NO328300B1 - Early warning system for wind turbines. - Google Patents

Early warning system for wind turbines. Download PDF

Info

Publication number
NO328300B1
NO328300B1 NO20040420A NO20040420A NO328300B1 NO 328300 B1 NO328300 B1 NO 328300B1 NO 20040420 A NO20040420 A NO 20040420A NO 20040420 A NO20040420 A NO 20040420A NO 328300 B1 NO328300 B1 NO 328300B1
Authority
NO
Norway
Prior art keywords
wind
wind energy
energy plant
plant
recording
Prior art date
Application number
NO20040420A
Other languages
Norwegian (no)
Other versions
NO20040420L (en
Inventor
Aloys Wobben
Original Assignee
Aloys Wobben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloys Wobben filed Critical Aloys Wobben
Publication of NO20040420L publication Critical patent/NO20040420L/en
Publication of NO328300B1 publication Critical patent/NO328300B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/322Control parameters, e.g. input parameters the detection or prediction of a wind gust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/805Radars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/806Sonars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

Vindenergianlegg er alt etter størrelse og effektutlegning relativt dyre investeringsobjekter som må bli beskyttet mot ødeleggelser, skader og andre årsaker som kan føre til svikt i et vindenergianlegg, når den lange levetiden som- er lovet for vindenergianleggene skal bli nådd. Samtidig består for vindenergianlegg hele tiden ønsket om å drive med den maksimalt mulige effekten, slik at også et maksimalt stort energiutbytte kan bli oppnådd. Begge målene, nemlig den lange levetiden på den ene siden og det størst mulige energiutbytte på den andre siden står til dels diametralt mot hverandre, til slutt ville det riktignok i utgangspunktet være mulig å kjøre et vindenergianlegg også delvis i overbelastningsområdet, hvorved energiutbyttet blir økt, men noe som også samtidig ville føre til en tydelig forkortelse av levetiden. Blir et vindenergianlegg derimot bare kjørt i ganske små vindhastighetsområder så er anlegget sikkert bedre beskyttet enn andre, men ut fra sitt energiutbytte utilstrekkelig. Depending on their size and power design, wind energy plants are relatively expensive investment objects that must be protected against destruction, damage and other causes that can lead to the failure of a wind energy plant, when the long lifetime promised for the wind energy plants is to be reached. At the same time, for wind energy plants there is always the desire to operate with the maximum possible effect, so that a maximum energy yield can also be achieved. Both goals, namely the long service life on the one hand and the greatest possible energy yield on the other hand, are partly diametrically opposed to each other, in the end it would indeed be possible to run a wind energy plant also partly in the overload area, whereby the energy yield is increased, but something that would also at the same time lead to a clear shortening of the lifespan. If, on the other hand, a wind energy plant is only operated in fairly small wind speed areas, the plant is certainly better protected than others, but based on its energy yield insufficient.

Fra den kjente teknikk skal det vises til WO 9842980. From the known technique, reference should be made to WO 9842980.

Det er oppfinnelsens formål å angi forholdsregler og muligheter, hvordan et vindenergianlegg kan bli beskyttet mot skader eller omstendigheter som kan føre til svikt i et energianlegg, men hvor samtidig også et maksimalt mulig energiutbytte kan foregå. It is the purpose of the invention to indicate precautions and possibilities, how a wind energy plant can be protected against damage or circumstances that can lead to failure of an energy plant, but where at the same time a maximum possible energy yield can take place.

Formålet blir oppnådd ved hjelp av en oppfinnelse med kjennetegnene ifølge krav 1. Fordelaktige utførelsesformer er angitt i de uselvstendige krav. The purpose is achieved by means of an invention with the characteristics according to claim 1. Advantageous embodiments are indicated in the independent claims.

Oppfinnelsen beror på den kunnskapen, ikke bare som hittil å måle vindforholdene i et vindenergianlegg ved hjelp av anemometer, men også å anvende disse måleresultatene for vindenergianleggene som i vindretningen er anordnet bak det første vindenergianlegget, slik at disse ved behov f.eks. når det opptrer en byge i god tid før bygen inntreffer kan foreta en bladinnstillingsvinkelforandring på vindenergianlegget, og at når bygen inntreffer på vindenergianlegget at belastningen ikke blir så stor at dette allikevel kan føre til skader. The invention is based on that knowledge, not only to measure the wind conditions in a wind energy plant using an anemometer, but also to use these measurement results for the wind energy plants that are arranged behind the first wind energy plant in the direction of the wind, so that these, if necessary, e.g. when a shower occurs well in advance of the shower, a blade setting angle change can be made on the wind energy plant, and that when the shower occurs on the wind energy plant that the load does not become so great that this could still lead to damage.

Tidligvarslingssystemet ifølge oppfinnelsen baserer seg i grunnen på to for tiden forskjellige utgangspunkter, men som også kan bli kombinert med hverandre og så utfylle hverandre gjensidig. The early warning system according to the invention is basically based on two currently different starting points, but which can also be combined with each other and then mutually complement each other.

En mulighet består i å anbringe et såkalt SODAR-system (se f.eks. http://akulOO.physik.uni-oldenburg.de/schallausbreitung/sodarl) på selve vindenergianlegget, fortrinnsvis på gondolen, eksempelvis i det fremre navområdet foran rotoren. Slike SODAR-systemer (Sonic Detection and Ranging) er i stand til å registrere vindforholdene tredimensjonalt (online) i en ønsket retning (i vindretningen) foran vindenergianlegget. Blir altså et SODAR-system anbrakt på en gondol i vindenergianlegget og rettet inn mot området foran rotoren til vindenergianlegget, så behøver det ikke å foregå noen etterjustering (da SODAR-systemet hele tiden med gondolen er rettet inn i retning av hovedvindretningen) og kan observere området foran rotoren i vindenergianlegget med hensyn til om byger opptrer. One possibility is to place a so-called SODAR system (see e.g. http://akulOO.physik.uni-oldenburg.de/schallausbreitung/sodarl) on the wind energy plant itself, preferably on the nacelle, for example in the front hub area in front of the rotor . Such SODAR systems (Sonic Detection and Ranging) are able to record the wind conditions three-dimensionally (online) in a desired direction (downwind) in front of the wind energy plant. Thus, if a SODAR system is placed on a gondola in the wind energy plant and directed towards the area in front of the rotor of the wind energy plant, no readjustment needs to take place (as the SODAR system is always aligned with the gondola in the direction of the main wind direction) and can observe the area in front of the rotor in the wind energy plant with regard to whether showers occur.

Riktignok har SODAR-systemer i grunnen vært kjent lenge, men i lang tid er de bare blitt bygget opp stasjonært eller som mobile anlegg transportert på en tilhenger og tjener da bare til engangsmålinger av en vindprofil i et bestemt område. It is true that SODAR systems have basically been known for a long time, but for a long time they have only been built up stationary or as mobile installations transported on a trailer and then only serve for one-off measurements of a wind profile in a specific area.

Ifølge oppfinnelsen blir slike SODAR-systemer plassert på vindenergianlegget og ikke bare en gang bygget opp stasjonært, slik at når en byge nærmer seg som kunne føre til uønsket overbelastning av vindenergianlegget, blir dette oppdaget i tide, og allerede før bygen inntreffer i vindenergianlegget blir rotorbladene innstilt passende, slik at belastningen på vindenergianlegget fra den innkommende bygen er tydelig mindre enn med ikke innstilte rotorblader. According to the invention, such SODAR systems are placed on the wind energy plant and not just once built up stationary, so that when a shower approaches that could lead to an unwanted overload of the wind energy plant, this is detected in time, and even before the shower hits the wind energy plant, the rotor blades are adjusted appropriately, so that the load on the wind energy plant from the incoming shower is clearly less than with unadjusted rotor blades.

Er SODAR-systemet anbrakt i et vindenergianlegg (eller flere) som står i en vindpark og er dette vindenergianlegget oppstilt i kantområdet av vindparken som vinden som nærmer seg treffer først, så kan dataene som er målt av SODAR-systemet ikke bare bli bearbeidet i vindenergianlegget som bærer SODAR-systemet, men også av alle andre vindenergianlegg som i vindretningen står bak vindenergianlegget som er utrustet med SODAR-systemet, slik at bygen eller andre ugunstige vindforhold som går igjennom heller ikke der kan anrette noen skade, når vindenergianleggene stiller rotorbladene tilsvarende i vinden og dermed blir uangripelig for en byge eller andre ugunstige vindforhold. If the SODAR system is located in a wind energy plant (or several) that is in a wind farm and this wind energy plant is set up in the edge area of the wind farm that the approaching wind hits first, then the data measured by the SODAR system cannot only be processed in the wind energy plant which carries the SODAR system, but also of all other wind energy plants which are behind the wind energy plant equipped with the SODAR system in the direction of the wind, so that the shower or other unfavorable wind conditions that pass through cannot cause any damage there either, when the wind energy plants set the rotor blades accordingly in the wind and thus becomes invulnerable to a shower or other adverse wind conditions.

Men i en vindpark er også et alternativ for et tidligvarslingssystem mulig, idet anemometerne og belastningsmåleinnretningene som hittil har vært i bruk og som er anbrakt på et vindenergianlegg blir anvendt til ikke bare å levere data som er viktige for vindenergianlegget som bærer anemometeret eller belastningsmåleinnretningene, men også blir vurdert for vindretningen bak vindenergianlegget med anemometeret. Måler eksempelvis anemometeret meget store vindstyrker så kan tilsvarende informasjoner bli avgitt til andre anlegg som i vindretningen står bak det berørte vindenergianlegget, og disse kan så ennå i tide før uønskede belastningtruende vindforhold inntreffer stille rotorbladene slik eller gripe til andre forholdsregler, f.eks. stenge av anleggene helt, slik at belastningene fremkalt av de ugunstige vindforholdene og dermed eventuelle skader som kan oppstå blir minst mulig, fortrinnsvis helt unngått. But in a wind farm, an alternative for an early warning system is also possible, as the anemometers and load measuring devices that have been in use up to now and which are placed on a wind energy plant are used to not only deliver data that is important for the wind energy plant that carries the anemometer or the load measuring devices, but is also assessed for the wind direction behind the wind energy plant with the anemometer. If, for example, the anemometer measures very large wind forces, corresponding information can be sent to other facilities that are behind the affected wind energy facility in the direction of the wind, and these can then still in time before unwanted load-threatening wind conditions occur, stop the rotor blades in this way or take other precautions, e.g. shut down the facilities completely, so that the loads caused by the unfavorable wind conditions and thus any damage that may occur are as little as possible, preferably completely avoided.

En innstilling av rotorbladene i vinden fører regelmessig til at flatene på rotorbladene som er utsatt for vinden avtar og dette kan etter omstendighetene føre til en reduksjon av den elektriske effekten. Men denne ulempen er det tatt hensyn til når det ved å unngå overbelastninger kan bli unngått omfattende skader, definitivt kan allerede få tilfeller av overbelastning tydelig redusere levetiden for hele anlegget, slik at en forbigående redusert effekt neppe veier tungt når man tar dette i betraktning for hele levetiden for vindenergianlegget. Setting the rotor blades in the wind regularly causes the surfaces of the rotor blades that are exposed to the wind to decrease and this can, depending on the circumstances, lead to a reduction of the electrical power. But this disadvantage has been taken into account when, by avoiding overloads, extensive damage can be avoided, definitely already a few cases of overload can clearly reduce the lifetime of the entire plant, so that a temporarily reduced effect hardly weighs heavily when you take this into account for the entire lifetime of the wind energy plant.

Tidligvarslingssystemet ifølge oppfinnelsen, hvor dataene (vind-, belastningsdata) som blir målt i et vindenergianlegg vil kunne bli anvendt også for andre vindenergianlegg forutsetter et kommunikasjonsnettverk mellom vindenergianleggene i en vindpark, hvor dataoverføringen kan foregå trådløst eller også bundet til ledninger og for selve overføringen kan kjente nettverksteknologier bli anvendt. The early warning system according to the invention, where the data (wind, load data) that is measured in a wind energy plant can also be used for other wind energy plants requires a communication network between the wind energy plants in a wind farm, where the data transmission can take place wirelessly or also tied to wires and for the transmission itself can known network technologies are used.

Dataoverføringen kan fra anlegg til anlegg her foregå over en sentral styring. Den sentrale styringen kan igjen videresende informasjonene med hensyn til vindforholdene, som blir målt i anlegget, til alle eller utvalgte vindenergianlegg (f.eks. de i "vindskyggen" til et bestemt anlegg) i en vindpark, og/eller på sin side stille til rådighet og formidle de nødvendige styringssignalene til hvert av vindenergianleggene. Naturligvis er også en kombinasjon av SODAR og anemoneter-måleregistreringene tenkelig, slik at på den ene siden kan overføringen foregå fra anlegg til anlegg, og på den andre siden gjennom en sentral styring, slik at det foreligger en informasjonsredundanse som muliggjør en feilkorrigering. Videre kan en plausibilitetskontroll f.eks. foregå slik at styringsanvisningene for vindenergianlegget utgitt fra sentralstyringen blir kontrollert ved hjelp av vindhastighets- h.h.v. vindretningsdataene overført fra anlegg til anlegg og blir utført bare ved påvist plausibilitet. The data transfer from plant to plant here can take place via a central control. The central control can in turn forward the information regarding the wind conditions, which are measured in the facility, to all or selected wind energy facilities (e.g. those in the "wind shadow" of a particular facility) in a wind farm, and/or in turn availability and convey the necessary control signals to each of the wind energy facilities. Naturally, a combination of SODAR and the anemoneter measurement records is also conceivable, so that on the one hand the transfer can take place from facility to facility, and on the other hand through a central control, so that there is an information redundancy that enables error correction. Furthermore, a plausibility check can e.g. take place in such a way that the control instructions for the wind energy plant issued from the central control are controlled by means of wind speed, i.e. the wind direction data is transferred from plant to plant and is carried out only if plausibility is demonstrated.

På den andre siden kan naturligvis også hvert anlegg ved hjelp av dataene overført mellom anleggene i sin egen styringsinnretning foreta en tilsvarende styring, og en sentralstyring gjennomfører en tilsvarende overvåkning. On the other hand, of course, each facility can also use the data transferred between the facilities in its own control device to carry out a corresponding control, and a central control unit carries out a corresponding monitoring.

Da avstanden mellom de enkelte vindenergianleggene i en vindpark ikke kan bli forandret så kan det ved hjelp av den kjente vindhastigheten, når det opptrer ugunstige vindforhold, ganske sikkert bli (forut-)beregnet når de tilsvarende ugunstige vindforholdene, f.eks. byger når frem til hvilke anlegg. As the distance between the individual wind energy facilities in a wind farm cannot be changed, using the known wind speed, when unfavorable wind conditions occur, it can be (pre-)calculated with certainty when the corresponding unfavorable wind conditions, e.g. storms reach which facilities.

Overensstemmende med dette kan f.eks. et vindhastighetsavhengig tidsforløp bli beregnet, som anlegget trenger for å foreta de nødvendige innstillingene (innstillingsvinkel for rotorblader mot vinden). Alternativt eller utfyllende kan en fiks komponent bli innført for tidsforløpet. Consistent with this, e.g. a wind speed-dependent time course be calculated, which the plant needs to make the necessary settings (setting angle for rotor blades against the wind). Alternatively or additionally, a fixed component can be introduced for the passage of time.

På grunn av avstandene mellom de enkelte vindenergianleggene og vindhastighetene skulle forvarselstiden som fremkommer som regel være tilstrekkelig til å forandre bladvinkelen i tide (Pitchhastigheten ligger ved omtrent 4 til 8°/sekund. Due to the distances between the individual wind energy facilities and the wind speeds, the warning time that appears should usually be sufficient to change the blade angle in time (the pitch speed is approximately 4 to 8°/second.

Som nevnt kan formidlingen av informasjonene med hensyn til vindforholdene som blir målt i et vindenergianlegg i grunnen foregå i alle vindenergianlegg i en vindpark. Et alternativ kan være en vindretningsavhengig informasjonsformidling, hvor da en åpningsvinkel kunne være forutsatt, for i det minste å meddele informasjonene til anleggene som ligger umiddelbart ved siden av vindstien. Denne åpningsvinkelen kan igjen bli valgt fiks eller avhengig av vindretningssvingninger. As mentioned, the dissemination of the information with regard to the wind conditions that are measured in a wind energy facility can basically take place in all wind energy facilities in a wind farm. An alternative could be a wind direction-dependent dissemination of information, where an opening angle could then be assumed, in order to at least communicate the information to the facilities located immediately next to the wind path. This opening angle can again be chosen fixed or dependent on wind direction fluctuations.

Naturligvis kan det i trekkene for informasjonsformidlingen ved siden av de rene vindhastighets- og vindretningsdataene også bli formidlet andre data som identifikasjon fra avsender- og målvindenergianleggene, feilkorrigeringskoder eller lignende informasjoner. Naturally, in the features for the dissemination of information, in addition to the pure wind speed and wind direction data, other data such as identification from the sender and target wind power plants, error correction codes or similar information can also be conveyed.

Det spesielle hensynet til vindretningen synes i dette aspektet hensiktsmessig da det med en vesentlig konstant vindretning stadig kan opptre lokale byger som bare når (kan nå) en del av vindenergianleggene, slik at med dette synspunktet for oppdragsoptimering også bare de vindenergianleggene som virkelig ligger i veien til en slik byge må bli styrt tilsvarende, slik at belastningene som opptrer der faller ut minst mulig. Figur 1 viser som eksempel en vindparkanordning med mange vindenergianlegg 1 som hvert er forbundet med en sentral styring 2. Den sentrale styringen kan her passende bearbeide målte data i de enkelte anleggene og også stille til rådighet passende styringssignaler for enkelte anlegg. Figur 2 viser som eksempel et typisk anvendelsestilfelle. Her strømmer vinden 3 mot et bestemt anlegg 4 som på sin side sender videre de målte dataene til en sentral styring eller på en annen måte (ikke sentralstyring) til andre anlegg. Det er å vente at vinden som treffer anlegget også vil treffe de anleggene som er anordnet i den umiddelbare vindskyggen til anlegget (tett skravert). Men det er absolutt mulig også å gjøre åpningsvinkelen videre (lettere skravert), for dermed å definere en bredere "vindskygge", slik at i samtlige anlegg som delvis eller fullstendig faller innenfor det skraverte området kan måleresultatene for det første anlegget altså også bli anvendt til å styre de andre anleggene i vindskyggen av det første anlegget slik at det ikke opptrer skader på de andre anleggene, og disse dermed også gjennom vurderingen av måleresultatene i det første anlegget kan bli beskyttet. The special consideration of the wind direction seems appropriate in this aspect as, with a substantially constant wind direction, local showers can constantly occur that only reach (can reach) part of the wind energy facilities, so that with this point of view for task optimization also only those wind energy facilities that are really in the way to such a shower must be managed accordingly, so that the loads that occur there fall out as little as possible. Figure 1 shows, as an example, a wind farm arrangement with many wind energy plants 1, each of which is connected to a central controller 2. Here, the central controller can appropriately process measured data in the individual plants and also provide suitable control signals for individual plants. Figure 2 shows, as an example, a typical application case. Here, the wind 3 flows towards a specific facility 4 which in turn forwards the measured data to a central control or in another way (not central control) to other facilities. It is to be expected that the wind that hits the facility will also hit the facilities arranged in the immediate wind shadow of the facility (closely shaded). But it is certainly possible to also make the opening angle further (lighter shaded), in order to define a wider "wind shadow", so that in all plants that partially or completely fall within the shaded area, the measurement results for the first plant can also be used for to control the other plants in the wind shadow of the first plant so that no damage occurs to the other plants, and these can thus also be protected through the assessment of the measurement results in the first plant.

Istedenfor en sentral styring 2 kan - som allerede beskrevet - et annet styringskonsept bli anvendt. Eksempelvis kan også dette konseptet se slik ut at det mellom naboanlegg eller mellom vindenergianlegg i et bestemt område består data-(tele-) forbindelser, og måledata kan på denne måten bli utvekslet også trådløst og uten sentral styring mellom vindenergianleggene. Instead of a central control 2 - as already described - another control concept can be used. For example, this concept can also look like this, where there are data (tele) connections between neighboring plants or between wind energy plants in a specific area, and measurement data can in this way also be exchanged wirelessly and without central control between the wind energy plants.

Det er også mulig at når det opptrer et bestemt vindforhold, f.eks. ved byger, blir ikke bare de konkret berørte anleggene stilt om, men samtlige i det umiddelbare naboskapet til dette anlegget eller anleggene som står i et bestemt geografisk forhold til det berørte anlegget. Dette kan f.eks. ifølge figur 2 også være vindenergianleggene 6 som i vindretningen står til venstre og høyre for det berørte anlegget. It is also possible that when certain wind conditions occur, e.g. in the event of showers, not only the concretely affected facilities are reset, but all in the immediate vicinity of this facility or the facilities that are in a specific geographical relationship to the affected facility. This can e.g. according to figure 2 also be the wind energy facilities 6 which are to the left and right of the affected facility in the direction of the wind.

Er det første anlegget 4 ifølge figur 2 utrustet med en SODAR så kan en byge bli målt allerede når den inntreffer på det første vindenergianlegget, og passende foranstaltninger bli truffet også i det første vindenergianlegget, slik at eventuelle skader kan bli forhindret. If the first facility 4 according to figure 2 is equipped with a SODAR, then a shower can be measured already when it occurs at the first wind energy facility, and appropriate measures can be taken in the first wind energy facility as well, so that any damage can be prevented.

Claims (8)

1. Vindenergianlegg med et akustisk system for å registrere vindhastighet nemlig med en SODAR som er anbrakt på gondolen i vindenergianlegget og som registrerer området foran rotoren på vindenergianlegget, hvor SODAR er anbrakt i området ved rotornavet i vindenergianlegget, foran rotorplanet for rotoren i vindenergianlegget.1. Wind energy plant with an acoustic system for recording wind speed, namely with a SODAR which is placed on the nacelle of the wind energy plant and which records the area in front of the rotor of the wind energy plant, where the SODAR is placed in the area of the rotor hub in the wind energy plant, in front of the rotor plane of the rotor in the wind energy plant. 2. Vindenergianlegg ifølge krav 1,karakterisert vedat SODAR måler vindforholdene foran rotoren og videresender tilsvarende måledata til en styring for vindenergianlegget som på sin side, når det opptrer spesielt uønskede vindforhold, f.eks. når det opptrer vindbyger, forandrer rotorbladenes innstillingsvinkel tilsvarende for dermed å beskytte hele anlegget mot uønskede belastninger og ødeleggelser.2. Wind energy plant according to claim 1, characterized in that SODAR measures the wind conditions in front of the rotor and forwards corresponding measurement data to a controller for the wind energy plant which, in turn, when particularly undesirable wind conditions occur, e.g. when gusts of wind occur, the setting angle of the rotor blades changes accordingly in order to protect the entire plant from unwanted loads and damage. 3. Vindpark med flere vindenergianlegg ifølge krav 1 eller 2 med et tidligvarslingssystem for beskyttelse av vindenergianlegg i en vindpark, med midler for måling av vindforholdene i området ved et første vindenergianlegg, hvor de målte dataene blir bearbeidet av en styringsinnretning som styrer det første vindenergianlegget og/eller et andre vindenergianlegg i nærheten av det første vindenergianlegget, hvor styringen spesielt består i innstillingen av innstillingsvinkelen for rotorbladet mot vinden (Pitch), og en forskyvning av innstillingsvinkelen blir foretatt så snart et vindforhold som kan være farlig for det første vindenergianlegget blir målt.3. Wind farm with several wind energy plants according to claim 1 or 2 with an early warning system for the protection of wind energy plants in a wind farm, with means for measuring the wind conditions in the area of a first wind energy plant, where the measured data is processed by a control device that controls the first wind energy plant and /or a second wind energy plant in the vicinity of the first wind energy plant, where the control consists in particular of the setting of the setting angle of the rotor blade against the wind (Pitch), and a shift of the setting angle is made as soon as a wind condition that can be dangerous for the first wind energy plant is measured. 4. Vindpark med flere vindenergianlegg ifølge krav 1 eller 2, hvor måledataene for et første vindenergianlegg i vindparken, som først blir utsatt for vinden, blir overført til minst ett andre vindenergianlegg som er anordnet bak det første vindenergianlegget i vindretningen, og avhengig av de målte dataene over vindforholdene i området ved det første vindenergianlegget blir det andre vindenergianlegget styrt i vindskyggen av det første vindenergianlegget.4. Wind farm with several wind energy plants according to claim 1 or 2, where the measurement data for a first wind energy plant in the wind farm, which is first exposed to the wind, is transferred to at least one other wind energy plant that is arranged behind the first wind energy plant in the direction of the wind, and depending on the measured the data on the wind conditions in the area of the first wind energy plant, the second wind energy plant is controlled in the wind shadow of the first wind energy plant. 5. Vindenergianlegg ifølge krav 1 eller 2, med en innretning for registreringen av vindforholdene i området ved vindenergianlegget,karakterisert veden innretning for sending/mottaking av vindhastighets- og/eller vindretningsinformasjoner til/fra minst et av de andre vindenergianleggene i vindparken.5. Wind energy plant according to claim 1 or 2, with a device for recording the wind conditions in the area of the wind energy plant, characterized as a device for sending/receiving wind speed and/or wind direction information to/from at least one of the other wind energy plants in the wind farm. 6. Vindenergianlegg med en innretning for registrering av vindforhold ifølge krav 1 eller 3 og 5,karakterisert vedat innretningen for registrering av vindhastighet opererer med lydbølger, fortrinnsvis med ultralydbølger på den måten SODAR arbeider.6. Wind energy plant with a device for recording wind conditions according to claim 1 or 3 and 5, characterized in that the device for recording wind speed operates with sound waves, preferably with ultrasound waves in the way SODAR works. 7. Vindenergianlegg ifølge krav 6,karakterisert vedat innretningen for registreringen av vindhastigheten i det minste delvis er anordnet i området ved gondolen i vindenergianlegget.7. Wind energy plant according to claim 6, characterized in that the device for recording the wind speed is at least partially arranged in the area of the gondola in the wind energy plant. 8. Vindenergianlegg ifølge krav 7,karakterisert vedat innretningen for registreringen av vindhastigheten registrerer vindhastigheten tredimensjonalt.8. Wind energy plant according to claim 7, characterized in that the device for recording the wind speed records the wind speed three-dimensionally. 8. Vindenergianlegg ifølge krav 7,karakterisert vedat innretningen for registreringen av vindhastigheten registrerer vindhastigheten tredimensjonalt.8. Wind energy plant according to claim 7, characterized in that the device for recording the wind speed records the wind speed three-dimensionally.
NO20040420A 2001-07-31 2004-01-30 Early warning system for wind turbines. NO328300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10137272A DE10137272A1 (en) 2001-07-31 2001-07-31 Early warning system for wind turbines
PCT/EP2002/007043 WO2003012293A2 (en) 2001-07-31 2002-06-26 Early-warning system comprising sodar for wind energy turbines

Publications (2)

Publication Number Publication Date
NO20040420L NO20040420L (en) 2004-01-30
NO328300B1 true NO328300B1 (en) 2010-01-25

Family

ID=7693714

Family Applications (2)

Application Number Title Priority Date Filing Date
NO20040420A NO328300B1 (en) 2001-07-31 2004-01-30 Early warning system for wind turbines.
NO20090474A NO20090474L (en) 2001-07-31 2009-01-29 Early warning system for wind energy systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO20090474A NO20090474L (en) 2001-07-31 2009-01-29 Early warning system for wind energy systems

Country Status (19)

Country Link
US (1) US7025567B2 (en)
EP (2) EP1944509A1 (en)
JP (2) JP4672979B2 (en)
KR (1) KR100672615B1 (en)
CN (1) CN100339594C (en)
AR (1) AR037010A1 (en)
AT (1) ATE418008T1 (en)
AU (1) AU2002319265B9 (en)
BR (1) BR0211542B1 (en)
CA (1) CA2454905C (en)
CY (1) CY1108881T1 (en)
DE (2) DE10137272A1 (en)
DK (1) DK1432911T3 (en)
ES (1) ES2318028T3 (en)
NO (2) NO328300B1 (en)
NZ (2) NZ530835A (en)
PL (1) PL205962B1 (en)
PT (1) PT1432911E (en)
WO (1) WO2003012293A2 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021078C1 (en) * 2002-07-15 2004-01-16 Energieonderzoek Ct Petten Ecn Method and device concerning flow energy such as a wind farm.
PL378568A1 (en) * 2003-02-18 2006-05-02 Forskningscenter Risö Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement
NL1023666C2 (en) * 2003-06-14 2004-12-20 Energieonderzoek Ct Petten Ecn Method or device for extracting energy from a flowing fluid.
DE10327344A1 (en) * 2003-06-16 2005-01-27 Repower Systems Ag Wind turbine
DE102004044211A1 (en) * 2004-09-06 2006-03-23 Kugeler, Oliver, Dr. Offshore wind profile measurement procedure uses SODAR phased array with phases shifts to correct for buoy motion
DE102004054608B4 (en) * 2004-09-21 2006-06-29 Repower Systems Ag Method for controlling a wind turbine and wind turbine with a rotor
DE102004056254B4 (en) * 2004-11-22 2006-11-09 Repower Systems Ag Method for optimizing the operation of wind turbines
DE102004057320A1 (en) * 2004-11-27 2006-06-01 Karl-Heinz Best Device for monitoring a wind energy installation comprises a data acquisition unit having a load sensor to detect the load operation of the installation and a wind sensor
DE102005018996A1 (en) * 2005-04-22 2006-10-26 Repower Systems Ag Control assembly for group of wind turbines has cable series-link between computer and turbines and backup wireless link
DE102005033229A1 (en) * 2005-07-15 2007-01-18 Siemens Ag Network for controlling wind power plants has communication devices for transmission of information from first arithmetic and logic unit to second arithmetic and logic unit
DE102005045516A1 (en) 2005-09-22 2007-03-29 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Method for adapting a wind turbine to given wind conditions
DE102005046860A1 (en) 2005-09-29 2007-04-05 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Wind energy plant operating method, involves adjusting operating parameter of plant e.g. wind incidence angle of rotor blade of rotor, based on signal generated by detection device in monitored area during entry of flying object
EP1770277A1 (en) * 2005-09-30 2007-04-04 General Electric Company Method for controlling a wind energy turbine of a wind park comprising multiple wind energy turbines
DE102006001613B4 (en) * 2006-01-11 2008-01-31 Repower Systems Ag Method for operating a wind turbine and wind turbine
DE102006021982C5 (en) * 2006-05-10 2010-10-07 Repower Systems Ag Staggered wind farm can be switched off
US8608441B2 (en) 2006-06-12 2013-12-17 Energyield Llc Rotatable blade apparatus with individually adjustable blades
US7950901B2 (en) * 2007-08-13 2011-05-31 General Electric Company System and method for loads reduction in a horizontal-axis wind turbine using upwind information
US20090110539A1 (en) * 2007-10-30 2009-04-30 Ulrich Uphues Wind farm and method for controlling same
CN101307756B (en) * 2008-07-08 2010-06-16 河北省电力研究院 Thermoelectric generating set auxiliary machinery fault fast-reducing load feed water pump trip behavior feasibility determination method
CN102089519B (en) * 2008-10-09 2013-06-19 三菱重工业株式会社 Offshore wind-driven electric power generator and offshore wind farm
ES2562253T3 (en) * 2009-06-24 2016-03-03 Vestas Wind Systems A/S A procedure and a system to control the operation of a wind turbine
DE102009030886A1 (en) * 2009-06-29 2010-12-30 Robert Bosch Gmbh Wind turbine with a variety of wind energy devices and methods for controlling the wind turbine
US8538735B2 (en) * 2009-09-08 2013-09-17 Wm. Stevens Taber, Jr. Use of devices for measuring fluid movement conditions at a distance to reduce the design and manufacturing cost of moving-fluid-driven working devices
US20100135790A1 (en) * 2009-10-14 2010-06-03 Sujan Kumar Pal Wind turbine blade with foreign matter detection devices
CN102472248B (en) * 2009-12-15 2015-05-13 维斯塔斯风力***有限公司 Wind power plant controller for avoiding common cause shutdown
EP2354541B1 (en) 2010-01-20 2014-09-17 Siemens Aktiengesellschaft Wind farm power control based on matrix reflecting a power load distribution between individual wind turbines
CN101858778A (en) * 2010-05-28 2010-10-13 浙江大学 Vibration monitoring-based wind generator set automatic fault diagnosis method
US8035241B2 (en) * 2010-07-09 2011-10-11 General Electric Company Wind turbine, control system, and method for optimizing wind turbine power production
DK2601720T3 (en) * 2010-08-02 2020-02-24 Ge Renewable Tech Wind Bv REACTIVE POWER CONTROL OF A WINDMILL PARK
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
DE102010063396A1 (en) 2010-12-17 2012-06-21 Siemens Aktiengesellschaft Method for compensating inadmissible high winds in wind park, involves detecting wind speed and wind direction at wind energy plants by sensors
US20110193344A1 (en) * 2010-12-29 2011-08-11 Vestas Wind Systems A/S Control Network for Wind Turbine Park
WO2012103668A1 (en) * 2011-01-31 2012-08-09 General Electric Company System and methods for controlling wind turbine
WO2012164387A1 (en) * 2011-05-27 2012-12-06 Condor Wind Energy Limited Wind turbine control system having a thrust sensor
WO2012163359A1 (en) * 2011-05-31 2012-12-06 Vestas Wind Systems A/S A wind farm and a method of operating a wind farm
WO2012178176A1 (en) 2011-06-23 2012-12-27 Inventus Holdings, Llc Multiple renewables site electrical generation and reactive power control
EP2726736B1 (en) * 2011-06-30 2016-12-07 Vestas Wind Systems A/S Remote sensing system for wind turbines
DE102011081241A1 (en) * 2011-08-19 2013-02-21 Repower Systems Se Energy yield loss determination of a wind turbine
US8326577B2 (en) * 2011-09-20 2012-12-04 General Electric Company System and method for predicting wind turbine component failures
JP5485368B2 (en) * 2011-11-16 2014-05-07 三菱重工業株式会社 Wind power generation system and control method thereof
WO2013083131A1 (en) * 2011-12-06 2013-06-13 Vestas Wind Systems A/S Methods and systems for warning a wind turbine generator in a wind park of an extreme wind event
US9644610B2 (en) 2011-12-06 2017-05-09 Vestas Wind Systems A/S Warning a wind turbine generator in a wind park of an extreme wind event
CN102493918B (en) * 2011-12-23 2014-03-26 新疆金风科技股份有限公司 System and method for pre-warning and controlling gust load of wind power station
DK2807371T3 (en) * 2012-01-25 2016-07-25 Abb Research Ltd Wind farm comprising a wind speed REAL TIME MEASUREMENTS
KR101177435B1 (en) 2012-03-06 2012-08-27 전북대학교산학협력단 Method for predicting wind resource of wind farm
DE102012210150A1 (en) * 2012-06-15 2013-12-19 Wobben Properties Gmbh Wind turbine and method for controlling a wind turbine or a wind farm
PL2915997T3 (en) 2012-10-31 2018-06-29 Hispavista Labs A.I.E. Method for calculating and correcting the angle of attack in a wind turbine farm
US8987929B2 (en) 2012-11-01 2015-03-24 General Electric Company System and method for operating wind farm
DE102013208204A1 (en) * 2013-05-06 2014-11-06 Aktiebolaget Skf Account rolling device and method for operating power generation plants
US9528493B2 (en) 2013-05-28 2016-12-27 Siemens Aktiengesellschaft Apparatus to detect aerodynamic conditions of blades of wind turbines
DK2853729T3 (en) * 2013-09-30 2016-09-19 Alstom Renovables Espana Sl Wind turbine with a vinddetektionsapparat
KR101575102B1 (en) 2013-12-27 2015-12-07 두산중공업 주식회사 a wind farm, a control method thereof and a wind turbine
KR101458786B1 (en) * 2014-02-20 2014-11-07 두산중공업 주식회사 a wind farm, an arranging structure thereof and a control method thereof, a wind generator unit
US9551322B2 (en) 2014-04-29 2017-01-24 General Electric Company Systems and methods for optimizing operation of a wind farm
CN104018992B (en) * 2014-06-13 2016-08-24 北京大学 Capture the wind turbine layout method of existing wind field low-to-medium altitude wind energy
US9845789B2 (en) * 2014-10-23 2017-12-19 General Electric Company System and method for monitoring and controlling wind turbines within a wind farm
DE102014223640A1 (en) * 2014-11-19 2016-05-19 Wobben Properties Gmbh Design of a wind energy plant
ES2818807T3 (en) 2015-02-12 2021-04-14 Vestas Wind Sys As Control system including local and central controllers for a wind turbine system that has multiple rotors
DE102015103757B3 (en) * 2015-03-13 2016-04-21 Christoph Lucks Vefahren for wind measurement and measuring buoy for its implementation
JP6464043B2 (en) * 2015-06-24 2019-02-06 株式会社日立製作所 Wind power generator, wind farm, and wind farm control method
DE102015009959A1 (en) 2015-08-05 2017-02-09 Senvion Gmbh Control and control method for a wind turbine or a plurality of wind turbines
DE102015120306A1 (en) * 2015-11-24 2017-05-24 Wobben Properties Gmbh Method for outputting control commands or event messages for a wind turbine or a wind farm and an evaluation device and a system therefor
AT15428U1 (en) 2016-03-16 2017-08-15 Uptime Holding Gmbh Method for determining the wind speed and installation for carrying it out
CN107228046B (en) * 2016-03-24 2018-11-20 北京金风科创风电设备有限公司 Wind turbine generator predictive yaw control method, device and system
CN107304746B (en) * 2016-04-20 2020-07-17 北京天诚同创电气有限公司 Wind generating set and operation control method and device thereof
CN106779274B (en) * 2016-04-20 2020-07-07 海南电力技术研究院 Typhoon risk early warning method and system for power equipment
US10385829B2 (en) 2016-05-11 2019-08-20 General Electric Company System and method for validating optimization of a wind farm
CN106121938A (en) * 2016-06-30 2016-11-16 福建大唐国际新能源有限公司 Wind-driven generator purpose overspeed protective module maintainability test platform
CN106194597A (en) * 2016-07-06 2016-12-07 青岛华创风能有限公司 Strong wind safe early warning control method in the looped network of a kind of wind power generating set
US10539116B2 (en) 2016-07-13 2020-01-21 General Electric Company Systems and methods to correct induction for LIDAR-assisted wind turbine control
CN107795436B (en) * 2016-08-31 2018-11-20 北京金风科创风电设备有限公司 Control method, master controller, system and the central controller of wind power generating set
JP6869685B2 (en) * 2016-10-06 2021-05-12 株式会社日立製作所 Wind farm and wind farm
DE102017009837A1 (en) 2017-10-23 2019-04-25 Senvion Gmbh Control system and method for operating a plurality of wind turbines
CN110296045A (en) * 2019-05-27 2019-10-01 华电电力科学研究院有限公司 A kind of online check method for wind-driven generator anemoscope
CN110296055B (en) * 2019-06-10 2020-07-28 同济大学 Wind direction prediction associated seed unit screening method
WO2020249173A1 (en) 2019-06-14 2020-12-17 Vestas Wind Systems A/S A method for controlling a wind farm under turbulent wind conditions
CN111579206A (en) * 2020-07-08 2020-08-25 南京信息工程大学 Adjustable aerodynamic roughness detection platform
EP4067649A1 (en) * 2021-03-31 2022-10-05 Siemens Gamesa Renewable Energy A/S Operating a wind turbine in a severe weather condition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
US4651017A (en) * 1985-02-08 1987-03-17 The United States Of America As Represented By The United States Department Of Energy Wind energy conversion system
GB9313727D0 (en) * 1993-07-02 1993-08-18 Pritchard Declan N A A system and method for monitoring wind characteristics
US5646343A (en) * 1993-07-02 1997-07-08 Pritchard; Declan Nigel System and method for monitoring wind characteristics
US5544525A (en) * 1994-08-10 1996-08-13 Radian Corporation Atmospheric remote sensing instrument system
SE503679C2 (en) * 1994-11-18 1996-07-29 Lasse Karlsen Acoustic wind meter
EP0970308B1 (en) * 1997-03-26 2003-05-21 Forskningscenter Riso A wind turbine with a wind velocity measurement system
DE19805328C2 (en) * 1998-02-11 2002-06-20 Volker Thiermann Method for the spatially resolving measurement of flow velocities of a continuous medium
DE10033183C2 (en) * 2000-07-07 2002-08-08 Max Planck Gesellschaft Method and device for processing and predicting flow parameters of turbulent media
US20020067274A1 (en) * 2000-12-05 2002-06-06 Haller Mark E. Wind turbine hailstorm protection system having a hailstorm sensor to signal for changing turbine blade positions
US6749399B2 (en) * 2002-03-07 2004-06-15 Ocean Wind Energy Systems Vertical array wind turbine

Also Published As

Publication number Publication date
NO20040420L (en) 2004-01-30
CA2454905A1 (en) 2003-02-13
AU2002319265B9 (en) 2006-11-23
PT1432911E (en) 2009-02-20
CA2454905C (en) 2008-01-15
EP1432911A2 (en) 2004-06-30
CN100339594C (en) 2007-09-26
KR20040021677A (en) 2004-03-10
PL368371A1 (en) 2005-03-21
NO20090474L (en) 2004-01-30
US7025567B2 (en) 2006-04-11
CY1108881T1 (en) 2014-07-02
BR0211542B1 (en) 2011-01-25
JP2008303883A (en) 2008-12-18
AR037010A1 (en) 2004-10-20
AU2002319265B2 (en) 2006-07-13
KR100672615B1 (en) 2007-01-22
DK1432911T3 (en) 2009-03-02
JP4672979B2 (en) 2011-04-20
CN1606658A (en) 2005-04-13
NZ530835A (en) 2007-01-26
NZ552440A (en) 2008-05-30
ES2318028T3 (en) 2009-05-01
WO2003012293A3 (en) 2004-04-22
WO2003012293A2 (en) 2003-02-13
JP2004537000A (en) 2004-12-09
PL205962B1 (en) 2010-06-30
EP1944509A1 (en) 2008-07-16
DE50213133D1 (en) 2009-01-29
ATE418008T1 (en) 2009-01-15
US20040258521A1 (en) 2004-12-23
BR0211542A (en) 2004-08-03
DE10137272A1 (en) 2003-02-27
EP1432911B1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
NO328300B1 (en) Early warning system for wind turbines.
CA2658689C (en) Wind turbine generator system
EP2516852B1 (en) Method and apparatus for protecting wind turbines from damage
EP2889472B1 (en) Wind farm, control method thereof and wind power generation unit
US9000970B2 (en) Arrangement to measure the deflection of an object
US9810200B2 (en) Method for controlling a profile of a blade on a wind turbine
EP2778602B1 (en) Arrangement to measure the deflection of a blade of a wind turbine
EP2702393B1 (en) Method and appartaus for protecting wind turbines from extreme events
JP2007285214A (en) Control device for windmill
NO340104B1 (en) Rotor blade for a wind power plant
CN101970866A (en) A control system and a method for redundant control of a wind turbine
ES2214801T3 (en) PROCEDURE FOR THE OPERATION OF A WIND POWER STATION IN ALTA MAR.
JP2020002835A (en) Wind power generator, control method thereof, and wind power generation system
WO2019031077A1 (en) Wind farm control system and wind farm control method
KR20200054292A (en) Method for operating wind power plant in emergency mode, and controller and wind power plant
JP2017008848A (en) Wind power generator, wind farm and control method of wind farm

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees