NO337025B1 - Reactor for enzymatic hydrolysis of a feedstock - Google Patents

Reactor for enzymatic hydrolysis of a feedstock Download PDF

Info

Publication number
NO337025B1
NO337025B1 NO20141197A NO20141197A NO337025B1 NO 337025 B1 NO337025 B1 NO 337025B1 NO 20141197 A NO20141197 A NO 20141197A NO 20141197 A NO20141197 A NO 20141197A NO 337025 B1 NO337025 B1 NO 337025B1
Authority
NO
Norway
Prior art keywords
reactor
chambers
heat exchanger
accordance
chamber
Prior art date
Application number
NO20141197A
Other languages
Norwegian (no)
Other versions
NO20141197A1 (en
Inventor
Lars Aglen
Original Assignee
Lars Aglen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lars Aglen filed Critical Lars Aglen
Priority to NO20141197A priority Critical patent/NO337025B1/en
Priority to NO20150943A priority patent/NO342290B1/en
Priority to PT158483560T priority patent/PT3204486T/en
Priority to EP15848356.0A priority patent/EP3204486B1/en
Priority to JP2017538569A priority patent/JP6671614B2/en
Priority to HUE15848356A priority patent/HUE048792T2/en
Priority to US15/517,242 priority patent/US11072770B2/en
Priority to PL15848356T priority patent/PL3204486T3/en
Priority to RS20200479A priority patent/RS60218B1/en
Priority to PCT/NO2015/050183 priority patent/WO2016056922A1/en
Priority to RU2017109898A priority patent/RU2694324C2/en
Priority to SI201531191T priority patent/SI3204486T1/en
Priority to LTEP15848356.0T priority patent/LT3204486T/en
Priority to CA2962402A priority patent/CA2962402C/en
Priority to CN201580054509.7A priority patent/CN107109326B/en
Priority to DKPA201770211A priority patent/DK179596B1/en
Priority to AU2015328779A priority patent/AU2015328779B2/en
Priority to BR112017007039A priority patent/BR112017007039B8/en
Priority to ES15848356T priority patent/ES2791329T3/en
Publication of NO20141197A1 publication Critical patent/NO20141197A1/en
Publication of NO337025B1 publication Critical patent/NO337025B1/en
Priority to CL2017000832A priority patent/CL2017000832A1/en
Priority to HRP20200726TT priority patent/HRP20200726T1/en
Priority to CY20201100417T priority patent/CY1122847T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/16Apparatus for enzymology or microbiology containing, or adapted to contain, solid media
    • C12M1/18Multiple fields or compartments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/24Recirculation of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

Reaktor for enzymatisk hydrolyse av et råmateriale Reactor for enzymatic hydrolysis of a raw material

Foreliggende oppfinnelse angår en reaktor av den type som fremgår av ingressen til patentkrav 1. The present invention relates to a reactor of the type that appears in the preamble to patent claim 1.

Bakgrunn Background

Ved eksempelvis enzymatisk behandling avorganisk materiale med tanke på hydrolyse (nedbryting)erdetenforutsetningforvellykket resultat atman har kontroll med temperatur i materialet og tidenenzymeneeri kontakt med materialet (kontakttid). Forlangellerforkort kontakttid vil begge være negativtfor produktet av prosessen og kan skape problemerfor videre prosessering av materialet og/eller væ re negativt for kvaliteten av det ferdige produktet fra en framstillingsprosess. Riktig kontakttid er altså det sentrale her. For example, in the case of enzymatic treatment of organic material with a view to hydrolysis (decomposition), the prerequisite for a successful result is that you have control over the temperature in the material and the time the enzyme is in contact with the material (contact time). Longer or shorter contact times will both be negative for the product of the process and may create problems for further processing of the material and/or be negative for the quality of the finished product from a manufacturing process. Correct contact time is therefore the key here.

Ved brukav industrielle enzymer for hydrolysering el ler en annen f orm for enzymatisk prosess, tilsettes de aktuell eenzymer i et råstoff. Etterat enzymene er tilsatt og fordelt i råstoffet, er det viktig at blandingen blir omrørt hele tiden for å oppnå god kontakt mel lom enzymene og råstoffet. Samtidigerdetsom nevntviktig at enzymeneer i kontakt med råstoffet etgitttidsintervall. Når dette tidsintervallet er oppnådd, er det videre meget viktig at enzymatisk nedbryting opphører raskt foråt prosessen ikke skal gå for langt. Dette gjøres vanligvis ved å varme opp blandingen av råstoff og enzymer til en temperatur slik at enzymene ødelegges (inaktiveres). When using industrial enzymes for hydrolysis or another form of enzymatic process, the relevant enzymes are added to a raw material. After the enzymes have been added and distributed in the raw material, it is important that the mixture is constantly stirred to achieve good contact between the enzymes and the raw material. At the same time, as mentioned, it is important that the enzymes are in contact with the raw material at a given time interval. When this time interval has been reached, it is furthermore very important that enzymatic degradation ceases quickly so that the process does not go too far. This is usually done by heating the mixture of raw material and enzymes to a temperature so that the enzymes are destroyed (inactivated).

Tilsvarende utfordringgjelder også foret antall andre kjemiske prosesserderdeterviktigmeden mest mulig homogen blanding av i nngående komponenter og en kontrol lert reaksjonstid som verken kan være vesentlig kortere eller vesentlig lengre enn det optimale dersom ønsket kvalitet på sluttproduktetskal kunneoppnås. A similar challenge also applies to the number of other chemical processes with the most homogeneous mixture of existing components and a controlled reaction time which cannot be significantly shorter or significantly longer than the optimum if the desired quality of the final product is to be achieved.

Den enkleste måte å oppnå riktig kontakttid på, er å bruke reaktorer basert på "batch-prinsippet". Ved batch-kjøring holder man et definert volum (en tank el) undergitte betingelser i et visst tidsrom, og deretter stopper man prosessen. Ved enzymatiske prosesser brukes som sagt oppvarming for å inaktivere enzym, len industriell produksjon har man gjerne store volumer i prosess, og dersom man kjører såkalt "batch", vil det være vanskelig å varme opp et stort batch - volum hurtig nok. Et alternativ erå ha svært mange små batch-volumer, men dette vil føre til uforholdsmessig høye kostnader med hensyn på teknologi. The easiest way to achieve the correct contact time is to use reactors based on the "batch principle". With batch running, a defined volume (a tank etc.) is kept under certain conditions for a certain period of time, and then the process is stopped. In enzymatic processes, as I said, heating is used to inactivate enzymes, in industrial production you often have large volumes in process, and if you run a so-called "batch", it will be difficult to heat up a large batch - volume quickly enough. An alternative is to have very many small batch volumes, but this will lead to disproportionately high costs in terms of technology.

Det erogså andre ulemperved batch prosesser sammenlignet med kontinuerlige prosesser uavhengig av om prosessene har å gjøre med enzymatisk behandling. En slik ulempe er langt hyppigere start og stopp av prosessene. Dette er arbeidsintensivt og vanskeligere å automatisere enn kontinuerlige prosesser. Samtidig kan driftsbetingelseneunder start og stopp gjerne variere mer enn det som er ønskelig. There are also other disadvantages of batch processes compared to continuous processes, regardless of whether the processes have to do with enzymatic treatment. One such disadvantage is the far more frequent start and stop of the processes. This is labor-intensive and more difficult to automate than continuous processes. At the same time, the operating conditions during start and stop can often vary more than is desirable.

Ønskemålet er å ha en kontinuerlig gjennomstrømming av homogent blandet råstoff der prosessen inaktiveres etter et gitt tidsintervall. Å la en kontinuerlig strøm av råstoff gå gjennomen stor, totalomblandet("completemix") beholder er ingen god løsning fordi kontakttiden mellomde enkelte komponenter da vil være meget vanskelig å styre. The aim is to have a continuous flow of homogeneously mixed raw material where the process is deactivated after a given time interval. Allowing a continuous flow of raw material to pass through a large, completely mixed ("complete mix") container is not a good solution because the contact time between the individual components will then be very difficult to control.

En reaktor for enzymatiske behandling av råmateriale er kjent fra norsk patent nr. 322 996 (WO 2006 126891). Behandlingen skjer i en hovedsakelig vertikalt anordnet reaktor med atskilte reaktorkamre hvor materialet i hvert kammer blandes mekanisk meden omrørerog overføres til et tilgrensende kammer nedenfor ved utnyttelse av gravitasjonskrefter. Reaktoren skal sikre konsistentoppholdstidogkonsistentebetingelserforalt materiale som behandles. A reactor for enzymatic treatment of raw material is known from Norwegian patent no. 322 996 (WO 2006 126891). The treatment takes place in a mainly vertically arranged reactor with separate reactor chambers where the material in each chamber is mechanically mixed with agitator and transferred to an adjacent chamber below using gravitational forces. The reactor must ensure consistent residence time and consistent conditions for all material being processed.

US patentnr. 5 733 758 beskriver et apparat for enzymatisk hydrolyse og fermentering av forbehandlet lignocellulosemateriale i form av en tårn-bioreaktor. Forbehandlet materiale i fom av en oppslemming blir pumet gjennom bioreaktoren, enten oppover eller nedover, og blir periodisk blandet idet den passerergjennomblandesoner. US patent no. 5 733 758 describes an apparatus for enzymatic hydrolysis and fermentation of pre-treated lignocellulosic material in the form of a tower bioreactor. Pretreated material in the form of a slurry is pumped through the bioreactor, either upwards or downwards, and is periodically mixed as it passes through mixing zones.

Fra WO 95/06111 er det kjent en bioreaktor for produksjon av kulturer av fotosyntetiske mi kroorganismer eller planteceller dispergert i næringsinneholdende vandige løsninger. Materialet behandles i nær horisontale reaksjonsrør med en helning på 2-6 grader, transparente for sollys. Reaktoren er innrettet for i nnblåsing av luft el ler lignende for å transportere blandingen og fjerne giftigegasser. From WO 95/06111, a bioreactor for the production of cultures of photosynthetic micro-organisms or plant cells dispersed in nutrient-containing aqueous solutions is known. The material is processed in nearly horizontal reaction tubes with an inclination of 2-6 degrees, transparent to sunlight. The reactor is designed for blowing in air or the like to transport the mixture and remove toxic gases.

US patentnr. 5 141 861 omhandleren flertrinns reaktor-separatorforfermenterende produksjon av flyktige, hemmende produkterf ra ikke-flyktige substrater, omfattende en omrørttankreakStor og en pakket ellerskål-typegass-væske kontaktende kolonneseparator. Hverreaktorogseparator utgjørett trinn og mange trinn kan være stablet til ettårnellerpå annen måte plassertforå kunne betjenes i rekkefølge underdannelse av en reaktor-separator idet trinn hvorgass strømmer medstrøms med væske i separatordelen danner en anrikende seksjon mens trinn hvorgass strømmer motstrøms i forhold til væsken danner en strippeseksjon. Ved én fremgangsmåte ved brukavreaktor-separatoren bl ir et flyktig fermenteringsprodukt dannet og samtidig separert til en gassfase. US patent no. 5,141,861 deals with the multi-stage reactor-separator pre-fermentative production of volatile, inhibitory products from non-volatile substrates, comprising a stirred tank reactor and a packed bowl-type gas-liquid contacting column separator. Each reactor and separator constitutes one stage and many stages can be stacked to form a tower or otherwise positioned to be operated in sequence to form a reactor-separator, the stage where gas flows co-currently with liquid in the separator part forms an enriching section, while the stage where gas flows counter-currently to the liquid forms a stripping section. In one method at the waste reactor-separator, a volatile fermentation product is formed and simultaneously separated into a gas phase.

For behandling spesielt av marint råmateriale erdetavbetydningat ombordprosessering skjer snarest mulig etter f angst. Det er således viktig at dette kan skje i et anlegg som er kompakt og som harslikeegenskaperatdeti liten grad påvirkes av bølger som kan få et fartøy ti I å krenge. For the treatment of marine raw material in particular, this means that on-board processing takes place as soon as possible after capture. It is therefore important that this can take place in a facility that is compact and has similar properties to being little affected by waves that can cause a vessel to capsize.

Formål. Purpose.

Det er et formål ved foreliggende oppfinnelse å tilveiebringe et system og/el ler en reaktor for hydrolyse av råmateriale som er i stand til å gi konsistente reaksjonsbetingelserfor alt materiale som tilføres, uavhengig av endringer i ytre forhold. It is an aim of the present invention to provide a system and/or a reactor for the hydrolysis of raw material which is able to provide consistent reaction conditions for all material supplied, regardless of changes in external conditions.

Det er et formål ved foreliggende oppfinnelse å tilveiebringe en reaktor som gjør det mulig å oppnåfordelerknyttet til såvel satsvise prosesser som kontinuerlige prosesser når kontakttiden mellom inngående komponenter i en prosess eren kritisk parameterfor produktkvaliteten. It is an aim of the present invention to provide a reactor which makes it possible to achieve the distributor connection to both batch processes and continuous processes when the contact time between constituent components in a process is a critical parameter for product quality.

Det er videre et formål å oppnå det ovenfor nevnte med midler som er hensiktsmessige og rimelige i industriell skala. It is further an aim to achieve the above mentioned with means which are appropriate and reasonable on an industrial scale.

Det er et spesielt formål å tilveiebringeen reaktorf or hydrolyse av marint råmateriale om bord i et fangstfartøy med begrenset plass, som er i stand til å gi konsistente reaksjonsbetingelser under varierende vi nd og bølgeforhold. It is a particular purpose to provide a reactor for the hydrolysis of marine raw material on board a capture vessel with limited space, which is capable of providing consistent reaction conditions under varying wind and wave conditions.

Oppfinnelsen The invention

De ovenfor nevnte formål er oppnådd gjennom en reaktor som definert i patentkrav 1. The above-mentioned purposes are achieved through a reactor as defined in patent claim 1.

Foretrukne utførelsesf ormer av oppfinnelsen fremgår av de uselvstendige patentkrav. Preferred embodiments of the invention appear from the independent patent claims.

Materialet som behandl es i reaktoren er delvis omtalt som "råstoff (et)", delvis som "materialet". The material that is treated in the reactor is partly referred to as "raw material", partly as "the material".

Reaktoren ifølge foreliggende oppfinnelse lar seg fremstille kompakt ved at reaktoren ytre sett kan gis form av en stående sylinder hvor reaktorkamre ne ligger med en gitt helning i forhold til The reactor according to the present invention can be made compact by the fact that the reactor can be given the shape of an upright cylinder from the outside, where the reactor chambers are located with a given slope in relation to

horisontalplanet, mens reaktoren totalt sett haren generell vertikal orientering. Reaktorkamrene er rørformede, og har fortrinnsvis sirkulært tverrsnitt med forbehold blant annet som følger av de viste figurer og redegjørelsen av disse. Helningen på hvert kammer kan variere, m en erfortrinnsvis minst 1/10 (vertikalt/horisontalt)[5,7grader]. Forenkelte utførelsesformerkan helningen være 1/5 [11,3 grader]. the horizontal plane, while the reactor as a whole has a general vertical orientation. The reactor chambers are tubular, and preferably have a circular cross-section with reservations, among other things, which follow from the figures shown and the explanation thereof. The slope of each chamber can vary, but is preferably at least 1/10 (vertical/horizontal) [5.7 degrees]. In simplified embodiments, the slope may be 1/5 [11.3 degrees].

Nødvendig varmeveksling lar seg realisere konsentrisk med og innenfor denne vertikale kveil av reaktorkamre. Omrøringen finnersted ved hjelp av tilført inertgass som bobles gjennom reaktorkamrene. Ventiler mellom hvert reaktorkammer sikrer ensartet oppholdstid i hvert reaktorkammer og derfor ensartet oppholdstid totalt sett i reaktoren. Flytting av delvis behandlet materiale fra ett reaktorkammer til det neste kan gjøres ved å tilføre et overskudd av trykk av den samme inerte gass som benyttes ti I omrøring mens oppstrøms ventil er lukket og nedstrøms ventil et åpen i det aktuelle reaktorkammer. The necessary heat exchange can be realized concentrically with and within this vertical coil of reactor chambers. The stirring takes place with the help of added inert gas which is bubbled through the reactor chambers. Valves between each reactor chamber ensure uniform residence time in each reactor chamber and therefore uniform residence time overall in the reactor. Moving partially processed material from one reactor chamber to the next can be done by adding an excess of pressure of the same inert gas that is used for stirring while the upstream valve is closed and the downstream valve is open in the relevant reactor chamber.

Oppfinnelsen skal nå beskrives nærmere under henvisning ti I de vedlagte figurer hvor The invention will now be described in more detail with reference to the attached figures where

Figur 1 viser i perspektiv en utførelsesform av reaktoren ifølge foreliggende oppfinnelse Figure 1 shows in perspective an embodiment of the reactor according to the present invention

Figur 2 viser skjematisk ett reaktorkammer ifølge en utførelsesform avforeliggende oppfinnelse Figure 2 schematically shows a reactor chamber according to an embodiment of the present invention

Figur 3 viser skjematisk et snitt av visse detaljer av den på figur 1 viste utførelsesform Figure 3 schematically shows a section of certain details of the embodiment shown in Figure 1

Figur4 viserskjematisk ytterligere detaljer av den på figurl viste utførelsesform. Figure 4 schematically shows further details of the embodiment shown in figure 1.

Figur 5 viser skjematisk et flytskjema for en prosess som gjør nytte av reaktoren ifølge foreliggende oppfinnelse. Figure 5 schematically shows a flow chart for a process that makes use of the reactor according to the present invention.

Figur 6 viser skjematisk ogforenkl et ettoppriss av reaktoren vist i figur 1 Figure 6 shows a schematic and simplified one-up view of the reactor shown in Figure 1

Figur 7 viser skjematisk ogforenkl et ettoppriss av en reaktor ifølge foreliggende oppfinnelse som utgjøren variant i forhold til den som er vist i figur 1 Figurl visergenerelten utførelsesform aven reaktor ifølge foreliggende oppfinnelse. Etantall Figure 7 shows schematically and simplified a single plan of a reactor according to the present invention which constitutes a variant in relation to the one shown in Figure 1. Figure 1 shows the general embodiment of the reactor according to the present invention. A number

reaktorkamre R1-R6 kveiler seg helisk ovenfra og nedoveri reaktoren som totalt sett kan sieså ha en vertikal orientering elleren vertikal akse. Et vilkårlig reaktorkammer kan betegnes Ri hvor/er å oppfatte som en indeks. Hvert reaktorkammer Ri utgjør i omkretsretningen nær 360 grader, det vil si en full sirkel. Hvert reaktorkammer Ri er fulgt av en ventil Vi, hvor/er å oppfatte som en indeks, som skil ler det fra neste kammer. Reaktorkammer Rier således fulgt av ventil VI. Ventil ene VI-VS som skiller kamrene fra hverandre, ligger i den viste utførelsesform på linje over hverandre. reactor chambers R1-R6 coil helically from top to bottom in the reactor, which overall can be said to have a vertical orientation or a vertical axis. An arbitrary reactor chamber can be denoted Ri where / is to be understood as an index. Each reactor chamber Ri forms in the circumferential direction close to 360 degrees, i.e. a full circle. Each reactor chamber Ri is followed by a valve Vi, where / is to be understood as an index, which separates it from the next chamber. Reactor chamber Rier thus followed by valve VI. Valve 1 VI-VS which separates the chambers from each other, in the embodiment shown, is in line above each other.

Dette er av praktiske grunner og er ikke noen forutsetning for funksjonen av reaktoren. Nedenfor reaktorkamrene er dettre pasteuriseringskamre P1-P3, i den viste utførelsesform av hovedsakelig samme form og størrelse som reaktorkamrene. Disse er igjen skilt av ventiler, nummerert som VP1 og VP2. Det eksakte antall reaktorkamre og pasteuriseringskamre kan variere. Figurl viserogsåtilførselsledning 01 for råmateriale, uttaksrør02for ferdig behandlet materiale. Videre vises en trykkbehol der 13 for i nertgass, etantall rør 10 for i nertgass til hvert av reaktorkamrene og pasteuriseringskamre ne, en samlestokk llfor benyttet inertgass og en returledning 14 for retur av den benyttede inertgassen til beholderen 13, via en kompressor 12. Inertgassen slippes ut fra reaktorkamrene via ventilergenerelt benevnt RVi (hvor/er å oppfatte som en indeks). Tre av disse er vist med nummer i figurl, RV1-RV3. Figurl viser også en tilførselsledning 03 for luft til minst én varmeveksler samt utløp 04 for luft fra en varmeveksler betegnet HEX2. I praksis vil det typisk bli benyttet to varmevekslere slik det er redegjort for senere. Figur 1 viser også en rørledning 17 for behandlet materialefra reaktorkammer R6 inn til varmeveksler HEX2. Videre vises en rørledning 16 f ra øvre del av varmeveksler HEX2til innløpet av pasteuriseringskammer Pl. Figurl viser også en del av en rørledning 18 som bringer varmevekslet råmateriale inn til reaktorkammer RI. Figur 2 Viser et snitt av ett enkelt reaktorkammer, her tilfeldig valgt ut reaktorkammer 3. En forskjell f ra utførelsesformen vist i figur 1, er at dette reaktorkammeretforenkelhets skyld er vist som et rett kammer. Det er for øvrig f ul It mulig å realisere foreliggende reaktor med rette kamre. Material innløpet til reaktorkammer R3er via ventil en V2 til høyre på figuren mens utløpet er via This is for practical reasons and is not a prerequisite for the functioning of the reactor. Below the reactor chambers are the three pasteurization chambers P1-P3, in the shown embodiment of essentially the same shape and size as the reactor chambers. These are again separated by valves, numbered as VP1 and VP2. The exact number of reactor chambers and pasteurization chambers may vary. Figure 1 also shows supply line 01 for raw material, outlet pipe 02 for finished material. Also shown is a pressure vessel 13 for inert gas, the same number of pipes 10 for inert gas to each of the reactor chambers and pasteurization chambers, a manifold 11 for used inert gas and a return line 14 for returning the used inert gas to the container 13, via a compressor 12. The inert gas is released from the reactor chambers via valves generally referred to as RVi (where/is to be understood as an index). Three of these are shown with numbers in the figure, RV1-RV3. Figure 1 also shows a supply line 03 for air to at least one heat exchanger as well as an outlet 04 for air from a heat exchanger designated HEX2. In practice, two heat exchangers will typically be used, as explained later. Figure 1 also shows a pipeline 17 for treated material from reactor chamber R6 into heat exchanger HEX2. Furthermore, a pipeline 16 is shown from the upper part of heat exchanger HEX2 to the inlet of pasteurization chamber Pl. Figure 1 also shows part of a pipeline 18 which brings heat-exchanged raw material into reactor chamber RI. Figure 2 shows a section of a single reactor chamber, here randomly selected reactor chamber 3. A difference from the embodiment shown in Figure 1 is that this reactor chamber is shown as a straight chamber for simplicity. It is also entirely possible to realize the present reactor with straight chambers. Material inlet to reactor chamber R3 is via valve a V2 to the right of the figure, while the outlet is via

ventilen V3 ti I venstre på figuren. Gjennom helningen påreaktorkammeretvil materialflyten være assistert av gravitasjonskraften. I figur 2 er helningen på reaktorkammeret ca. 1/10. Detteerofte tilstrekkeligogsåi praksis, menkani noentilfellerværestørre,foreksempel 1/5. Inertgass,typisk nitrogen, blir innført via tilførselsledning 10 nær nedstrøms ende av reaktorkammeret og slippes ut viautslippsstuss 21 nær oppstrøms ende av reaktorkammeret. Under behandling er begge ventilerV2ogV3 stengt, slik at materialet f or et begrenset tidsrom holdes stasjonært i reaktorkammeret. Slik pilene indikerer, vil transporten av i nertgass gjennom kammeret føre ti I en sirkulasjon av materialet i kammeret. Inertgassen benyttes således til effektiv agitering av massen til behandling. Det er en inngående ventil IV3 på tilførselsledning 10 inn til reaktorkammeret og det er likeledes en returventil RV3påutløpsstussen 21forgass til samlestokken 14. the valve V3 ti I on the left of the figure. Through the slope of the reactor chamber, the material flow will be assisted by the force of gravity. In Figure 2, the slope of the reactor chamber is approx. 1/10. This is often sufficient in practice as well, but can in some cases be greater, for example 1/5. Inert gas, typically nitrogen, is introduced via supply line 10 near the downstream end of the reactor chamber and discharged via discharge nozzle 21 near the upstream end of the reactor chamber. During treatment, both valves V2 and V3 are closed, so that the material is kept stationary in the reactor chamber for a limited period of time. As the arrows indicate, the transport of inert gas through the chamber will lead to a circulation of the material in the chamber. The inert gas is thus used for effective agitation of the mass for treatment. There is an inlet valve IV3 on the supply line 10 into the reactor chamber and there is likewise a return valve RV3 on the outlet connection 21 for gas to the manifold 14.

Når reaktorkammer3skal tømmes, lukkes returventil RV3ogreaktorkammerettilføresetvalgt overtrykk. Det er en forutsetning at begge ventilene V2 og V3 også er lukket. Detforutsettesnåat tilgrensende nedstrøms reaktorkammer R4på forhånd er blitt tømt for materiale og står uten overtrykk. Deretter åpnes ventil V3 og det skjer en rask trykkavlastningvedatgassog materiale blåses ned i reaktorkammer R4, også assistert av gravitasjonskraften. Mens gassen vi I fordele seg på de to kamrene, vil så å si altfast materiale ogvæskematerialehavne i reaktorkammer4for videre behandlingder. When reactor chamber 3 is to be emptied, return valve RV3 is closed and the reactor chamber is supplied with the selected excess pressure. It is a prerequisite that both valves V2 and V3 are also closed. It is now assumed that the adjacent downstream reactor chamber R4 has previously been emptied of material and is without excess pressure. Valve V3 is then opened and a rapid depressurization occurs with gas and material being blown down into reactor chamber R4, also assisted by the force of gravity. While the gas is distributed between the two chambers, so to speak, all solid material and liquid material will end up in reactor chamber 4 for further treatment there.

Det skal forstås at reaktorkammer R3 bare er valgt som et tilfeldig eksempel, i hovedsak skjer samme type behandling i alle reaktorkamre, og en hovedgrunn til å benytte såpass mange adskilte kamre er å sikre ens oppholdstid for hele massen til behandling, idet materialflyten sett utenfra er tilnærmet som en ideell pl uggstrøm fra innløp til reaktorkammer RI ti I utløp fra reaktorkammer R6. Avtapningen fra reaktorkammer R6 er litt annerledes fordi materialstrømmen der ikke går direkte til et nedenfor beliggende kammer, men til en varmeveksler for ytterligere oppvarming for derved å avbryte hydrolyseraksjonen. Temperaturen i massen etterdennevarmevekslingen kan typisk være 90 "Celler mer. It should be understood that reactor chamber R3 has only been chosen as a random example, essentially the same type of treatment takes place in all reactor chambers, and a main reason for using so many separate chambers is to ensure the same residence time for the entire mass to be treated, as the material flow seen from the outside is approximately as an ideal pl ugg flow from inlet to reactor chamber RI ti I outlet from reactor chamber R6. The draining from reactor chamber R6 is slightly different because the material flow there does not go directly to a chamber located below, but to a heat exchanger for further heating to thereby interrupt the hydrolysis reaction. The temperature in the mass after this heat exchange can typically be 90 °C or more.

Fagmannen vil forstå at fra en situasjon hvor alle reaktorkamre erf ul le av materiale til behandling, må materialet i reaktorkammer R6 tømmes før noe annet kammer, deretter reaktorkammer R5før reaktorkammer R4osv. For imidlertid å skaffe plass til materialet som evakueres fra reaktorkammer R6, må det skaffes pl ass gjennom tilsvarende prosedyre for pasteuriseringskamrene P1-P3 på tilsvarende måte, det vil si gjennom tømming av kamrene P3, P2 og Pl i denne rekkefølgen. The person skilled in the art will understand that from a situation where all reactor chambers are full of material for treatment, the material in reactor chamber R6 must be emptied before any other chamber, then reactor chamber R5 before reactor chamber R4, etc. However, in order to provide space for the material that is evacuated from reactor chamber R6, space must be provided through a corresponding procedure for the pasteurization chambers P1-P3 in a similar way, that is through emptying the chambers P3, P2 and P1 in this order.

Varmevekslingen ifølge foreliggende oppfinnelse er i utgangspunktet klassisk, og kan utføres på samme måte og i samme type utstyr som ved tidligere kjente prosesser. Det er imidlertid fordelaktig både ut ifra plass og andre hensyn at den utføres i en varmeveksler som er koaksial med reaktorkamrene når disse er anordnet slik at de samlet danner en heliks. The heat exchange according to the present invention is basically classical, and can be carried out in the same way and in the same type of equipment as in previously known processes. However, it is advantageous, both from the point of view of space and other considerations, that it is carried out in a heat exchanger which is coaxial with the reactor chambers when these are arranged so that they together form a helix.

Figur 3 viseretvertikalsnittavetsystemforvarmevekslingsomkan inngå som en intergrertdel av foreliggende oppfinnelse. Reaktorkamrene Rl-R6vises på figuren liksom også pasteuriseringskamrene P1-P3. Koaksialt med disse og med den vertikale aksen av reaktoren,er det over hverandre anordnet to varmevekslere HEX1 og HEX2, som eventuelt kan oppfattes som én totrinns varmeveksler. Hensikten med nedre varmeveksler HEX1 (eller nedre tri nn av varmeveksleren) erå varme materialettil behandlingtil en temperatur som støtter enzymatisk hydrolyse, typisk en temperatur på omtrent 50 °C. Dette skjer med materialstrømmen som tilføres reaktoren gjennom tilførselsrør 01 (fig. 1) før materialet går i nn i reaktorkammer RI. Materialstrømmen som ti Iføres varmeveksler HEX1 via tilførselsrør 01 passerer i den viste utførelsesform oppover gjennom varmeveksleren HEXli en helisk anordnet rørsløyfe 33 nær den ytre veggen av varmeveksleren. Varme tilføres varmeveksleren til varmevekslerenheten 31. Varmeveksleren HEXlergenereltfyltmeden væske, fortrinnsvisen vandigvæske. I den viste utførelsesform blir dessuten luft tilført varmeveksleren f ra luft tilførsel 03 via en fordeler 35. Luften bidrar ti I å sirkulere vann opp nær sentrum av varmeveksleren mens vannet trekker ned igjen langs periferien av varmeveksleren hvor den heliske rørsløyfen33befinnerseg, slikat varmevekslingen i forhold til rørsløyfen 33 i hovedsak har karakter av motstrømsvarmeveksling. Figure 3 shows the vertical section of the system for heat exchange which can be included as an integrated part of the present invention. The reactor chambers R1-R6 are shown in the figure, as are the pasteurization chambers P1-P3. Coaxial with these and with the vertical axis of the reactor, two heat exchangers HEX1 and HEX2 are arranged above each other, which can possibly be perceived as one two-stage heat exchanger. The purpose of the lower heat exchanger HEX1 (or lower stage of the heat exchanger) is to heat the material for treatment to a temperature that supports enzymatic hydrolysis, typically a temperature of approximately 50 °C. This happens with the material flow that is supplied to the reactor through supply pipe 01 (fig. 1) before the material enters nn in reactor chamber RI. The material flow which is introduced into the heat exchanger HEX1 via supply pipe 01 passes in the embodiment shown upwards through the heat exchanger HEXli a helically arranged pipe loop 33 near the outer wall of the heat exchanger. Heat is supplied to the heat exchanger of the heat exchanger unit 31. The heat exchanger HEX is generally filled with liquid, preferably aqueous liquid. In the embodiment shown, air is also supplied to the heat exchanger from air supply 03 via a distributor 35. The air helps to circulate water up near the center of the heat exchanger while the water draws down again along the periphery of the heat exchanger where the helical tube loop 33 is located, simulating the heat exchange in relation to the pipe loop 33 essentially has the character of counter-flow heat exchange.

Det vises i detfølgendetil figur4så vel som til figur 3. Utløpet av rørsløyfen 33 er koblettil rørledning 18 (fig. 4) som bringer det oppvarmede rå mate ria I et ti I reaktor RI. Typisk temperatur for materialblandingen inn på RI er 50 °C, men kan variere noengraderoppeller ned. Den reelle målte sanntids temperatur på materialet inn til reaktor RI el ler ut av rørsløyfen 33 kan benyttes til å styre pådraget på varmevekslerenheten 31. It is shown in the following to figure 4 as well as to figure 3. The outlet of the pipe loop 33 is connected to pipeline 18 (fig. 4) which brings the heated raw material to a reactor RI. Typical temperature for the material mixture into RI is 50 °C, but can vary by a few degrees or less. The actual measured real-time temperature of the material entering the reactor RI or exiting the pipe loop 33 can be used to control the load on the heat exchanger unit 31.

Varmeveksler (eller varmevekslertrinn) HEX2 har samme generelle konstruksjon som varmeveksler HEX1. Materiale behandlet i reaktorene R1-R6 tilføres en i varmeveksler HEX2 helisk oppadgående rørsløyfe 34 som ligger nær veggen av varmeveksleren, via en rørledning 17. En varmevekslerenhet 32 ti Ifører nødvendig varme til varmeveksler HEX2 sli kat materialet som passerer gjennom rørsløyfe 34 blir varmet til en temperaturtil strekkelig høy ti I at enzymatisk hydrolyse blirterminert. Enegnettemperaturkanværeca. 90 "Cellermer. Den reellemålte sanntids temperatur på materialet utav rørsløyfen 34 kan benyttes til å styre pådraget på varmevekslerenheten 32. Materiale som forlater varmeveksleren HEX2førestilførste pasteuriseringskammer Plviaen rørledning 16. Heat exchanger (or heat exchanger stage) HEX2 has the same general design as heat exchanger HEX1. Material processed in the reactors R1-R6 is supplied to a helical upward pipe loop 34 in the heat exchanger HEX2, which is located close to the wall of the heat exchanger, via a pipeline 17. A heat exchanger unit 32 ti introduces the necessary heat to the heat exchanger HEX2 so that the material passing through the pipe loop 34 is heated to a temperature to sufficiently high that enzymatic hydrolysis is terminated. Suitable temperature can be ca. 90 "Cellmer. The actual measured real-time temperature of the material from the pipe loop 34 can be used to control the load on the heat exchanger unit 32. Material leaving the heat exchanger HEX2 is fed to the first pasteurization chamber Plvia pipeline 16.

Figur4 viserdelerav reaktoren lavkledd reaktorkamrene og pasteuriseringskamrene, for tydeligereåvisedeytre rørforbindelser. Det dreier seg om rørledning 01 for mate ri al tilførsel, rørledning 02 for ferdig behandlet materiale, rørledning 03 og 04 for luft ti I hhv. fra varmeveksler, rørledning 17 for overføring av materiale fra reaktorkammer R6 (fig. 1) til andre varmeveksler HEX2, rørledning 18 for overføring av materialefra første varmeveksler HEXltil første reaktorkammer RI (fig. 1) samt røri edni ng 16 for overføri ng av materiale fra andre varmeveksler HEX2 til første pasteuriseringskammer Pl (fig. 1). Figure 4 shows parts of the reactor stripped of the reactor chambers and the pasteurization chambers, to show the external pipe connections more clearly. This concerns pipeline 01 for material supply, pipeline 02 for finished material, pipeline 03 and 04 for air, respectively. from heat exchanger, pipeline 17 for transferring material from reactor chamber R6 (fig. 1) to second heat exchanger HEX2, pipeline 18 for transferring material from first heat exchanger HEXl to first reactor chamber RI (fig. 1) as well as pipeline 16 for transferring material from second heat exchanger HEX2 to first pasteurization chamber Pl (fig. 1).

Det skal understrekes at varmevekslerne her beskrevet, kun er et eksempel på et egnet oppsett av varmevekslere og at enhver varmeveksler som gjør det mulig å varme råmaterialet til en temperatursom støtter enzymatisk hydrolyse og enhver varmeveksler som gjør det mulig a varme detbehandledemateriale til en høyeretemperaturforå stanse den enzymatiske hydrolyse av materialet kan benyttes. Det er imidlertid foretrukket å benytte det tilgjengelige volumet langs aksen av den vertikale reaktortil varmevekslingen, ogdetviste prinsipp med heliskmaterialsløyfe samt bobling av luft gjennom varmevekslerne, er hensiktsmessig fordi det gi r en god temperaturfordeling i varmevekslerne og i praksis en tilnærmet motstrøms varmeveksling siden luften trekker væsken oppover nær den vertikale aksen av varmevekslerne, mens væsken trekker ned igjen nærperiferien av varmevekslerne. It should be emphasized that the heat exchangers described here are only an example of a suitable set-up of heat exchangers and that any heat exchanger that makes it possible to heat the raw material to a temperature that supports enzymatic hydrolysis and any heat exchanger that makes it possible to heat the treated material to a higher temperature to stop it enzymatic hydrolysis of the material can be used. However, it is preferred to use the available volume along the axis of the vertical reactor for the heat exchange, and the proven principle with a helical material loop and bubbling of air through the heat exchangers is appropriate because it gives a good temperature distribution in the heat exchangers and in practice an almost counter-current heat exchange since the air draws the liquid upwards near the vertical axis of the heat exchangers, while the liquid pulls down again near the periphery of the heat exchangers.

Figur5 viser skjematisk prosessflyten i en prosess som benytter apparaturen ifølgeforeliggende oppfinnelse som vist i utførelsesformen av figurene 1-5. Helt ti I venstre vises en tilførsel av råmateriale 51 til en matetank52, videre en kvern 53 for hensiktsmessig oppdeling av råmaterialet og en pumpe 54 for å føre materialet inn til reaktoren. Pumpen 54trekkerogså med en ønsket mengde enzym fra enzymbe holder 55, hvor enzymet kan være hensiktsmessig fortynnet. Komponentene 52 ti 155 utgjør ikke en del av reaktoren ifølgeforeliggende oppfinnelse og kan omfatte hvilke som helstegnedetanker, kvernerog pumper. I tillegg til materialflyten viserfigur6 også hvordan i nertgass sirkulererfra beholder 13, via de ulike reaktorkamre og ti I bake ti I beholderen 13via samlestokk 11 og kompressor 12. En beholder56forferdigbehandlet materiale erogså vist. Figure 5 schematically shows the process flow in a process that uses the apparatus according to the present invention as shown in the embodiment of Figures 1-5. On the left is shown a supply of raw material 51 to a feed tank 52, further a grinder 53 for appropriate division of the raw material and a pump 54 to feed the material into the reactor. The pump 54 also draws a desired amount of enzyme from the enzyme container 55, where the enzyme can be appropriately diluted. The components 52 to 155 do not form part of the reactor according to the present invention and may include any solid drawing tanks, grinders and pumps. In addition to the material flow, figure 6 also shows how inert gas circulates from container 13, via the various reactor chambers and ten in back ten in container 13 via header 11 and compressor 12. A container56 of finished material is also shown.

Figur 5 viser også skjematisk flyten av i nertgass l(g) fra en beholder 13 gjennom reaktoren og tilbake til beholderen 13 via en samlestokk 11, evt. en ikke vistreturledningl4, og en kompressor 12. Figur 6 viser skjematisk ogforenklet ettoppriss av reaktoren som vist på figurl, med reaktorkammer RI kveilet rundt varmeveksler HEX2, ventil VI (og under denne, ventilene V2, V3 etc). Rørledning 18 for tilførsel av råmateriale er indikert, mens flyt av i nertgass i systemet er utelatt. Figur 7 viser ettoppriss av en alternativ utførelsesform i forhold til den vist i figurl. Her er reaktorkamrene RI'til R4' rette. Det fremgår ikke av figur 8 at også i dette tilfelle er reaktorkamrene anordnet med helning. Ytterligere reaktorkamre kan være anordnet underde viste, eksempelvis et reaktorkammer R5' under reaktorkammer RI', reaktorkammer R6' under reaktorkammer R2' etc. Figure 5 also schematically shows the flow of inert gas l(g) from a container 13 through the reactor and back to the container 13 via a manifold 11, possibly a non-return line 14, and a compressor 12. Figure 6 shows a schematic and simplified top view of the reactor as shown in figure l, with reactor chamber RI coiled around heat exchanger HEX2, valve VI (and below this, valves V2, V3 etc). Pipeline 18 for the supply of raw material is indicated, while the flow of inert gas in the system is omitted. Figure 7 shows an elevation of an alternative embodiment in relation to that shown in figure 1. Here, the reactor chambers RI' to R4' are straight. It does not appear from figure 8 that in this case too the reactor chambers are arranged with a slope. Additional reactor chambers can be arranged as shown, for example a reactor chamber R5' below reactor chamber RI', reactor chamber R6' below reactor chamber R2' etc.

I det følgende skal det gis et praktisk eksempel på bruk av reaktoren i en typisk brukssituasjon. In what follows, a practical example of using the reactor in a typical usage situation will be given.

Ytterligere foretrukne detaljer Additional preferred details

En innervegg kan skillerørsløyfene 33 og 34 fra den sentrale vannmasse i hverav varmevekslerne HEX1 og HEX2. Dervedforsterkesytterligeremomentetmedatvarmevekslingenforegårsom motstrømsvarmeveksling. An inner wall can separate the pipe loops 33 and 34 from the central water mass in each of the heat exchangers HEX1 and HEX2. Thereby amplifying further the moment when the heat exchange takes place as countercurrent heat exchange.

Det bør være en «lysåpning» mellom kveilene rørsløyfen og mellom rørsløyfe ne og yttervegg samt mellom rørsløyfeneoginnerveggnåren slikertil stede. Detteforå oppnåbestmulig varmeoverføring. Medenrørdiameterforeksempelpå60mm,kandetbenyttesenlysåpningfor eksempel på 20 mm. Når det benyttes innervegg, må denne naturligvis avsluttes i avstand fra så vel topp som bunn av varmevekslerne for å gi vannet anledning ti I å vende ned øverst og vende opp igjen nederst. There should be a "light opening" between the coils, the pipe loop and between the pipe loop and the outer wall, as well as between the pipe loop and the inner wall, if such is present. This is to achieve the best possible heat transfer. With a pipe diameter of, for example, 60 mm, you can use a light opening of, for example, 20 mm. When an inner wall is used, this must naturally end at a distance from both the top and bottom of the heat exchangers to give the water the opportunity to turn down at the top and turn up again at the bottom.

Varme som tilføres varmevekslerenehetene31 og 32 kan typisk være i form av varmtvann, damp, elleren kombinasjon. Heat supplied to the heat exchanger units 31 and 32 can typically be in the form of hot water, steam or a combination.

Produkttemperaturen bestemmes i praksis primært avfølgende variable faktorer: The product temperature is determined in practice primarily as a result of variable factors:

a- Hastigheten på produktet opp gjennom rørsløyfen. Hastigheten vil variere overtid i jamne overganger, regulert med en pumpe som typisk kan være en dobbeltvirkende stempelpumpe. a- The speed of the product up through the pipe loop. The speed will vary overtime in jammen transitions, regulated with a pump which can typically be a double-acting piston pump.

b- Hastigheten på varmtvannet motstrøms rørsløyfen kan varieres i takt med b- The speed of the hot water upstream of the pipe loop can be varied in step with

produktstrømmen ved å regulere raten avtilført luft til fordeler 35. the product flow by regulating the rate of supplied air to distributors 35.

c- Temperatur på varmtvannet. Pådrag damp/varmtvann på varmevekslereneheten 31 kan reguleres etter temperatur på restråstoff idet det forlater varmeveksler HEX1. c- Temperature of the hot water. Apply steam/hot water to the heat exchanger unit 31 can is regulated according to the temperature of the residual raw material as it leaves heat exchanger HEX1.

Varmeveksler HEX2 benyttes for å pasteurisere produktet etter hydrolyse for å «drepe» enzymaktiviteten ogå hindre bakte ri evekst. Heat exchanger HEX2 is used to pasteurize the product after hydrolysis to "kill" the enzyme activity and prevent bacterial growth.

Temperaturen på råstoff et kan ha falt ca. 3°C i den tiden dettar å hydrolysere råstoffet. Deretter skal det varmes opp i varmeveksler HEX2 til for eksempel 95 °C. Forholdet mel lom høyden på nedre (HEX1) og øvre HEX2) varmeveksler kan justeres etter temperaturforskjellene: 5-48 °C og 45-95 °C. Lufta strømmer ut i det fri etterå ha satt vannmassene i bevegelse i begge kamre. The temperature of raw material may have dropped approx. 3°C during that time to hydrolyze the raw material. It must then be heated in heat exchanger HEX2 to, for example, 95 °C. The ratio between the height of the lower (HEX1) and upper HEX2) heat exchanger can be adjusted according to the temperature differences: 5-48 °C and 45-95 °C. The air flows out into the open air after setting the water masses in motion in both chambers.

Dimensjonene på reaktorkamrene Rl-R6kan variere, men en typisk størrelse kan være 600 mm rørdiameter, det være seg enten rørene er heliksformede eller rette. Passasjen mel lom de enkelte kamre hvor ventiler er anordnet, kan være av størrelsesorden 150 mm. Samtlige ventiler i reaktoren, det være seg for masse eller for i nertgass etc, kan med fordel være innrettet ti I å bli styrt automatisk. Måten å styre dette på er imidlertid ikke del avforeliggende oppfinnelse og derfor ikke beskrevet nærmere her. The dimensions of the reactor chambers R1-R6 can vary, but a typical size can be 600 mm pipe diameter, whether the pipes are helical or straight. The passage between the individual chambers where valves are arranged can be of the order of 150 mm. All valves in the reactor, whether for mass or for inert gas, etc., can advantageously be arranged to be controlled automatically. However, the way to control this is not part of the present invention and is therefore not described in more detail here.

Behandlingstiden i hvert kammer kan variere, og kan typisk være i området fra 5 til 15 minutter. Antallet kamre i reaktoren vil naturlig nok påvirke dette, samt type råmateriale som benyttes. The treatment time in each chamber can vary, and can typically be in the range from 5 to 15 minutes. The number of chambers in the reactor will naturally affect this, as well as the type of raw material used.

Reaktoren ifølge foreliggende oppfinnelse er vel egnet ti I bruk om bord i fangstfartøyer og trenger ikke stå vertikalt forå fungere. En helning på reaktorkamrene på 1:10 (vertikalt/ horisontalt) er normalt nokfor bruk selvtil havs. Ønskerman åta høyde forstørre slagside, kan helningen økes ytterligere, foreksempeltil 1:5. The reactor according to the present invention is well suited for use on board fishing vessels and does not need to stand vertically in order to function. A slope on the reactor chambers of 1:10 (vertical/horizontal) is normally enough for use even at sea. If you want to increase the height and increase the strike side, the slope can be increased further, for example to 1:5.

Selv om det ikke er en sentral del avforeliggendeoppfinnelse, skal det bemerkes at den viste reaktor med relevante dimensjoner på reaktorkammer og varmeveksler, lar seg innebygge i en standard 20 fots container reist på høykant, det vil si med en total høyde på ca. 6 meter. Although it is not a central part of the present invention, it should be noted that the reactor shown with the relevant dimensions of the reactor chamber and heat exchanger can be built into a standard 20-foot container erected on top, i.e. with a total height of approx. 6 meters.

Prinsippene f or foreliggende reaktor lar seg imidlertid også realisere om ikke slik høyde er tilgjengelig. Foreksempel kan reaktorkamre være anordnet i en kolonne mens pasteuriseringskamrene kan være anordnet i en separat kolonne anordnet ved siden av, slik at reaktoren bygger mindre i høyden og mer i bredden e nn den som er vist på de vedlagte figurer. However, the principles for the present reactor can also be realized if such a height is not available. For example, reactor chambers can be arranged in a column, while the pasteurization chambers can be arranged in a separate column arranged next to it, so that the reactor is built less in height and more in width than that shown in the attached figures.

Claims (14)

1. Reaktorforenzymatisk hydrolyse av et råmateriale, omfattende i rekkefølge: -en første varmeveksler (HEX1) innrettettil å varme opp råmateriale som skal tilføres reaktoren til en temperatur innenfor et område som favoriserer enzymatisk hydrolyse, -en reaktor omfattende flere i serie koblede reaktorkamre (R1-R6) atski It av lukkbare ventiler (VI-V5) -en andre varmeveksler (HEX2) innrettettil å varme reaksjonsblandingen til en temperatur høyere enn det temperaturområdet som favoriserer enzymatisk hydrolyse,karakterisert vedat reaktoren er utformet med hellende, rørformedereaktorkamre(Rl-R6) sammenstilt under dannelse aven reaktor med vertikal akse, idet det første reaktorkammer (RI) er det vertikalt øverste kammer av reaktoren idet minst ett reaktorkammer er innrettet ti I å bli omrørt med en gjennomstrømmende inertgass.1. Reactor forenzymatic hydrolysis of a raw material, comprising in order: - a first heat exchanger (HEX1) arranged to heat raw material to be supplied to the reactor to a temperature within a range that favors enzymatic hydrolysis, - a reactor comprising several reactor chambers connected in series (R1 -R6) atski It of closable valves (VI-V5) -a second heat exchanger (HEX2) arranged to heat the reaction mixture to a temperature higher than the temperature range that favors enzymatic hydrolysis, characterized in that the reactor is designed with inclined tubular reactor chambers (Rl-R6) assembled to form the reactor with a vertical axis, the first reactor chamber (RI) being the vertically uppermost chamber of the reactor, at least one reactor chamber being arranged to be stirred with a flowing inert gas. 2. Reaktori samsvar med patentkrav 1, idet samtlige reaktorkamre er(Rl-R6) innrettettil å bli omrørt med gjennomstrømmende inertgass som tilføres nær nedstrøms ende av reaktorkamrene og slippes ut nær oppstrøms ende av reaktorkamrene.2. Reactor in accordance with patent claim 1, in that all reactor chambers are (Rl-R6) arranged to be stirred with flowing inert gas which is supplied near the downstream end of the reactor chambers and discharged near the upstream end of the reactor chambers. 3. Reaktor i samsvar med patentkrav 1 eller 2, idet reaktorkamrene (RI- R6) er krumme og sammenstilt danner en heliksmed hovedsakelig vertikal akse.3. Reactor in accordance with patent claim 1 or 2, in that the reactor chambers (RI-R6) are curved and when combined form a helix with a mainly vertical axis. 4. Reaktori samsvar med et hvilket som helst av de foregående patentkrav, idet minst én av første (HEXl)og andre varmeveksler (HEX2) er anordnet langs den vertikale akse av reaktoren.4. Reactor in accordance with any of the preceding patent claims, in that at least one of the first (HEX1) and second heat exchanger (HEX2) is arranged along the vertical axis of the reactor. 5. Reaktori samsvar med et hvilket som helst av de foregående patentkrav, idet første (HEXl)og andre varmeveksler (HEX2) er anordnet over hverandre langs den vertikaleakse av reaktoren.5. Reactor in accordance with any of the preceding patent claims, in that the first (HEX1) and second heat exchanger (HEX2) are arranged one above the other along the vertical axis of the reactor. 6. Reaktori samsvar med patentkrav 3 eller 5, idet første (HEXl)og andre varmeveksler (HEX2) er anordnet over hverandre, konsentriskinnenforden helisksom reaktorkamrene danner.6. Reactor in accordance with patent claim 3 or 5, in that the first (HEX1) and second heat exchanger (HEX2) are arranged one above the other, the concentric rails forming a helix that the reactor chambers form. 7. Reaktor i samsvar med et hvi Iket som helst av de foranstående patentkrav, idet mi nst ett pasteuriseringskammer (P1-P3) er anordnet nedstrøms forandre varmeveksler (HEX2).7. Reactor in accordance with any one of the preceding patent claims, with at least one pasteurization chamber (P1-P3) arranged downstream of the heat exchanger (HEX2). 8. Reaktori samsvar med patentkrav 7, idetdetminstene pasteuriseringskammer (P1-P3) er anordnet som et rørformet kammer av hovedsakelig samme form som reaksjonskamrene (RI- R6).8. Reactor in accordance with patent claim 7, in that at least the pasteurization chamber (P1-P3) is arranged as a tubular chamber of essentially the same shape as the reaction chambers (RI-R6). 9. Reaktor i samsvar med et hvilket som helst av de foranstående patentkrav, idet reaktoren videre omfatter en ytre kapslingsom innelukker reaktorkamrene og begge varmevekslerne.9. Reactor in accordance with any one of the preceding patent claims, the reactor further comprising an outer casing which encloses the reactor chambers and both heat exchangers. 10. Reaktor i samsvar med et hvi Iket som helst av de foranstående patentkrav, idet inertgassen er innrettet for resirkulasjon og gjenbruk.10. Reactor in accordance with any one of the preceding patent claims, the inert gas being arranged for recirculation and reuse. 11. Reaktori samsvarmedet hvilketsom helst av de foranstående patentkrav, idet reaktorkamrene (R1-R6) haren helning, vertikalt/horisontalt på minst ca. 1/10.11. Reactor conforming to any of the preceding patent claims, as the reactor chambers (R1-R6) have a slope, vertically/horizontally of at least approx. 1/10. 12. Reaktor i samsvar med et hvilket som helst av de foranstående patentkrav, idet hvert reaktorkammer (Ri) er innrettet for periodisk tømming gjennom tilførsel av overtrykk si nertgass til hvert reaktorkammer (Ri) ogåpningavnedstrømslukkbare ventil (Vi).12. Reactor in accordance with any one of the preceding patent claims, each reactor chamber (Ri) being arranged for periodic emptying through the supply of overpressure said inert gas to each reactor chamber (Ri) and opening of the downstream closable valve (Vi). 13. Reaktori samsvarmedet hvilketsom helstavde foranstående patentkrav, idetførste varmeveksler (HEX1) er innrettet ti I å varme materialblandingen til en temperatur på omtrent 50 °C og at andre varmeveksler (HEX2) er innrettet ti I å varme materialblandingen til en temperatur på minst ca. 90 °C.13. Reactor in accordance with any of the foregoing patent claims, in that the first heat exchanger (HEX1) is arranged to heat the material mixture to a temperature of approximately 50 °C and that the second heat exchanger (HEX2) is arranged to heat the material mixture to a temperature of at least approx. 90 °C. 14. Reaktori samsvarmedet hvilketsom helstavde foranstående patentkrav, idet reaktoren omfattereller er innrettettil å bli tilkobl et en mateinnretning (54) som er innrettettil å dosere en gitt, regulerbar mengde enzym med en gitt mengde råmateriale for hydrolyse.14. Reactor in accordance with any of the preceding patent claims, in that the reactor comprises or is arranged to be connected to a feeding device (54) which is arranged to dose a given, adjustable amount of enzyme with a given amount of raw material for hydrolysis.
NO20141197A 2014-10-07 2014-10-07 Reactor for enzymatic hydrolysis of a feedstock NO337025B1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
NO20141197A NO337025B1 (en) 2014-10-07 2014-10-07 Reactor for enzymatic hydrolysis of a feedstock
NO20150943A NO342290B1 (en) 2014-10-07 2015-07-15 Reactor for enzymatic hydrolysis of a feedstock
SI201531191T SI3204486T1 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
CA2962402A CA2962402C (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
JP2017538569A JP6671614B2 (en) 2014-10-07 2015-10-05 Compact reactor for enzyme treatment
HUE15848356A HUE048792T2 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
US15/517,242 US11072770B2 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
PL15848356T PL3204486T3 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
RS20200479A RS60218B1 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
PCT/NO2015/050183 WO2016056922A1 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
RU2017109898A RU2694324C2 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
PT158483560T PT3204486T (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
LTEP15848356.0T LT3204486T (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
EP15848356.0A EP3204486B1 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
CN201580054509.7A CN107109326B (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
DKPA201770211A DK179596B1 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
AU2015328779A AU2015328779B2 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
BR112017007039A BR112017007039B8 (en) 2014-10-07 2015-10-05 Reactor for enzymatic hydrolysis of a material.
ES15848356T ES2791329T3 (en) 2014-10-07 2015-10-05 Compact reactor for enzymatic treatment
CL2017000832A CL2017000832A1 (en) 2014-10-07 2017-04-05 Compact reactor for enzymatic treatment
HRP20200726TT HRP20200726T1 (en) 2014-10-07 2020-05-06 Compact reactor for enzymatic treatment
CY20201100417T CY1122847T1 (en) 2014-10-07 2020-05-06 COMPACT REAGENT FOR ENZYMATIC TREATMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20141197A NO337025B1 (en) 2014-10-07 2014-10-07 Reactor for enzymatic hydrolysis of a feedstock

Publications (2)

Publication Number Publication Date
NO20141197A1 NO20141197A1 (en) 2016-01-04
NO337025B1 true NO337025B1 (en) 2016-01-04

Family

ID=61800056

Family Applications (2)

Application Number Title Priority Date Filing Date
NO20141197A NO337025B1 (en) 2014-10-07 2014-10-07 Reactor for enzymatic hydrolysis of a feedstock
NO20150943A NO342290B1 (en) 2014-10-07 2015-07-15 Reactor for enzymatic hydrolysis of a feedstock

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO20150943A NO342290B1 (en) 2014-10-07 2015-07-15 Reactor for enzymatic hydrolysis of a feedstock

Country Status (7)

Country Link
ES (1) ES2791329T3 (en)
HR (1) HRP20200726T1 (en)
HU (1) HUE048792T2 (en)
LT (1) LT3204486T (en)
NO (2) NO337025B1 (en)
PT (1) PT3204486T (en)
RU (1) RU2694324C2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141861A (en) * 1983-11-03 1992-08-25 Bio Process Innovation, Inc. Method of use of a multi-stage reactor-separator with simultaneous product separation
WO1995006111A1 (en) * 1993-08-27 1995-03-02 Consiglio Nazionale Delle Ricerche System using tubular photobioreactors for the industrial culture of photosynthetic microorganisms
US5733758A (en) * 1997-01-10 1998-03-31 Nguyen; Quang A. Tower reactors for bioconversion of lignocellulosic material
NO322996B1 (en) * 2005-05-27 2006-12-18 Lars Aglen Cylindrical reactor for continuous treatment of a material mixture with stirring and with defined residence time.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184561A1 (en) * 2012-06-04 2013-12-12 Praxair Technology, Inc. System and method for micro-aeration based fermentation
WO2014066145A1 (en) * 2012-10-22 2014-05-01 Abengoa Bioenergy New Technologies, Llc Methods and apparatus relating to liquefaction of biomass slurries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141861A (en) * 1983-11-03 1992-08-25 Bio Process Innovation, Inc. Method of use of a multi-stage reactor-separator with simultaneous product separation
WO1995006111A1 (en) * 1993-08-27 1995-03-02 Consiglio Nazionale Delle Ricerche System using tubular photobioreactors for the industrial culture of photosynthetic microorganisms
US5733758A (en) * 1997-01-10 1998-03-31 Nguyen; Quang A. Tower reactors for bioconversion of lignocellulosic material
NO322996B1 (en) * 2005-05-27 2006-12-18 Lars Aglen Cylindrical reactor for continuous treatment of a material mixture with stirring and with defined residence time.

Also Published As

Publication number Publication date
HUE048792T2 (en) 2020-08-28
NO20141197A1 (en) 2016-01-04
RU2694324C2 (en) 2019-07-11
ES2791329T3 (en) 2020-11-03
PT3204486T (en) 2020-05-15
RU2017109898A (en) 2018-11-13
RU2017109898A3 (en) 2019-02-13
NO342290B1 (en) 2018-04-30
HRP20200726T1 (en) 2020-07-24
LT3204486T (en) 2020-05-25
NO20150943A1 (en) 2016-04-08

Similar Documents

Publication Publication Date Title
NO322996B1 (en) Cylindrical reactor for continuous treatment of a material mixture with stirring and with defined residence time.
CN104012298B (en) The complete production of hybrid seeds technique of edible fungus liquid kind submerged fermentation and culture medium prescription thereof
RU2009137195A (en) SYSTEM FOR THE PRODUCTION OF COMPLEX POLYESTER USING AN ESTHERIFICATION REACTOR WITHOUT MIXING
KR101693193B1 (en) Circulating-type apparatus and method for distilling liquor
RU2567649C1 (en) Biogas unit
JP2022534726A (en) Microbial growth bioreactor
CN108076726B (en) Sterile culture system for ginseng seeds
CN207285080U (en) A kind of sterilization machine for producing vegetable protein beverage
NO337025B1 (en) Reactor for enzymatic hydrolysis of a feedstock
DK179596B1 (en) Compact reactor for enzymatic treatment
NO138213B (en) PROCEDURE FOR ALCOHOLIC DEVELOPMENT UNDER WEAK PRESSURE AND STORAGE IN ONE SAME CYLINDERCONIC TANK OF A VERY LARGE AMOUNT OF OIL
CN108751339A (en) A kind of blue-green algae treatment method
CN1085727C (en) Equipment for brewing fruit spirit
AU2015342112B2 (en) Temperature control apparatus
CN202054771U (en) Rubber mixing production system
RU160091U1 (en) DEVICE FOR GROWING MICROORGANISMS
CN2905205Y (en) Tubular type continuous reactor
CN104026068A (en) Breading device used for soft-shelled turtles
CN109894070A (en) A kind of dynamic respons kettle
CN2391888Y (en) Fruit spirit prodn. equipment
CN202958126U (en) Bubble warm water type palm seed initial stage germination accelerating device
BRPI0707891A2 (en) device for attenuating / controlling foaming originated in the course of an industrial process without the use of defoaming / defoaming agent, method for attenuating / controlling foaming in an industrial process without the use of defoaming agent, and process plant industrial
CN106397157A (en) Method for preparing benzophenone
ES2875889T3 (en) Process for the production of biogas in a fermenter and a device to carry out the process
NO139863B (en) TANK, ESPECIALLY FOR USE IN THE REPAIR AND STORAGE OF OEL

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: N & U AS, NO

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: NUAS TECHNOLOGY AS, NO