NO782467L - PROCEDURE FOR TREATMENT OF A HYDROGEN-CONTAINING GAS - Google Patents

PROCEDURE FOR TREATMENT OF A HYDROGEN-CONTAINING GAS

Info

Publication number
NO782467L
NO782467L NO782467A NO782467A NO782467L NO 782467 L NO782467 L NO 782467L NO 782467 A NO782467 A NO 782467A NO 782467 A NO782467 A NO 782467A NO 782467 L NO782467 L NO 782467L
Authority
NO
Norway
Prior art keywords
gas
hydrogen
temperature
reactor
nickel molybdate
Prior art date
Application number
NO782467A
Other languages
Norwegian (no)
Inventor
Wieslaw Marek Kowal
Anthony Dwight Maunder
Original Assignee
Foster Wheeler Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foster Wheeler Ltd filed Critical Foster Wheeler Ltd
Publication of NO782467L publication Critical patent/NO782467L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)
  • Catalysts (AREA)

Description

Fremgangsmåte for behandlingProcedure for treatment

av en hydrogenholdig gass of a hydrogen-containing gas

Denne' oppfinnelse angår hydrogenering av svovelforbindelser som foreligger som forurensninger i en hydrogenholdig gass. Mer spesielt angår oppfinnelsen fjerning av svovelforbindelser fra koksovnsgasser. This invention relates to the hydrogenation of sulfur compounds which are present as impurities in a hydrogen-containing gas. More particularly, the invention relates to the removal of sulfur compounds from coke oven gases.

Ved fremstilling av gass fra kull som behandles i forgassingsanlegg, hvor gassen skal tilføres katalytiske vanndamp-omformere, ligger hovedproblemet i å fjerne fra gassen stoffer som virker som katalysatorgifter ved vanndamp-omformningen, i dette tilfelle først og fremst svovel. When producing gas from coal that is processed in gasification plants, where the gas is to be fed to catalytic steam reformers, the main problem lies in removing from the gas substances that act as catalyst poisons during the steam reforming, in this case primarily sulphur.

Ved fremstilling av eksempelvis koksovnsgass er rensetrinnene typisk som følger: When producing, for example, coke oven gas, the purification steps are typically as follows:

1. kjøling for fjerning av tjære og vann,1. cooling to remove tar and water,

2. elektrostatisk utfelling for fjerning av tjære dråper og gjenværende støv-aerosoler, 3. vaskning med vann for fjerning av ammoniakk og HCN, 2. electrostatic precipitation to remove tar droplets and remaining dust aerosols, 3. washing with water to remove ammonia and HCN,

4. vaskning med tjæreolje for fjerning av bensol4. washing with tar oil to remove benzol

og tyngre aromater.and heavier aromatics.

Den partielt rensede gass som erholdes etter tjære-oljevaskningen, vil vanligvis gjerne inneholde, regnet i deler pr. million (ppm.) : COS 100-20.0 ppm, CS2100-150 ppm, H2S 0,7- The partially purified gas obtained after the tar-oil washing will usually contain, calculated in parts per million (ppm.) : COS 100-20.0 ppm, CS2100-150 ppm, H2S 0.7-

2,0 volum%, tiofen 10-20 ppm, metyltiofen 10-20 ppm, dimetyl-tiofen 1-2 ppm. Hovedbestanddelene kan være som følger: 2.0% by volume, thiophene 10-20 ppm, methylthiophene 10-20 ppm, dimethylthiophene 1-2 ppm. The main components can be as follows:

Hydrokarbon-bestanddeler som foreligger i mindre mengder, er som følger: Hydrocarbon constituents present in smaller quantities are as follows:

