høytemperaturbestandige fibre til organo-polyxyloxaner, men siliciumcarbidet skal kun tjene til å forbedre overtrekkets avskallingsegenskaper. Forøvrig er i dette tilfelle silicium-carbidets kornstørrelse vesentlig høyere enn i varmeisolasjons-platen ifølge oppfinnelsen. From DT-OS No. 20 05 838, a protective cover for space vehicles is known, which is intended to peel off in the event of thermal stress. Here, silicon carbide, silicon dioxide and high-temperature-resistant fibers are added to organo-polyxyloxanes, but the silicon carbide should only serve to improve the peeling properties of the coating. Incidentally, in this case the grain size of the silicon carbide is significantly higher than in the thermal insulation plate according to the invention.

Claims (3)

1. Varmeisolasjonsplate, presset av en blanding av høydis-pers pyrogenkiselsyre og aluminiumsilikat-ull under tilsetning av et opasitetsmiddel, karakterisert ved at der som opasitetsmiddel er benyttet et carbid av silicium, bor, tantal eller wolfram, alene eller i blanding.1. Thermal insulation board, pressed from a mixture of highly dispersed fumed silicic acid and aluminosilicate wool with the addition of an opacifying agent, characterized in that a carbide of silicon, boron, tantalum or tungsten, alone or in a mixture, is used as the opacifying agent. 2. Varmeisolasjonsplate ifølge krav 1, karakterisert ved at opasitetsmidlet har en slik kornstørrelse at mindre enn 5 % blir tilbakeholdt på en DIN-sikt med 10 jmm maskevidde .2. Thermal insulation board according to claim 1, characterized in that the opacity agent has such a grain size that less than 5% is retained on a DIN sieve with a mesh size of 10 mm. 3. Anvendelse av en varmeisolasjonsplate ifølge krav 1, med borcarbid som opasitetsmiddel i en mengde av 20 - 35 vekt%, i kjernetekniske anlegg.3. Use of a thermal insulation board according to claim 1, with boron carbide as opacifier in an amount of 20 - 35% by weight, in nuclear facilities.
NO784141A 1977-12-09 1978-12-08 HEAT INSULATION SHEET. NO784141L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19772754956 DE2754956A1 (en) 1977-12-09 1977-12-09 THERMAL INSULATION PLATE

Publications (1)

Publication Number Publication Date
NO784141L true NO784141L (en) 1979-06-12

Family

ID=6025741

Family Applications (1)

Application Number Title Priority Date Filing Date
NO784141A NO784141L (en) 1977-12-09 1978-12-08 HEAT INSULATION SHEET.

Country Status (10)

Country Link
EP (1) EP0002487B2 (en)
AT (1) AT356342B (en)
BR (1) BR7808090A (en)
DD (1) DD140573A5 (en)
DE (1) DE2754956A1 (en)
DK (1) DK544578A (en)
ES (1) ES475809A1 (en)
GR (1) GR66460B (en)
IT (2) IT1160957B (en)
NO (1) NO784141L (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU529558B2 (en) * 1978-12-20 1983-06-09 Consortium Fur Elektrochemische Industrie Gmbh Agglomereted mixtures of metel oxides
DE2942180C2 (en) * 1979-10-18 1985-02-21 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Process for the production of a heat insulating body
DE2946476A1 (en) * 1979-11-17 1981-05-27 Consortium für elektrochemische Industrie GmbH, 8000 München THERMAL INSULATION BODY AND METHOD FOR THE PRODUCTION THEREOF
DE3000542A1 (en) * 1980-01-09 1981-08-27 Degussa Ag, 6000 Frankfurt HEAT INSULATION MIXTURE AND METHOD FOR PRODUCING THE SAME
DE3008505C2 (en) * 1980-03-05 1983-08-25 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Device for the thermal insulation of a heat source
DE3034775C2 (en) * 1980-09-15 1983-08-18 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Process for the production of a device for the thermal insulation of a heat source
DE3036422A1 (en) * 1980-09-26 1982-05-13 Wacker-Chemie GmbH, 8000 München ADHESIVE INSULATION PLATE
DE3102935A1 (en) * 1981-01-29 1982-09-02 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen DEVICE FOR THE HEAT-INSULATING STORAGE OF AN ELECTRIC HEATER, IN PARTICULAR FOR A RADIATION-HEATED COOKING PLATE, AND A HEAT-INSULATING PLATE THEREFOR AND METHOD FOR THE PRODUCTION THEREOF
DE3125875A1 (en) * 1981-07-01 1983-01-27 Degussa Ag, 6000 Frankfurt HEAT INSULATION BLEND
DE3219392A1 (en) * 1982-05-24 1983-12-01 Gruenzweig Hartmann Glasfaser THERMAL INSULATION PLATE FOR THE STORAGE OF AN ELECTRIC HEATER, AND METHOD FOR THE PRODUCTION THEREOF
EP1988228B1 (en) * 2007-05-03 2020-04-15 Evonik Operations GmbH Building blocks and building systems with hydrophobic, microporous heat insulation and method of fabrication
DE102015225714A1 (en) * 2015-12-17 2017-06-22 Evonik Degussa Gmbh Insulation composite with diffusion-open edge bond
CN114149245B (en) * 2021-11-26 2022-11-11 中国船舶重工集团公司第七一九研究所 Heat-insulation shielding aerogel, heat-insulation shielding material, and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205572A (en) * 1966-09-29 1970-09-16 Atomic Energy Authority Uk Improvements in or relating to thermal insulation materials and to a method of making such materials
US3752683A (en) * 1969-10-06 1973-08-14 Foseco Int Protection of turbine casings
FR2102491A5 (en) * 1970-08-05 1972-04-07 Atomic Energy Authority Uk Refractory insulation material
ZA731537B (en) * 1972-03-10 1973-11-28 Foseco Int Refractory heat insulating materials
DE2524096B2 (en) * 1975-05-30 1979-06-21 Gruenzweig + Hartmann Und Glasfaser Ag, 6700 Ludwigshafen High temperature resistant thermal insulation material
DE2557741C3 (en) * 1975-12-20 1978-06-15 Johns-Manville Corp., Denver, Col. (V.St.A.) Fireproof insulating fiber composition and an article manufactured using this insulating fiber composition

Also Published As

Publication number Publication date
ATA847578A (en) 1979-09-15
ES475809A1 (en) 1979-04-16
GR66460B (en) 1981-03-23
AT356342B (en) 1980-04-25
EP0002487B1 (en) 1981-02-18
EP0002487A1 (en) 1979-06-27
BR7808090A (en) 1979-08-07
IT7869808A0 (en) 1978-12-07
DE2754956C2 (en) 1987-11-26
DE2754956A1 (en) 1979-06-13
DK544578A (en) 1979-06-10
IT1160957B (en) 1987-03-11
DD140573A5 (en) 1980-03-12
IT7853957V0 (en) 1978-12-07
EP0002487B2 (en) 1987-06-24

Similar Documents

Publication Publication Date Title
NO784141L (en) HEAT INSULATION SHEET.
CA2547674C (en) Free flowing dry back-up insulating material
US4250220A (en) Composite panel with two outer layers and a central core
JPS63159266A (en) Lightweight soundproofing, heat insulating and refractory material and manufacture
NO123641B (en)
US20090293786A1 (en) Biomass Combustion Chamber and Refractory Components
US20160230383A1 (en) Silicic acid mixtures and use thereof as insulation material
GB2167060A (en) Fire resistant material
DE3824598A1 (en) INSERT FOR FIRE PROTECTION DOORS WITH PEBBLE SOL
CN112358818A (en) Fireproof adhesive and preparation method thereof
JPH08169791A (en) Non-explosive blasting composition
Dirisu et al. Thermal-emission assessment of building ceilings from agro-industrial wastes
Titiladunayo et al. Selection of appropriate clay for furnace lining in a pyrolysis process
US4455246A (en) Heat insulation mixture
Ghaly et al. Study of agglomeration characteristics of silica sand-straw ash mixtures using scanning electronic microscopy and energy dispersion X-ray techniques
Herbell et al. Effect of hydrogen on the strength and microstructure of selected ceramics
Omidiji et al. Characterization of Ijero-Ekiti Quartz as Refractory Raw Material for Industrial Furnace
CN106966682A (en) A kind of non-ignitable granules of polystyrene insulation plate prescription of A grades of fire prevention
Faierson et al. Geothermite reactions for in situ resource utilization on the moon and beyond
Rashit et al. Use of waste production of crystalline silicon in the production of vacuum insulation
Назиров et al. Use of waste production of crystalline silicon in the production of vacuum insulation
Rantuch et al. Fire Protection of Wood Using a Coating Based on Sodium Silicate and Biochar
Nazirov et al. Use of waste production of crystalline silicon in the production of vacuum insulation
Öhman et al. Slag formation during combustion of biomass fuels
Christiansen Ignimbrite Flareups Triggered By Slab Rollback At Convergent Plate Margins