NO335117B1 - Process for Preparation of Hydrocarbons by Fischer-Tropsch Reaction - Google Patents

Process for Preparation of Hydrocarbons by Fischer-Tropsch Reaction Download PDF

Info

Publication number
NO335117B1
NO335117B1 NO20040665A NO20040665A NO335117B1 NO 335117 B1 NO335117 B1 NO 335117B1 NO 20040665 A NO20040665 A NO 20040665A NO 20040665 A NO20040665 A NO 20040665A NO 335117 B1 NO335117 B1 NO 335117B1
Authority
NO
Norway
Prior art keywords
gas
reformed gas
synthesis
steam
hydrocarbons
Prior art date
Application number
NO20040665A
Other languages
Norwegian (no)
Other versions
NO20040665L (en
Inventor
Peter Edward James Abbott
Original Assignee
Johnson Matthey Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Plc filed Critical Johnson Matthey Plc
Publication of NO20040665L publication Critical patent/NO20040665L/en
Publication of NO335117B1 publication Critical patent/NO335117B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

Syntesegass for en Fischer-Tropsch-prosess oppnås ved primær damperformering av et hydrokarbonråmateriale i rør i en varmeveksler-reformer ved at den primære reformerte gass underkastes sekundær reformering, og den varme sekundære reformerte gass anvendes for å oppvarme rørene i varmeveksler-reformeren. Den resulterende reformerte gassen avkjøles, avvannes og brukes til å danne hydrokarboner i Fischer-Tropsch-prosessen. I det minste en del av restgassen fra Fischer-Tropsch-prosessen resirkuleres ved å sette den til den primære reformerte gass før sekundær reformering.Synthesis gas for a Fischer-Tropsch process is obtained by primary vapor propagation of a hydrocarbon feedstock in a heat exchanger reformer tube by subjecting the primary reformed gas to secondary reforming and the hot secondary reformed gas being used to heat the tubes in the heat exchanger reformer. The resulting reformed gas is cooled, dewatered and used to form hydrocarbons in the Fischer-Tropsch process. At least part of the residual gas from the Fischer-Tropsch process is recycled by adding it to the primary reformed gas prior to secondary reforming.

Description

Produksjon av hydrokarboner Production of hydrocarbons

Foreliggende oppfinnelse angår fremstilling av hydrokarboner ved Fischer-Tropsch-prosessen og spesielt dampreformering og spesielt fremstilling av syntesegass for anvendelse i denne prosessen. Syntesegassen inneholder hydrogen og karbon- oksider og blir produsert ved katalytisk omsetning av damp med et hydrokarbon- råmateriale. The present invention relates to the production of hydrocarbons by the Fischer-Tropsch process and in particular steam reforming and in particular the production of synthesis gas for use in this process. The synthesis gas contains hydrogen and carbon oxides and is produced by catalytic reaction of steam with a hydrocarbon raw material.

I Fischer-Tropsch-prosessen blir en syntesegass inneholdende karbonmonoksid og hydrogen omsatt i nærvær av en katalysator, som typisk er en kobolt- og/eller jern-holdig sammensetning. Fremgangsmåten kan utføres ved anvendelse av ett eller flere fikserte katalysatorsjikt eller ved anvendelse av en katalysator i bevegelse, for eksempel en oppslemning av katalysatoren i en hydrokarbonvæske. Produkt- hydrokarbonvæsken blir separert fra den gjenværende gass. Reaksjonen kan utføres i en enkel passasje eller en dei av den gjenværende gass kan kombineres med frisk syntesegass og resirkuleres til Fischer-Tropsch-reaktoren. Hvilken som helst gjenværende gass som ikke blir resirkulert til Fischer-Tropsch-reaktoren for ytterligere reaksjon blir her betegnet som restgass ("restgass"). Siden reaksjonen av syntesegassen er ufullstendig, vil restgassen inneholde noe hydrogen og karbonmonoksid. I tillegg kan restgassen også inneholde noen lette hydrokarboner, f.eks. parafiner omfattende metan, etan, butan, olefiner så som propylen, alkoholer så som etanol og spor av andre mindre komponenter så som organiske syrer. Den vii generelt også inneholde noe karbondioksid, som kan være til stede i syntesegassen som mates til Fischer-Tropsch-reaksjonen og/eller blir dannet ved bireaksjoner. Muligens, som et resultat av ufullstendig separering av det flytende hydrokarbon- produkt, kan restgassen også inneholde en liten andel av høyere hydrokarboner, dvs. hydrokarboner inneholdende 5 eller flere karbonatomer. Disse komponenter i restgassen representerer en verdifull kilde for karbon og hydrogen. In the Fischer-Tropsch process, a synthesis gas containing carbon monoxide and hydrogen is reacted in the presence of a catalyst, which is typically a cobalt and/or iron-containing composition. The method can be carried out by using one or more fixed catalyst layers or by using a moving catalyst, for example a slurry of the catalyst in a hydrocarbon liquid. The product hydrocarbon liquid is separated from the remaining gas. The reaction can be carried out in a single pass or some of the remaining gas can be combined with fresh synthesis gas and recycled to the Fischer-Tropsch reactor. Any residual gas that is not recycled to the Fischer-Tropsch reactor for further reaction is referred to herein as residual gas ("residual gas"). Since the reaction of the synthesis gas is incomplete, the residual gas will contain some hydrogen and carbon monoxide. In addition, the residual gas may also contain some light hydrocarbons, e.g. paraffins including methane, ethane, butane, olefins such as propylene, alcohols such as ethanol and traces of other minor components such as organic acids. It generally also contains some carbon dioxide, which may be present in the synthesis gas which is fed to the Fischer-Tropsch reaction and/or is formed by side reactions. Possibly, as a result of incomplete separation of the liquid hydrocarbon product, the residual gas may also contain a small proportion of higher hydrocarbons, ie hydrocarbons containing 5 or more carbon atoms. These components in the residual gas represent a valuable source of carbon and hydrogen.