Rensning av en gass som er såpass belastet med forurensninger, er ikke godt gjørlig ved konvensjonelle midler, såsom adsorpsjon på. aktivkull, da nærværet av hydrokarboner med 5 karbonatomer og derover (C^+) reduserer aktivkullets effektive adsorpsjonskapasitet, hvorved volumet av aktivkull som må anvendes i industriell målestokk,- blir altfor stor til å kunne aksepteres i praksis. Ved en strømningshastighet for partielt renset gass på 40 000 Nm 3/time vil behovet for aktivkull vanligvis være 50 m 3pr. beholder i et system omfattende 3 beholdere. Bortsett fra de høye kapitalkostnader for et slikt anlegg så er også driftskostnadene høye, da behovet for regenereringsvarme i form av vanndamp er ca. 3 0 MM kcal pr. syklus. Purification of a gas that is so loaded with pollutants is not easily feasible by conventional means, such as adsorption on. activated carbon, as the presence of hydrocarbons with 5 carbon atoms and above (C^+) reduces the activated carbon's effective adsorption capacity, whereby the volume of activated carbon that must be used on an industrial scale becomes far too large to be accepted in practice. At a flow rate for partially purified gas of 40,000 Nm 3/hour, the need for activated carbon will usually be 50 m 3 per hour. container in a system comprising 3 containers. Apart from the high capital costs for such a plant, the operating costs are also high, as the need for regeneration heat in the form of steam is approx. 30 MM kcal per cycle.

Aktivkull-systemenes rensning av gass som beskrevet ovenfor fjerner dessuten ikke alt karbonylsulfid, slik at det er behov for et ytterligere rensetrinn, såsom en hydrogenerings-reaktor. Furthermore, the activated carbon systems' purification of gas as described above does not remove all carbonyl sulphide, so that a further purification step, such as a hydrogenation reactor, is needed.

Det er et formål med den foreliggende oppfinnelseIt is an object of the present invention

å tilveiebringe en fremgangsmåte ved hvilken svovelforurensninger i en hydrogenholdig gass kan. behandles og deretter fjernes. to provide a method by which sulfur impurities in a hydrogen-containing gas can. processed and then removed.

Den foreliggende oppfinnelse angår således en fremgangsmåte til hydrogenering av svovelforbindelser som foreligger som forurensninger i en hydrogenholdig gass, hvor gassen ledes over en nikkelmolybdat-katalysator ved forhøyet temperatur og forhøyet trykk, hvorved svovelforbindelser hydrogeneres under dannelse av H^S. The present invention thus relates to a method for hydrogenating sulfur compounds that are present as impurities in a hydrogen-containing gas, where the gas is passed over a nickel molybdate catalyst at elevated temperature and pressure, whereby sulfur compounds are hydrogenated with the formation of H^S.

Ved fremgangsmåten ifølge oppfinnelsen kan de svovelholdige forbindelser for det meste hydrogeneres under dannelse av H2S som kan fjernes ved en konvensjonell H2S-fjerningsprosess. Den resulterende gass kan så behandles på With the method according to the invention, the sulfur-containing compounds can mostly be hydrogenated with the formation of H2S which can be removed by a conventional H2S removal process. The resulting gas can then be processed

ny i nærvær av en nikkelmolybdat-katalysator for hydrogenering av eventuelle gjenværende svovelforbindelser. new in the presence of a nickel molybdate catalyst for the hydrogenation of any remaining sulfur compounds.

Gassen ledes fortrinnsvis over nikkelmolybdat-katalysatoren ved en temperatur i området 150-420°C, helst 150-300°C, og ved et trykk i området 7-42 kg/cm over atmosfæretrykk. The gas is preferably passed over the nickel molybdate catalyst at a temperature in the range 150-420°C, preferably 150-300°C, and at a pressure in the range 7-42 kg/cm above atmospheric pressure.

Fremgangsmåten ifølge oppfinnelsen er særlig anvendbar for fjerning av svovel fra koksovnsgass. The method according to the invention is particularly applicable for removing sulfur from coke oven gas.

Koksovnsgass, som fortrinnsvis er blitt under-kastet rensetrinnene 1-4 ovenfor, komprimeres, fortrinnsvis til ca. 7-8 kg/cm 2 over atmosfæretrykk, og forvarmes, fortrinnsvis til en temperatur på ca. 250°C. Gassen ledes over en kommersiell nikkelmolybdat-katalysator, hvorved det meste av svovelforbindelsene hydrogeneres under dannelse av H2S. Ytterligere reaksjoner finner også sted under denne behandling; i det vesentlige alle umettede hydrokarboner hydrogeneres til sin mettede tilstand, og dessuten reagerer oksygenet i kokso.vns-gassen med hydrogenet og blir således fjernet fra gassen. Coke oven gas, which has preferably been subjected to purification steps 1-4 above, is compressed, preferably to approx. 7-8 kg/cm 2 above atmospheric pressure, and is preheated, preferably to a temperature of approx. 250°C. The gas is passed over a commercial nickel molybdate catalyst, whereby most of the sulfur compounds are hydrogenated to form H2S. Additional reactions also take place during this treatment; essentially all unsaturated hydrocarbons are hydrogenated to their saturated state, and furthermore the oxygen in the coke oven gas reacts with the hydrogen and is thus removed from the gas.

Den kombinerte virkning av disse reaksjoner er en økning i temperaturen av den reagerende gass med ca. 200-300°C avhengig av gassens sammensetning, først og fremst dens oksygen-innhold. Det er derfor hensiktsmessig å anvende en reaktor med flere katalysatorsjikt inneholdende nikkelmolybdat anordnet på en slik måte at kald gass som skal renses, kan innføres i gass-strømmen mellom hvilke som helst to sjikt som en kjølegass, hvorved temperaturen av de reagerende gasser kan reguleres.. The combined effect of these reactions is an increase in the temperature of the reacting gas by approx. 200-300°C depending on the composition of the gas, primarily its oxygen content. It is therefore appropriate to use a reactor with several catalyst layers containing nickel molybdate arranged in such a way that cold gas to be purified can be introduced into the gas stream between any two layers as a cooling gas, whereby the temperature of the reacting gases can be regulated. .

Likevektsbetraktninger viser at fullstendig hydrogenering av alle svovelforbindelsene i koksovnsgassen, og særlig COS, ikke kan oppnås; det typiske COS-innhold i koksovnsgass etter ovennevnte behandlinger er mellom 20 og 60 ppm (deler pr. million). Equilibrium considerations show that complete hydrogenation of all the sulfur compounds in the coke oven gas, and especially COS, cannot be achieved; the typical COS content in coke oven gas after the above treatments is between 20 and 60 ppm (parts per million).

Produktgassen fra ovennevnte prosess kjøles, for eksempel ved varmeveksling mellom den inngående og den utgående materialstrøm og ved varmeoverføring til andre medier, såsom luft eller kjølevann, og behandles deretter for fjerning av hovedmengden av H2S, for eksempel ved hjelp av regenererbart absorpsjonsmiddel, som fortrinnsvis er i væskeform. Slike H2S-fjerningsprosesser innbefatter MEA, Stretford, oppvarmet kaliumkarbonat, ADIP og sulfinol, hvor H2S kan fjernes til et lavt nivå, vanligvis 80-100 ppm. The product gas from the above process is cooled, for example by heat exchange between the incoming and outgoing material streams and by heat transfer to other media, such as air or cooling water, and then treated to remove the main amount of H2S, for example by means of regenerable absorbent, which is preferably in liquid form. Such H2S removal processes include MEA, Stretford, heated potassium carbonate, ADIP and sulfinol, where H2S can be removed to a low level, typically 80-100 ppm.

Den gass som erholdes fra H2S-fjerningsanlegget, underkastes fortrinnsvis en ytterligere hydrogenering i nærvær a<y>nikkelmolybdat-katalysator. The gas obtained from the H2S removal plant is preferably subjected to further hydrogenation in the presence of a nickel molybdate catalyst.

I dette ytterligere trinn blir gassen fortrinnsvis oppvarmet til en temperatur i området 350-420°C, helst 350-400°C, for eksempel i en varmeveksler hvor varmen fra den første reaksjon utnyttes, eller den oppvarmes på annen måte. Gassen ledes deretter over nikkelmolybdat-katalysator, hvorved de resterende svovelforbindelser hydrogeneres til H2S. In this further step, the gas is preferably heated to a temperature in the range 350-420°C, preferably 350-400°C, for example in a heat exchanger where the heat from the first reaction is utilized, or it is heated in another way. The gas is then passed over nickel molybdate catalyst, whereby the remaining sulfur compounds are hydrogenated to H2S.

Produktgassen kan hensiktsmessig tilføres en reaktor inneholdende et stasjonært sjikt av fast absorpsjonsmiddel, for eksempel sinkoksyd, hvor H2S og eventuelt gjenværende COS absorberes, hvorved det erholdes en gass som er egnet for vanndamp-omformning. The product gas can conveniently be supplied to a reactor containing a stationary layer of solid absorption agent, for example zinc oxide, where H2S and any remaining COS are absorbed, whereby a gas suitable for water vapor reforming is obtained.

Gasser inneholdende hydrogen og karbonoksyder, for eksempel koksovnsgass som beskrevet ovenfor, vil gjerne reagere på en slik måte at det dannes metan ved de følgende reaksjoner: Gases containing hydrogen and carbon oxides, for example coke oven gas as described above, will like to react in such a way that methane is formed in the following reactions:

Disse reaksjoner er uønsket ved fremgangsmåten ifølge oppfinnelsen, da de er eksoterme og medfører risiko for krakking av hydrokarboner til karbon og hydrogen. Det er kjent at nikkelmolybdat-katalysatorer etter sulfidering ikke vil katalysere de metandannende reaksjoner ovenfor, men vil fremdeles katalysere hydrogeneringen av svovelforbindelser under dannelse av t^S. These reactions are undesirable in the method according to the invention, as they are exothermic and entail a risk of hydrocarbons cracking into carbon and hydrogen. It is known that nickel molybdate catalysts after sulphidation will not catalyze the methane-forming reactions above, but will still catalyze the hydrogenation of sulfur compounds to form t^S.

Ved behandlingen av koksovnsgass i henhold til oppfinnelsen foreligger de resterende svovelforbindelser etter det første hydrogeneringstrinn og fjerningen av hovedmengden av H^ S i tilstrekkelig høy konsentrasjon til å holde nikkelmolybdat-katalysatoren i det annet trinn i en sulfidert tilstand, slik at man ved prosessen unngår risikoen for ukontrollert metandannelse. In the treatment of coke oven gas according to the invention, the remaining sulfur compounds after the first hydrogenation step and the removal of the main amount of H^S are present in a sufficiently high concentration to keep the nickel molybdate catalyst in the second step in a sulphided state, so that the process avoids the risk for uncontrolled methane formation.

Fremgangsmåten ifølge oppfinnelsen er .såledesThe method according to the invention is as follows

særdeles godt egnet for fjerning av svovelforurensninger fra koksovnsgass, da risikoen for ukontrollert metandannelse unngås. particularly well suited for the removal of sulfur contaminants from coke oven gas, as the risk of uncontrolled methane formation is avoided.

Den gass som erholdes fra reaktoren inneholdendeThe gas obtained from the reactor containing

et stasjonært sjikt av fast absorps j onsmiddel, hvor H^ S og eventuelle restmengder av COS absorberes, underkastes fortrinnsvis et avsluttende stabiliseringstrinn med hensyn til karbon-avsetningspotensial. Gassen blandes med vanndamp og ledes gjennom en høytemperatur-veksemreaktor i hvilken det benyttes en kommersiell høytemperatur-veksemkatalysator. Andelen av vanndamp pluss karbondioksyd vil normalt tilsvare et mol/atom-forhold mellom 1,2:1 og 5:1 regnet i mol pr. hydrokarbon-karbonatom. a stationary layer of solid absorption agent, where H 2 S and any residual amounts of COS are absorbed, is preferably subjected to a final stabilization step with regard to carbon deposition potential. The gas is mixed with water vapor and passed through a high-temperature conversion reactor in which a commercial high-temperature conversion catalyst is used. The proportion of water vapor plus carbon dioxide will normally correspond to a mole/atom ratio between 1.2:1 and 5:1 calculated in moles per hydrocarbon carbon atom.

Gass fra kullforgassingsanlegg, såsom koksovnsgass, kan etter rensning og behandling i henhold til oppfinnelsen anvendes for en rekke forskjellige formål, for eksempel som utgangsmateriale for fremstilling av ammoniakk, hydrogen og metanol. En spesiell anvendelse for gassen er den direkte reduksjon av jernmalm. Gassen kan også anvendes i den prosess som er beskrevet i britisk patentsøknad nr. 36 710/75. Gas from coal gasification plants, such as coke oven gas, can, after purification and treatment according to the invention, be used for a number of different purposes, for example as starting material for the production of ammonia, hydrogen and methanol. A particular application for the gas is the direct reduction of iron ore. The gas can also be used in the process described in British patent application no. 36 710/75.

Ved den nevnte spesielle anvendelse hvor gassen benyttes til direkte reduksjon av jernmalm, blir den gass som er behandlet i henhold til oppfinnelsen, og som erholdes fra sinkoksyd-reaktoren med en temperatur på ca. 350-400°C, blandet med vanndamp i slike relative mengder at når karbonmonoksyd og vanndamp reagerer under dannelse av hydrogen og karbondioksyd, så vil den gjenværende vanndamp pluss den samlede mengde av karbondioksyd i gassen foreligge i et mol/atom-forhold mellom 1,2:1 og 1,5:1, regnet i mol pr. hydrokarbon-karbonat<p>m, i prosessgassen. In the aforementioned special application where the gas is used for direct reduction of iron ore, the gas which is treated according to the invention and which is obtained from the zinc oxide reactor at a temperature of approx. 350-400°C, mixed with water vapor in such relative amounts that when carbon monoxide and water vapor react to form hydrogen and carbon dioxide, the remaining water vapor plus the total amount of carbon dioxide in the gas will be present in a mole/atom ratio between 1, 2:1 and 1.5:1, calculated in moles per hydrocarbon-carbonate<p>m, in the process gas.

Blandingen av gass og vanndamp blir så ført overThe mixture of gas and water vapor is then carried over

en høytemperatur-vekselkatolysator som fremmer reaksjonen:a high-temperature alternating catalyst that promotes the reaction:

i retning av hydrogen- og karbondioksyd-dannelse. in the direction of hydrogen and carbon dioxide formation.

Denne reaksjon er eksoterm, og gassen forlater reaktoren med en temperatur på ca. 400-470°C avhengig av konsentrasjonen av karbonmonoksyd i prosessgassen. This reaction is exothermic, and the gas leaves the reactor at a temperature of approx. 400-470°C depending on the concentration of carbon monoxide in the process gas.

Konsentrasjonen av karbonmonoksyd etter veksel-reaktoren er ca. 1-1,5 volum%. Denne konsentrasjon av karbonmonoksyd er tilstrekkelig lav til at gassen kan oppvarmes i konvensjonelle varmeapparater uten risiko for karbpnmonoksyd-disproporsjonering ved The concentration of carbon monoxide after the exchange reactor is approx. 1-1.5% by volume. This concentration of carbon monoxide is sufficiently low that the gas can be heated in conventional heaters without the risk of carbon monoxide disproportionation by

Den resulterende gass kan anvendes i prosessen for direkte reduksjon av jernmalm. The resulting gas can be used in the process for direct reduction of iron ore.

Oppfinnelsen skal nå forklares nærmere under henvisning til tegningen. Fig. 1 er et flytskjema for et svovelfjernings-system i henhold til oppfinnelsen som inngår i et system egnet for behandling av koksovnsgass til bruk ved direkte reduksjon av jernmalm. Fig. 2 er et flytskjema for et annet svovelfjernings-system i henhold til oppfinnelsen som inngår i et lignende system som på fig. 1. The invention will now be explained in more detail with reference to the drawing. Fig. 1 is a flowchart for a sulfur removal system according to the invention which forms part of a system suitable for treating coke oven gas for use in the direct reduction of iron ore. Fig. 2 is a flowchart for another sulfur removal system according to the invention which is part of a similar system as in fig. 1.

På fig. 1 er følgende komponenter forsynt med henvisningstall: In fig. 1, the following components are provided with reference numbers:

1. Gasskompressor1. Gas compressor

2. Gassoppvarmer som benytter varmen i gassen fra reaktoren i det første trinn 3. Reaktoren i det første trinn 2. Gas heater that uses the heat in the gas from the reactor in the first stage 3. The reactor in the first stage

4. Gasskjøler4. Gas cooler

5. H2S-fjerningsanlegg 5. H2S removal plant

6. Gassoppvarmer (fyrt)6. Gas heater (fired)

7. Reaktoren i det annet trinn7. The reactor in the second stage

8. Sinkoksyd-absorpsjon av svovel 9. Høytemperatur-veksemreaktor På fig. 2 er følgende komponenter forsynt med henvisningstall: 8. Zinc oxide absorption of sulfur 9. High temperature conversion reactor In fig. 2, the following components are provided with reference numbers:

11. Gasskompressor11. Gas compressor

12. Gassoppvarmer (fyrt)12. Gas heater (fired)

13. Reaktoren i det første trinn 14. Gassoppvarmer som utnytter varmen fra reaktoren i det første trinn 13. The reactor in the first stage 14. Gas heater that utilizes the heat from the reactor in the first stage

15. Gasskjøler15. Gas cooler

16. H^S-fjerningsanlegg16. H^S removal plant

17. Reaktoren i det annet trinn 18. Sinkoksyd-absorpsjon av svovel 19. Høytemperatur-veksemreaktor 17. The reactor in the second stage 18. Zinc oxide absorption of sulfur 19. High temperature conversion reactor

20. Reguleringsoppvarmer (fyrt)20. Regulating heater (fired)

1. Fremgangsmåte til behandling av en hydrogenholdig gass i hvilken svovelforbindelser foreligger som forurensninger,karakterisert vedat gassen ledes over en nikkelmolybdat-katalysator ved forhøyet temperatur og forhøyet trykk, hvorved svovelforbindelser hydrogeneres under dannelse av hydrogensulfid. 2. Fremgangsmåte ifølge krav 1,karakterisert vedat gassen ledes over nikkelmolybdat-katalysatoren ved en temperatur i området 150-420°C. 3. Fremgangsmåte ifølge krav 2,karakterisert vedat gassen ledes over nikkelmolybdat-katalysatoren ved en temperatur i området 150-300°C. 4. Fremgangsmåte ifølge et av de foregående krav, 1. Process for treating a hydrogen-containing gas in which sulfur compounds are present as pollutants, characterized in that the gas is passed over a nickel molybdate catalyst at elevated temperature and pressure, whereby sulfur compounds are hydrogenated to form hydrogen sulfide. 2. Method according to claim 1, characterized in that the gas is passed over the nickel molybdate catalyst at a temperature in the range 150-420°C. 3. Method according to claim 2, characterized in that the gas is passed over the nickel molybdate catalyst at a temperature in the range 150-300°C. 4. Method according to one of the preceding claims,

karakterisert vedat gassen ledes over nikkelmolybdat-katalysatoren ved et trykk i området 7-4 2 kg/cm 2 over atmosfæretrykk. characterized in that the gas is passed over the nickel molybdate catalyst at a pressure in the range 7-4 2 kg/cm 2 above atmospheric pressure.

5. Fremgangsmåte ifølge krav 4,karakterisert vedat gassen ledes over nikkelmolybdat-katalysatoren 5. Method according to claim 4, characterized in that the gas is led over the nickel molybdate catalyst

2 2

ved et trykk i området 7-8 kg/cm over atmosfæretrykk.at a pressure in the range of 7-8 kg/cm above atmospheric pressure.

6. Fremgangsmåte ifølge et av de foregående krav,karakterisert vedat den hydrogenholdige gass i hvilken svovelforbindelser foreligger som forurensninger, er koksovnsgass. 7. Fremgangsmåte ifølge et av de foregående krav,karakterisert vedat gassen ledes som en gass-strøm gjennom et antall sjikt inneholdende nikkelmolybdat-katalysatoren, og kald gass som skal behandles innføres i gass-strømmen mellom hvilke som helst to sjikt som en kjølegass, hvorved temperaturen av den reagerende gass reguleres. 8. Fremgangsmåte ifølge et av de foregående krav,karakterisert veddet ytterligere trinn å fjerne hydrogensulfidet fra den behandlede gass. 9. Fremgangsmåte ifølge krav 8,karakterisert vedat hydrogensulfidet fjernes ved hjelp av et regenererbart absorpsjonsmiddel. 10. Fremgangsmåte ifølge krav 8 eller 9,karakterisert vedat den resulterende gass underkastes behandling i et annet trinn, hvor gassen ledes over en nikkelmolybdat-katalysator ved forhøyet temperatur og forhøyet trykk for hydrogenering av svovelforbindelser til hydrogensulfid. 11. Fremgangsmåte ifølge krav 10,karakterisert vedat gassen i det annet trinn ledes over en nikkelmolybdat-katalysator ved en temperatur i området 350-420°C og et trykk i området 7-42 kg/cm . 12. Fremgangsmåte ifølge krav 11,karakterisert vedat gassen i det annet behandlingstrinn ledes over en nikkelmolybdat-katalysator ved en temperatur i området 350-400°C. 13. Fremgangsmåte ifølge et av kravene 10-12,karakterisert vedat gassen i det annet behandlingstrinn behandles under utnyttelse av varmen i gassen fra den opprinnelige reaksjon i nærvær av nikkelmolybdat-katalysatoren. 14. Fremgangsmåte ifølge et av' kravene 10-13,karakterisert vedat den resulterende gass fra det annet behandlingstrinn behandles for fjerning av hydrogensulfid . 15. Fremgangsmåte ifølge krav 14,karakterisert vedat hydrogensulfidet fjernes i et stasjonært sjikt av fast absorpsjonsmiddel. 16. Fremgangsmåte ifølge krav 15,karakterisert vedat det faste absorpsjonsmiddel er sinkoksyd. 17. Fremgangsmåte ifølge et av kravene 14-16,karakterisert vedat hydrogensulfid-fri gass blandes med vanndamp og ledes over en høytemperatur-veksel-katalysator, slik at karbonmonoksyd i gassen vil reagere med vanndampen under dannelse av hydrogen og karbondioksyd. 18. Fremgangsmåte ifølge krav 17,karakterisert vedat den relative mengde av (vanndamp + karbondioksyd) tilsvarer et mol/atom-forhold i området 1,2:1 til 5:1 regnet i mol pr. hydrokarbon-karbonatom i gassen. 19. Fremgangsmåte ifølge krav 17,karakterisert vedat vanndamp blandes med den sulfidfrie gass i et sådant forhold at når karbonmomoksyd og vanndamp reagerer under dannelse av hydrogen og karbondioksyd, så vil den gjenværende vanndamp pluss den samlede mengde av karbondioksyd i gassen foreligge i et mol/atom-forhold mellom 1,2:1 til 1,5:1 regnet som mol pr. hydrokarbon-karbonatom i gassen. 20. Fremgangsmåte ifølge krav 19,karakterisert vedat den resulterende gass anvendes som mategass for den direkte reduksjon av jernmalm. 21. Fremgangsmåte til behandling av en hydrogenholdig gass, hvor svovelforbindelser foreligger som forurensninger,karakterisert vedat man går frem hovedsakelig som beskrevet i forbindelse med tegningens fig. 1 eller fig. 2. 22. En gass som er behandlet ved fremgangsmåten . ifølge hvilket som helst av de foregående krav. 6. Method according to one of the preceding claims, characterized in that the hydrogen-containing gas in which sulfur compounds are present as pollutants is coke oven gas. 7. Method according to one of the preceding claims, characterized in that the gas is led as a gas stream through a number of layers containing the nickel molybdate catalyst, and cold gas to be treated is introduced into the gas stream between any two layers as a cooling gas, whereby the temperature of the reacting gas is regulated. 8. Method according to one of the preceding claims, characterized by the further step of removing the hydrogen sulphide from the treated gas. 9. Method according to claim 8, characterized in that the hydrogen sulphide is removed by means of a regenerable absorbent. 10. Method according to claim 8 or 9, characterized in that the resulting gas is subjected to treatment in another step, where the gas is passed over a nickel molybdate catalyst at elevated temperature and elevated pressure for the hydrogenation of sulfur compounds to hydrogen sulphide. 11. Method according to claim 10, characterized in that the gas in the second stage is passed over a nickel molybdate catalyst at a temperature in the range 350-420°C and a pressure in the range 7-42 kg/cm . 12. Method according to claim 11, characterized in that the gas in the second treatment step is passed over a nickel molybdate catalyst at a temperature in the range 350-400°C. 13. Method according to one of claims 10-12, characterized in that the gas in the second treatment step is treated using the heat in the gas from the original reaction in the presence of the nickel molybdate catalyst. 14. Method according to one of claims 10-13, characterized in that the resulting gas from the second treatment step is treated to remove hydrogen sulphide. 15. Method according to claim 14, characterized in that the hydrogen sulphide is removed in a stationary layer of solid absorbent. 16. Method according to claim 15, characterized in that the solid absorbent is zinc oxide. 17. Method according to one of claims 14-16, characterized in that hydrogen sulfide-free gas is mixed with water vapor and passed over a high-temperature exchange catalyst, so that carbon monoxide in the gas will react with the water vapor to form hydrogen and carbon dioxide. 18. Method according to claim 17, characterized in that the relative amount of (water vapor + carbon dioxide) corresponds to a mole/atom ratio in the range 1.2:1 to 5:1 calculated in moles per hydrocarbon-carbon atom in the gas. 19. Method according to claim 17, characterized in that water vapor is mixed with the sulphide-free gas in such a ratio that when carbon monoxide and water vapor react to form hydrogen and carbon dioxide, then the remaining water vapor plus the total amount of carbon dioxide in the gas will be present in a mole/atom ratio between 1.2:1 and 1.5:1 calculated as moles per hydrocarbon-carbon atom in the gas. 20. Method according to claim 19, characterized in that the resulting gas is used as feed gas for the direct reduction of iron ore. 21. Method for treating a hydrogen-containing gas, where sulfur compounds are present as contaminants, characterized by proceeding mainly as described in connection with the drawing's fig. 1 or fig. 2. 22. A gas which has been treated by the method . according to any of the preceding claims.

NO782467A 1977-07-18 1978-07-17 PROCEDURE FOR TREATMENT OF A HYDROGEN-CONTAINING GAS NO782467L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB30103/77A GB1588763A (en) 1977-07-18 1977-07-18 Treatment of hydrogen-containing gases

Publications (1)

Publication Number Publication Date
NO782467L true NO782467L (en) 1979-01-19

Family

ID=10302324

Family Applications (1)

Application Number Title Priority Date Filing Date
NO782467A NO782467L (en) 1977-07-18 1978-07-17 PROCEDURE FOR TREATMENT OF A HYDROGEN-CONTAINING GAS

Country Status (5)

Country Link
GB (1) GB1588763A (en)
IN (1) IN149946B (en)
NO (1) NO782467L (en)
SE (1) SE7807901L (en)
ZA (1) ZA783994B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664459B2 (en) 2008-03-31 2014-03-04 Air Products And Chemicals, Inc. Process for hydrogenating olefins

Also Published As

Publication number Publication date
ZA783994B (en) 1979-07-25
IN149946B (en) 1982-06-12
SE7807901L (en) 1979-01-19
GB1588763A (en) 1981-04-29

Similar Documents

Publication Publication Date Title
CA2052453C (en) Process for producing high purity hydrogen
US4533529A (en) Sulfur recovery process
US4302434A (en) Process for producing hydrogen and sulphur from hydrogen sulphide
US5152975A (en) Process for producing high purity hydrogen
JP3638618B2 (en) Production method of high purity hydrogen
US3551124A (en) Process of gasifying hydrocarbon fractions containing sulfur
CN1101890A (en) Partial oxidation process for producing a stream of hot purified gas
US3988425A (en) Process of producing carbon monoxide from light hydrocarbons
US4241032A (en) Process for the removal of hydrogen sulfide from gas streams
EP0073074B1 (en) Process for reducing the total sulphur content of a high co2-content feed gas
US4391790A (en) Method and apparatus for reducing the ammonia concentration of sulfur recovery facility gas streams
WO2020254634A1 (en) Process for treating a feedstock comprising halides
US9023309B1 (en) Process of conversion sulfur compounds to elemental sulfur by using direct reduction and oxidation catalysts in Claus units
US3660276A (en) Purification of hydrocarbon oils
US3927999A (en) Methane-rich gas process
JP2022534554A (en) Direct oxidation of hydrogen sulfide in hydrotreating recycle gas streams by hydrogen refining
US4769229A (en) Sulfur recovery process using metal oxide absorber feed for regeneration
US2890165A (en) Hydrocarbon desulfurization process
EP2784022B1 (en) Oxygen application in Claus units charged with an additional load -particularly a waste-gas stream containing SO2 and coming from adsorbent regeneration
KR102349658B1 (en) Method and apparatus for making a mixed feed stream for a steam reforming plant
NO782467L (en) PROCEDURE FOR TREATMENT OF A HYDROGEN-CONTAINING GAS
US1822293A (en) Process for regenerating contaminated purifying agents
US20100303700A1 (en) Process for treating a gas stream or effluent
US4793976A (en) Sulfur recovery system
EP0260798A2 (en) Improved sulfur recovery process using metal oxide absorbent