I foreliggende oppfinnelse blir minst en del av restgassen resirkulert og anvendt som en del av råmaterialet som anvendes for å lage Fischer-Tropsch-syntesegassen. In the present invention, at least part of the residual gas is recycled and used as part of the raw material used to make the Fischer-Tropsch synthesis gas.

Dampreformering er meget anvendt og anvendes for å produsere hydrogenstrømmer og syntesegass for flere prosesser så som ammoniakk, metanol så vel som Fischer-Tropsch-prosessen. Steam reforming is widely used and is used to produce hydrogen streams and synthesis gas for several processes such as ammonia, methanol as well as the Fischer-Tropsch process.

I en dampreformeringsprosess blir et avsvovlet hydrokarbonråmateriaie, f. eks. naturgass eller nafta, blandet med damp og ført ved forhøyet temperatur og tykk over en egnet katalysator, generelt et overgangsmetall, spesielt nikkel, på en egnet bærer, for eksempel alumina, magnesia, zirconia eller en kalsiumaluminatsement. I dampreformeringsprosessen blir hvilke som helst hydrokarboner inneholdende to eller flere karbonatomer som er til stede omdannet til karbonmonoksid og hydrogen og i tillegg forekommer de reversible metan/damp-reformerings- og shiftreaksjoner. Graden av disse reversible reaksjonsforløp avhenger av reaksjonsbetingelsene, f.eks. temperatur og trykk, råstoffsammensetningen og aktiviteten til reformeringskatalysatoren. Metan/damp-reformeringsreaksjonen er meget endoterm og således er omdannelsen av metan til karbonoksider foretrukket ved høy temperaturer. Av denne grunn blir dampreformering vanligvis utført ved utløps- temperaturer over ca. 600 °C, typisk i området 650 °C til 950 °C ved å føre råmateriale/dampblandingen over en primær dampreformeringskatalysator plassert i utvendig oppvarmete rør. Sammensetningen av produktgassen avhenger av bl.a. andelene av råmateriaiekomponentene, trykket og temperaturen. Produktet inneholder normalt metan, hydrogen, karbonoksider, damp og hvilken som helst gass, så som nitrogen, som er til stede i råmaterialet og som er inert under betingelsene som blir anvendt. For applikasjoner så som Fischer-Tropsch-syntese er det ønsket at molforholdet av hydrogen til karbonmonoksid er ca. 2 og mengden av karbondioksid til stede er lite. In a steam reforming process, a desulphurised hydrocarbon feedstock, e.g. natural gas or naphtha, mixed with steam and passed at elevated temperature and thickened over a suitable catalyst, generally a transition metal, especially nickel, on a suitable support, for example alumina, magnesia, zirconia or a calcium aluminate cement. In the steam reforming process, any hydrocarbons containing two or more carbon atoms that are present are converted to carbon monoxide and hydrogen and in addition the reversible methane/steam reforming and shift reactions occur. The degree of these reversible reaction processes depends on the reaction conditions, e.g. temperature and pressure, the raw material composition and the activity of the reforming catalyst. The methane/steam reforming reaction is highly endothermic and thus the conversion of methane to carbon oxides is preferred at high temperatures. For this reason, steam reforming is usually carried out at outlet temperatures above approx. 600 °C, typically in the range of 650 °C to 950 °C by passing the feedstock/steam mixture over a primary steam reforming catalyst located in externally heated tubes. The composition of the product gas depends on i.a. the proportions of the raw material components, the pressure and the temperature. The product normally contains methane, hydrogen, carbon oxides, steam and any gas, such as nitrogen, which is present in the raw material and which is inert under the conditions used. For applications such as Fischer-Tropsch synthesis, it is desired that the molar ratio of hydrogen to carbon monoxide is approx. 2 and the amount of carbon dioxide present is small.

For å oppnå en syntesegass bedre egnet for Fischer-Tropsch-syntese, kan den primære reformerte gass underkastes sekundær reformering ved delvis forbrenning av den primære reformerte gass ved anvendelse av en egnet oksidant, f.eks. luft eller oksygen. Dette øker temperaturen på den reformerte gass som deretter blir ført adiabatisk gjennom et sjikt av en sekundær reformeringskatalysator, igjen vanligvis nikkel på en egnet bærer for å bringe gassbtandingen mot likevekt. Sekundær reformering tjener tre formål: den økete temperatur som er et resultat av den partielle forbrenning og påfølgende adiabatiske reformering fører til en større grad av reformering slik at den sekundære reformerte gass inneholder en redusert andel av gjenværende metan. For det andre begunstiger den økete temperaturen den reverse shiftreaksjon, slik at karbonmonoksid-til-karbondioksid-forholdet blir øket. For det tredje forbruker den partielle forbrenning effektivt noe av hydrogenet til stede i den reformerte gass, og øker således hydrogen-til-karbonoksider-forholdet. I kombinasjon gjør disse faktorer den sekundære reformerte gass dannet fra naturgass som råmateriale bedre egnet for anvendelse som syntesegass for applikasjoner så som Fischer-Tropsch-syntese enn hvis det sekundære reformeringstrinn var utelatt. Også mer høygradig varme kan gjenvinnes fra den sekundære reformerte gass: spesielt kan den utvunnete varme anvendes til å varme de katalysator-holdige rør i den primære reformer. Således kan den primære reformering utføres i en varmevekslings-reformer hvor de kataiysator-hoidige reformerrør blir oppvarmet med den sekundære reformerte gass. Eksempler på slike reformere og prosesser ved å anvende disse er beskrevet i for eksempel US 4 690 690 og US 4 695 442. In order to obtain a synthesis gas better suited for Fischer-Tropsch synthesis, the primary reformed gas can be subjected to secondary reforming by partial combustion of the primary reformed gas using a suitable oxidant, e.g. air or oxygen. This raises the temperature of the reformed gas which is then passed adiabatically through a bed of a secondary reforming catalyst, again usually nickel on a suitable support to bring the gas mixture towards equilibrium. Secondary reforming serves three purposes: the increased temperature resulting from the partial combustion and subsequent adiabatic reforming leads to a greater degree of reforming so that the secondary reformed gas contains a reduced proportion of residual methane. Second, the increased temperature favors the reverse shift reaction, so that the carbon monoxide-to-carbon dioxide ratio is increased. Third, the partial combustion effectively consumes some of the hydrogen present in the reformed gas, thus increasing the hydrogen-to-carbon oxides ratio. In combination, these factors make the secondary reformed gas formed from natural gas feedstock better suited for use as synthesis gas for applications such as Fischer-Tropsch synthesis than if the secondary reforming step were omitted. Also, more high-grade heat can be recovered from the secondary reformed gas: in particular, the recovered heat can be used to heat the catalyst-containing tubes in the primary reformer. Thus, the primary reforming can be carried out in a heat exchange reformer where the catalyst-containing reformer tubes are heated with the secondary reformed gas. Examples of such reformers and processes using them are described in, for example, US 4,690,690 and US 4,695,442.

Det har vært foreslått i WO 00/09441 å anvende en reformeringsprosess hvor råmateriale/dampblandingen blir underkastet primær reformering over en katalysator plassert i oppvarmete rør i en varmevekslingsreformer, og den resulterende primære reformerte gass blir deretter underkastet sekundær reformering ved delvis forbrenning av den primære reformerte gass med en oksygenholdig gass og bringe den resulterende delvis forbrente gass mot likevekt over en sekundær reformerings- katalysator, og deretter blir den resulterende sekundære reformerte gass anvendt til å varme rørene i varmevekslingsreformeren. I den foran nevnte WO 00/09441 ble karbondioksid separert fra produktet før eller etter anvendelse derav for syntesen av karbonholdige forbindelser og resirkulert til reformertilførselen. I én utførelsesform beskrevet i denne referanse var det resirkulerte karbondioksid en del av restgassen fra en Fischer-Tropsch-synteseprosess og ble satt til naturgassråmaterialet før avsvovling av den sistnevnte. It has been proposed in WO 00/09441 to use a reforming process where the feedstock/steam mixture is subjected to primary reforming over a catalyst placed in heated tubes in a heat exchange reformer, and the resulting primary reformed gas is then subjected to secondary reforming by partial combustion of the primary reformed gas with an oxygen-containing gas and bring the resulting partially combusted gas to equilibrium over a secondary reforming catalyst, and then the resulting secondary reformed gas is used to heat the tubes of the heat exchange reformer. In the aforementioned WO 00/09441, carbon dioxide was separated from the product before or after its use for the synthesis of carbonaceous compounds and recycled to the reformer feed. In one embodiment described in this reference, the recycled carbon dioxide was part of the off-gas from a Fischer-Tropsch synthesis process and was added to the natural gas feedstock prior to desulfurization of the latter.

Fischer-Tropsch-restgassen kan inneholde en betydelig mengde av karbonmonoksid. Hvis denne blir satt til råmaterialet før primær reformering i en varmevekslingsreformer, gjennomgår karbonmonoksidet den eksoterme metaneringsreaksjon, hvilket resulterer i en hurtigere økning i temperatur på gassen som gjennomgår reformering enn hvis restgassen ikke hadde vært tilsatt. Temperaturforskjellen mellom gassen som gjennomgår reformering og oppvarmningsmediet er således redusert, og således er mer varmeoverføiingsareal, f.eks. mer og/eller lengre varmevekslingsrør, nødvendig for en gitt reformeringsoppgave. The Fischer-Tropsch off-gas can contain a significant amount of carbon monoxide. If this is added to the feedstock prior to primary reforming in a heat exchange reformer, the carbon monoxide undergoes the exothermic methanation reaction, resulting in a faster rise in temperature of the gas undergoing reforming than if the residual gas had not been added. The temperature difference between the gas undergoing reforming and the heating medium is thus reduced, and thus more heat transfer area, e.g. more and/or longer heat exchange tubes, necessary for a given reforming task.

Vi har erkjent at ved tilsetning av restgassen til den primære reformerte gass før partiell forbrenning derav, kan dette problem overvinnes. We have recognized that by adding the residual gas to the primary reformed gas prior to partial combustion thereof, this problem can be overcome.

Følgelig tilveiebringer foreliggende oppfinnelse en fremgangsmåte for fremstilling av hydrokarboner ved Fischer-Tropsch-reaksjonen omfattende Consequently, the present invention provides a method for the production of hydrocarbons by the Fischer-Tropsch reaction comprising

a) å underkaste en blanding av et hydrokarbonråmateriale og damp for dampreformering ved a) subjecting a mixture of a hydrocarbon feedstock and steam to steam reforming by

i) å føre blandingen over en katalysator plassert i oppvarmet rør i en varmevekslingsreformer for å danne en primær reformert gass, i) passing the mixture over a catalyst located in a heated tube in a heat exchange reformer to form a primary reformed gas;

ii) å underkaste den primære reformerte gass sekundær reformering ved delvis forbrenning av den primære reformerte gass med en oksygen-holdig gass og bringe den resulterende delvis forbrente gass mot likevekt over en sekundær reformeringskatalysator og iii) anvendelse av den resulterende sekundære reformerte gass til å varme rørene i varmevekslingsreformeren og derved produsere en delvis avkjølt reformert gass, ii) subjecting the primary reformed gas to secondary reforming by partially combusting the primary reformed gas with an oxygen-containing gas and equilibrating the resulting partially combusted gas over a secondary reforming catalyst and iii) using the resulting secondary reformed gas to heat the tubes in the heat exchange reformer and thereby produce a partially cooled reformed gas,

b) videre avkjøling av den delvis avkjølte reformerte gass til under duggpunktet for dampen deri for å kondensere vann og separere kondensert b) further cooling the partially cooled reformed gas to below the dew point of the vapor therein to condense water and separate condensed

vann, hvilket gir en awannet syntesegass, water, giving an anhydrous synthesis gas,

c) å syntetisere hydrokarboner fra nevnte av-vannete syntesegass og separere minst noen av de syntetiserte hydrokarboner, hvilket gir en c) synthesizing hydrocarbons from said dewatered synthesis gas and separating at least some of the synthesized hydrocarbons, providing a

restgass, og residual gas, and

d) resirkulering av minst en dei av nevnte restgass til trinnet a),karakterisertved at den resirkulerte restgass blir satt til den primære reformerte gass før d) recycling of at least one of said residual gas to step a), characterized in that the recycled residual gas is added to the primary reformed gas before

partiell forbrenning derav. partial combustion thereof.

Mengden av oksygen som er nødvendig i den sekundære reformer biir bestemt ved to hovedbetraktninger, dvs. den ønskede sammensetning av produktgassen og varmebalansen til varmevekstingsreformeren. Generelt forårsaker økning av mengden av oksygen at [H2] / [CO]-forholdet reduseres, og andelen av karbondioksid reduseres. Alternativt, hvis betngelsene er slik at produktets sammensetning og temperatur blir holdt konstant, reduserer økning av temperaturen hvorved råmaterialet blir matet tit varmevekslingsreformeren mengden av oksygen som er nødvendig (ved en konstant oksygen- tilførselstemperatur). Reduksjon av den nødvendige mengden av oksygen er fordelaktig, da dette betyr at et mindre og således billigere, luftseparerings-anlegg kan anvendes for å produsere oksygenet. Temperaturen i råmaterialet kan økes med hvilken som helst egnet varmekilde, som kan om nødvendig være en fyrt oppvarming, som selvfølgelig kan anvende luft i stedet for oksygen for forbrenningen. The amount of oxygen required in the secondary reformer is determined by two main considerations, i.e. the desired composition of the product gas and the heat balance of the heat growth reformer. In general, increasing the amount of oxygen causes the [H2] / [CO] ratio to decrease, and the proportion of carbon dioxide to decrease. Alternatively, if the conditions are such that the product composition and temperature are kept constant, increasing the temperature at which the feedstock is fed to the heat exchange reformer reduces the amount of oxygen required (at a constant oxygen feed temperature). Reduction of the required amount of oxygen is advantageous, as this means that a smaller, and thus cheaper, air separation plant can be used to produce the oxygen. The temperature of the raw material can be increased by any suitable heat source, which can be, if necessary, a fired heating, which of course can use air instead of oxygen for the combustion.

I en alternativ utførelsesform av oppfinnelsen blir karbondioksid separert fra syntesegassen før Fischer-Tropsch-syntesetrinnet og resirkulert til syntesegass-produksjonen. Denne resirkulerte karbondioksidstrøm kan tilsettes som i foran nevnte WO 00/09441 til råmaterialet før den sistnevnte føres til varmevekslingsreformeren eller til den primære reformerte gass før den sistnevnte blir matet til det sekundære reformeringstrinn. I hvert tilfelle blir noe eller all Fischer-Tropsch-restgassen, som vil inneholde hydrogen, karbonmonoksid og lavere hydrokarboner så som metan og etan, satt til den primære reformerte gass før den sistnevnte føres til det sekundære reformeringstrinn. In an alternative embodiment of the invention, carbon dioxide is separated from the synthesis gas before the Fischer-Tropsch synthesis step and recycled to the synthesis gas production. This recycled carbon dioxide stream can be added as in the aforementioned WO 00/09441 to the feedstock before the latter is fed to the heat exchange reformer or to the primary reformed gas before the latter is fed to the secondary reforming stage. In each case, some or all of the Fischer-Tropsch tail gas, which will contain hydrogen, carbon monoxide and lower hydrocarbons such as methane and ethane, is added to the primary reformed gas before the latter is fed to the secondary reforming stage.

Når det resirkulerte karbondioksid (enten som karbondioksid separert fra syntesegassen før syntese og resirkulert, eller som den resirkulerte restgass) blir satt til den primære reformerte gass i stedet for til råmaterialet før primær reformering, er det en fordel at den primære reformeringsprosess kan drives ved et lavere dampforhold. [Med betegnelsen"dampforhold" menes forholdet av antall mol damp til antall gramatomer av hydrokarbonkarbon i tilførselen: således har en metan/damp-blanding omfattende 2 mol damp pr. mol metan et dampforhold på 2. ] Således er det i det primære reformeringstrinn en risiko for at karbon vil avsettes på den primære reformeringskatalysator. Ved hvilken som helst gitt temperatur blir risiko for karbonavsetning redusert ved å redusere andelen av karbondioksid i tilførselen og også ved å øke dampforholdet. Således hvis det resirkulerte karbondioksid ikke blir tilsatt før etter den primære reformering, blir risiko for karbonavsetning redusert, og således kan fremgangsmåten drives ved et lavere dampforhold. For eksempel hvis råmaterialet er metan og mengden av resirkulert karbondioksid er 0,2 mol pr. mol tilført metan, blir det ved en primær reformeringsutgangstemperatur på 750 °C, tilsetning av det resirkulerte karbondioksid etter primær reformering i stedet for før primær reformering, mulig å redusere dampforholdet på med ca. 0,2, f.eks. fra ca. 0,9 til ca. 0,7, før det er en alvorlig risiko for karbonavsetning. When the recycled carbon dioxide (either as carbon dioxide separated from the synthesis gas before synthesis and recycled, or as the recycled residual gas) is added to the primary reformed gas instead of to the feedstock before primary reforming, it is an advantage that the primary reforming process can be operated at a lower steam ratio. [The term "steam ratio" means the ratio of the number of moles of steam to the number of gram atoms of hydrocarbon carbon in the feed: thus a methane/steam mixture comprising 2 moles of steam per mol of methane a steam ratio of 2. ] Thus, in the primary reforming stage there is a risk that carbon will be deposited on the primary reforming catalyst. At any given temperature, the risk of carbon deposition is reduced by reducing the proportion of carbon dioxide in the feed and also by increasing the steam ratio. Thus, if the recycled carbon dioxide is not added until after the primary reforming, the risk of carbon deposition is reduced, and thus the process can be operated at a lower steam ratio. For example, if the raw material is methane and the amount of recycled carbon dioxide is 0.2 mol per moles of methane added, at a primary reforming exit temperature of 750 °C, adding the recycled carbon dioxide after primary reforming instead of before primary reforming, it becomes possible to reduce the steam ratio by approx. 0.2, e.g. from approx. 0.9 to approx. 0.7, before there is a serious risk of carbon deposition.

Oppfinnelsen er illustrert ved henvisning til den medfølgende tegningen som er et skjematisk flowsheet av én utførelsesform av oppfinnelsen. The invention is illustrated by reference to the accompanying drawing which is a schematic flow sheet of one embodiment of the invention.

På tegningen blir en blanding av et avsvovlet hydrokarbonråmateriaie, for eksempel naturgass og damp, matet, typisk ved et trykk i området 10 til 50 bar abs., gjennom en ledning 10 til en varmeveksler 12 og deretter gjennom ledning 14 til det katalysator-holdige rør 161 en varmevekslingsreformer 18. Blandingen blir typisk oppvarmet tit en temperatur i området 350 til 550 °C før den går inn rørene 16. For enkelhets skyld er bare ett rør vist på tegningen: i praksis kan det være mange titalls eller hundretalls slike rør. In the drawing, a mixture of a desulphurised hydrocarbon feedstock, for example natural gas and steam, is fed, typically at a pressure in the range of 10 to 50 bar abs., through a line 10 to a heat exchanger 12 and then through line 14 to the catalyst-containing pipe 161 a heat exchange reformer 18. The mixture is typically heated to a temperature in the range of 350 to 550 °C before it enters the tubes 16. For simplicity, only one tube is shown in the drawing: in practice there may be many tens or hundreds of such tubes.

Råmateriale/damp-blandingen gjennomgår primær dampreformering i rørene 16, og den primære reformerte gass forlater varmevekslingsreformeren 18 gjennom en ledning 20, typisk ved en temperatur i området 600 til 800 °C. Den primære reformerte gass blir blandet med Fischer-Tropsch-restgass (som skal beskrives) matet gjennom en ledning 22, og blandingen blir matet gjennom en ledning 24 til en sekundær reformer 26, hvortil oksygen føres gjennom en ledning 28. The feedstock/steam mixture undergoes primary steam reforming in the tubes 16, and the primary reformed gas leaves the heat exchange reformer 18 through a conduit 20, typically at a temperature in the range of 600 to 800°C. The primary reformed gas is mixed with Fischer-Tropsch tail gas (to be described) fed through line 22, and the mixture is fed through line 24 to a secondary reformer 26, to which oxygen is supplied through line 28.

Den primære reformerte gass/restgass-blanding blir delvis forbrent i den sekundære reformer og brakt mot likevekt ved føring over en sekundær reformeringskatalysator. Den sekundære reformerte gass forlater den sekundære reformer gjennom en ledning 30, typisk ved en temperatur i området 850 till 150 °C. The primary reformed gas/residual gas mixture is partially combusted in the secondary reformer and brought to equilibrium by passing over a secondary reforming catalyst. The secondary reformed gas leaves the secondary reformer through a line 30, typically at a temperature in the range of 850 to 150 °C.

Varme blir utvunnet fra den varme sekundære reformerte gass ved å føre den sekundære reformerte gass gjennom en ledning 30 til skallsiden av varmevekslingsreformeren 18, slik at den sekundære reformerte gass danner oppvarmningsmediet for varmevekslingsreformeren. Den sekundære reformerte gass blir således avkjølt ved varmeveksling med gassen som gjennomgår reformering i rørene 16 og forlater varmevekslingsreformeren gjennom en ledning 32, typisk ved en temperatur 50 til 150°C over temperaturen ved hvilken hydrokarbonråmateriale/damp-blandingen blir matet til rørene 16. Heat is recovered from the hot secondary reformed gas by passing the secondary reformed gas through a line 30 to the shell side of the heat exchange reformer 18, so that the secondary reformed gas forms the heating medium for the heat exchange reformer. The secondary reformed gas is thus cooled by heat exchange with the gas undergoing reforming in the tubes 16 and leaves the heat exchange reformer through a conduit 32, typically at a temperature 50 to 150°C above the temperature at which the hydrocarbon feedstock/steam mixture is fed to the tubes 16.

Den delvis avkjølte sekundære reformerte gass blir deretter avkjølt videre med varmegjenvinning i én eller flere varmevekslere 34 til en temperatur under duggpunktet for vannet i den sekundære reformerte gass. Den avkjølte sekundære reformerte gass blir deretter matet gjennom en ledning 36 tit en separator 38 hvor kondensert vann biir skilt ut som en flytende vannstrøm 40. Dette vannet kan resirkuleres ved oppvarmning av det og kontakt av hydrokarbonråmaterialet med det resulterende varme vann i en metningsanordning for å oppnå råmateriale/damp-blandingen. The partially cooled secondary reformed gas is then further cooled with heat recovery in one or more heat exchangers 34 to a temperature below the dew point of the water in the secondary reformed gas. The cooled secondary reformed gas is then fed through a line 36 to a separator 38 where condensed water is separated as a liquid water stream 40. This water can be recycled by heating it and contacting the hydrocarbon feedstock with the resulting hot water in a saturator to obtain the raw material/steam mixture.

Den gjenværende awannete gass blir deretter matet gjennom en ledning 42 til en eventuell hydrogensepareringsenhet 44, f.eks. en membranenhet eller et trykksvingningsadsorpsjonstrinn for å skille ut en del av hydrogenet i den awannete gass som en hydrogenstrøm 46. Den resulterende gass blir deretter matet gjennom en ledning 48 til et Fischer-Tropsch-syntesetrinn 50, hvor flytende hydrokarboner blir syntetisert og blir separert sammen med biprodukt- vann som et produktstrøm 52 som gir tilbake en restgasstrøm 54. En dei av restgassen blir spylt som strøm 56 for å unngå en oppbygging av inerte bestanddeler, f.eks. nitrogen som kan være til stede i hydrokarbonråmaterialet som en forurensning og/eller ofte er til stede i små mengder som en urenhet i oksygenet som anvendes for den partielle forbrenning. Den spylte restgass kan anvendes som brensel, for eksempel i en fyrt oppvarmer for oppvarmning av blandingen av hydrokarbon og damp matet til varmevekslingsreformeren. Resten av restgassen blir matet til en kompressor 58 og deretter til en varmeveksler 60 og så matet gjennom en ledning 22 for å blandes med den primære reformerte gass. The remaining unwatered gas is then fed through a line 42 to a possible hydrogen separation unit 44, e.g. a membrane unit or a pressure swing adsorption stage to separate out a portion of the hydrogen in the dewatered gas as a hydrogen stream 46. The resulting gas is then fed through a line 48 to a Fischer-Tropsch synthesis stage 50, where liquid hydrocarbons are synthesized and are separated together with by-product water as a product stream 52 which returns a residual gas stream 54. Some of the residual gas is flushed as stream 56 to avoid a build-up of inert components, e.g. nitrogen which may be present in the hydrocarbon feedstock as a contaminant and/or is often present in small amounts as an impurity in the oxygen used for the partial combustion. The purged residual gas can be used as fuel, for example in a fired heater for heating the mixture of hydrocarbon and steam fed to the heat exchange reformer. The rest of the tail gas is fed to a compressor 58 and then to a heat exchanger 60 and then fed through a conduit 22 to mix with the primary reformed gas.

Oppfinnelsen er videre illustrert ved det følgende beregnete eksempel på en fremgangsmåte i henhold til flowsheetet ovenfor. I den følgende tabell er trykkene (P, i abs bar.), temperaturer (T,i °C ) og strømningshastigheter (kmol/h) for de forskjellige komponenter i strømmene gjengitt, avrundet til det nærmeste hele tall. The invention is further illustrated by the following calculated example of a method according to the flow sheet above. In the following table, the pressures (P, in abs. bar.), temperatures (T, in °C ) and flow rates (kmol/h) for the various components of the flows are reproduced, rounded to the nearest whole number.

Til sammenligning, hvis restgassentrøm 22 ble satt til den primære reformer-tilførsel 14 istedenfor til den primære reformerte gass som går ut fra varmevekslingsreformeren for å oppnå samme mengde av syntesegass, er den nødvendige mengden av oksygen 3360 kmol/h, dvs. en økning på 2,8%, eiler hvis mengden av oksygen ikke blir øket, må varmeoverføirngsarealet i varmevekslingsreformeren økes i størrelse med 25%. In comparison, if the tail gas stream 22 were added to the primary reformer feed 14 instead of the primary reformed gas exiting the heat exchange reformer to obtain the same amount of synthesis gas, the required amount of oxygen is 3360 kmol/h, i.e. an increase of 2.8%, or if the amount of oxygen is not increased, the heat transfer area in the heat exchange reformer must be increased by 25%.

Claims (3)

1. Fremgangsmåte for fremstilling av hydrokarboner ved Fischer-Tropsch-reaksjon omfattende a) å underkaste.en blanding av et hydrokarbon råmateriale og damp dampreformering ved i) å føre blandingen over en katalysator plassert i oppvarmete rør i en varmevekslingsreformer for å danne en primær reformert gass, ii) å underkaste den primære reformerte gass sekundær reformering ved delvis forbrenning av den primære reformerte gass med en oksygen-holdig gass og bringe den resulterende delvis forbrente gass mot likevekt over en sekundær reformeringskatalysator og iii) anvendelse av den resulterende sekundære reformerte gass til å oppvarme rørene i varmevekslingsreformeren og derved produsere en delvis avkjølt reformert gass, b) videre avkjøling av den delvis avkjølte reformerte gass til under duggpunktet for dampen deri slik at vann kondenseres og separering av kondensert vann, hvilket gir en awannet syntesegass, c) syntese av hydrokarboner fra nevnte avvannete syntesegass og separering av minst noen av de syntetiserte hydrokarboner, hvilket gir en restgass, og d) resirkulering av minst en del av nevnte restgass til trinn a),karakterisert vedat den resirkulerte restgass blir satt til den primære reformerte gass før partiell forbrenning derav.1. Process for the production of hydrocarbons by Fischer-Tropsch reaction comprising a) subjecting a mixture of a hydrocarbon feedstock and steam to steam reforming by i) passing the mixture over a catalyst placed in heated tubes in a heat exchange reformer to form a primary reformed gas, ii) subjecting the primary reformed gas to secondary reforming by partially combusting the primary reformed gas with an oxygen-containing gas and equilibrating the resulting partially combusted gas over a secondary reforming catalyst and iii) using the resulting secondary reformed gas to to heat the pipes in the heat exchange reformer and thereby produce a partially cooled reformed gas, b) further cooling of the partially cooled reformed gas to below the dew point of the steam therein so that water is condensed and separation of condensed water, which gives a dewatered synthesis gas, c) synthesis of hydrocarbons from said dewatered synthesis gas and separation of mi nst some of the synthesized hydrocarbons, which gives a residual gas, and d) recycling of at least part of said residual gas to step a), characterized in that the recycled residual gas is added to the primary reformed gas before partial combustion thereof. 2. Fremgangsmåte ifølge krav 1 hvor karbondioksid blir separert fra syntesegassen før syntese av hydrokarbonene og blir satt til hydrokarbonråmateriale/damp-blandingen før dampreformering.2. Method according to claim 1 where carbon dioxide is separated from the synthesis gas before synthesis of the hydrocarbons and is added to the hydrocarbon raw material/steam mixture before steam reforming. 3. Fremgangsmåte ifølge krav 1 hvor karbondioksid blir separert fra syntesegassen før syntese av hydrokarbonene og blir satt til den primære reformerte gass før forbrenning derav.3. Method according to claim 1 where carbon dioxide is separated from the synthesis gas before synthesis of the hydrocarbons and is added to the primary reformed gas before combustion thereof.
NO20040665A 2001-08-17 2004-02-16 Process for Preparation of Hydrocarbons by Fischer-Tropsch Reaction NO335117B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0120071.6A GB0120071D0 (en) 2001-08-17 2001-08-17 Steam reforming
PCT/GB2002/003311 WO2003016250A1 (en) 2001-08-17 2002-07-19 Production of hydrocarbons

Publications (2)

Publication Number Publication Date
NO20040665L NO20040665L (en) 2004-02-16
NO335117B1 true NO335117B1 (en) 2014-09-15

Family

ID=9920568

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20040665A NO335117B1 (en) 2001-08-17 2004-02-16 Process for Preparation of Hydrocarbons by Fischer-Tropsch Reaction

Country Status (7)

Country Link
AU (1) AU2002317369B2 (en)
EA (1) EA005280B1 (en)
GB (1) GB0120071D0 (en)
MY (1) MY129743A (en)
NO (1) NO335117B1 (en)
WO (1) WO2003016250A1 (en)
ZA (1) ZA200400794B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413547A1 (en) * 2002-09-26 2004-04-28 Haldor Topsoe A/S Process for the production of synthesis gas
GB0225961D0 (en) 2002-11-07 2002-12-11 Johnson Matthey Plc Production of hydrocarbons
AU2004234588B2 (en) * 2003-05-02 2009-04-09 Johnson Matthey Plc Production of hydrocarbons by steam reforming and Fischer-Tropsch reaction
GB2407818B (en) * 2003-10-20 2005-11-30 Johnson Matthey Plc Steam reforming process
EP1698590A1 (en) * 2005-03-04 2006-09-06 Ammonia Casale S.A. Reforming process for synthesis gas production and related plant
EA021509B1 (en) 2009-03-16 2015-07-30 Сауди Бейсик Индастриз Корпорейшн Process for producing a mixture of aliphatic and aromatic hydrocarbons
CN101709226B (en) * 2009-12-02 2012-10-03 中国石油集团工程设计有限责任公司抚顺分公司 Technique for decarburizing Fischer-Tropsch synthetic recycle gas and recovering hydrocarbons
WO2012084135A1 (en) * 2010-12-22 2012-06-28 Haldor Topsøe A/S Process for reforming hydrocarbon
GB201115929D0 (en) 2011-09-15 2011-10-26 Johnson Matthey Plc Improved hydrocarbon production process
DE102016108792A1 (en) * 2016-05-12 2017-11-16 Thyssenkrupp Ag Process for the formation of a synthesis gas
GB2551314B (en) * 2016-06-06 2021-03-17 Kew Tech Limited Equilibium approach reactor
MY191190A (en) 2016-09-09 2022-06-07 Shell Int Research Process for the preparation of hydrogen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE739569C (en) * 1937-04-15 1943-10-04 Braunkohle Benzin Ag Process for carrying out the catalytic synthesis of hydrocarbons from Co and Hnach Fischer-Tropsch
GB2168719B (en) * 1984-10-29 1988-10-19 Humphreys & Glasgow Ltd A process to produce and utilize a synthesis gas of a controlled carbon monoxide hydrogen ratio
GB9817526D0 (en) * 1998-08-13 1998-10-07 Ici Plc Steam reforming
NO311081B1 (en) * 1999-12-09 2001-10-08 Norske Stats Oljeselskap Optimized FT synthesis by reforming and recycling tail gas from FT synthesis

Also Published As

Publication number Publication date
EA200400320A1 (en) 2004-08-26
ZA200400794B (en) 2004-10-13
WO2003016250A1 (en) 2003-02-27
EA005280B1 (en) 2004-12-30
GB0120071D0 (en) 2001-10-10
NO20040665L (en) 2004-02-16
AU2002317369B2 (en) 2007-01-25
MY129743A (en) 2007-04-30

Similar Documents

Publication Publication Date Title
AU742314B2 (en) Steam reforming
AU2004234588B2 (en) Production of hydrocarbons by steam reforming and Fischer-Tropsch reaction
US7314891B2 (en) Production of hydrocarbons
US6114400A (en) Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
KR100201886B1 (en) Autothermal steam reforming process
EP2142467B1 (en) Combined reforming process for methanol production
EP2464598B1 (en) Combined reforming process for methanol production
CA2293288A1 (en) Process for the preparation of methanol and hydrogen
GB2494751A (en) Improved hydrocarbon production process
EP1426329A1 (en) Process for the autothermal reforming of a hydrocarbon feedstock containing higher hydrocarbons
US9561968B2 (en) Methods and systems for producing and processing syngas in a pressure swing adsorption unit and making ammonia therefrom
WO2019220074A1 (en) Process
WO2006117499A1 (en) Synthesis gas production process
WO2013013895A1 (en) Process for production of synthesis gas
NO335117B1 (en) Process for Preparation of Hydrocarbons by Fischer-Tropsch Reaction
AU2002317369A1 (en) Production of hydrocarbons
NO314691B1 (en) Process and reactor for producing hydrogen and synthesis gas
MX2015005617A (en) Process for the conversion of a hydrocarbon feedstock into a synthesis gas.
GB2407818A (en) Steam reforming process
GB2606855A (en) Process for synthesising methanol

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees