NO323150B1 - Integrated water turbine and generator without hub - Google Patents

Integrated water turbine and generator without hub Download PDF

Info

Publication number
NO323150B1
NO323150B1 NO20055236A NO20055236A NO323150B1 NO 323150 B1 NO323150 B1 NO 323150B1 NO 20055236 A NO20055236 A NO 20055236A NO 20055236 A NO20055236 A NO 20055236A NO 323150 B1 NO323150 B1 NO 323150B1
Authority
NO
Norway
Prior art keywords
rotor
stator
turbine generator
accordance
turbine
Prior art date
Application number
NO20055236A
Other languages
Norwegian (no)
Other versions
NO20055236D0 (en
NO20055236A (en
Inventor
Torris Skaaluren
Stein Stendahl
Original Assignee
Elinova As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elinova As filed Critical Elinova As
Priority to NO20055236A priority Critical patent/NO323150B1/en
Publication of NO20055236D0 publication Critical patent/NO20055236D0/en
Priority to EP06812816.4A priority patent/EP1952014A4/en
Priority to PCT/NO2006/000401 priority patent/WO2007055585A1/en
Publication of NO20055236A publication Critical patent/NO20055236A/en
Publication of NO323150B1 publication Critical patent/NO323150B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • F03B13/083The generator rotor being mounted as turbine rotor rim
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Det omtales en turbingenerator for å generere elektdsk kraft fra gjennomstrømmende vann, omfattende en rørformig stator (12) med innstøpte, vanntette elektriske magnetviklinger (22), en rørformig rotor (10) uten nav som er opplagret roterbart i statoren (12) og endeflenser (14a,14b) for opplagring av rotoren (10) i statoren (12), hvor rotoren (10) danner turbinrøret og innbefatter en gjennomløpende, indre åpning (38), samt skovler (16) som rager inn mot senter av nevnte åpning, innrettet til å drives av det gjennomstrømmende vannet. Rotoren (10) omfatter innstøpte, vanntette permanentmagneter (24), innrettet til å samvirke med magnetviklingene (22) i statoren (12) for å generere elektrisk kraft, og at rotoren (10) er opplagret ved hjelp av et sidelager (26) i hver ende samt minst et topplager (32) mellom statoren (12) og rotoren (10), innrettet til å oppta både radial- og aksialkrefter og til å hindre at stator (12) og rotor (10) kommer i kontakt med hverandre.A turbine generator for generating electric power from flowing water is disclosed, comprising a tubular stator (12) with embedded, watertight electrical magnetic windings (22), a tubular rotor (10) without hubs rotatably mounted in the stator (12) and end flanges ( 14a, 14b) for supporting the rotor (10) in the stator (12), the rotor (10) forming the turbine tube and including a through-going, inner opening (38), as well as vanes (16) projecting towards the center of said opening, arranged to be driven by the flowing water. The rotor (10) comprises embedded, waterproof permanent magnets (24), arranged to co-operate with the magnetic windings (22) in the stator (12) to generate electric power, and that the rotor (10) is supported by means of a side bearing (26) in each end and at least one top bearing (32) between the stator (12) and the rotor (10), arranged to absorb both radial and axial forces and to prevent the stator (12) and rotor (10) from coming into contact with each other.

Description

Foreliggende oppfinnelse vedrører en turbingenerator for å generere elektrisk kraft fra gjennomstrømmende vann, omfattende en rørformig stator med innstøpte, vanntette elektriske magnetviklinger, en rørformig rotor uten nav som er opplagret roterbart i statoren, samt minst et topplager og endeflenser for opplagring av rotoren i statoren, hvor rotoren danner turbinrøret og innbefatter en gjennomløpende, indre åpning, og skovler som rager inn mot senter av nevnte åpning, innrettet til å drives av det gjennomstrømmende vannet, The present invention relates to a turbine generator for generating electrical power from flowing water, comprising a tubular stator with cast-in, waterproof electric magnetic windings, a tubular rotor without a hub which is rotatably supported in the stator, as well as at least one top bearing and end flanges for supporting the rotor in the stator, wherein the rotor forms the turbine tube and includes a continuous internal opening, and vanes projecting towards the center of said opening, adapted to be driven by the flowing water,

Oppfinnelse er i hovedsak utviklet for, men ikke begrenset til, å utnytte langsomt flytende vannstrømmer, så som i elver og fjorder med tidevannstrømmer, samt utløp fra dammer og kraftverk hvor fallhøyden er for lav til benytte konvensjonelle turbiner. Invention is mainly developed for, but not limited to, utilizing slow flowing water currents, such as in rivers and fjords with tidal currents, as well as discharges from dams and power plants where the head is too low to use conventional turbines.

Fra kjent teknikk skal blant annet US 4123666 omtales, hvor dokumentet omhandler en vannturbin hvor turbinhjulet er opplagret i et rør, og med skovler festet til et nav i senter og ytterst til en ring som roterer sammen med resten av turbinhjulet. Videre er det til ringen festet rotordelen av en elektrisk generator. US 2652505 omhandler en fremdriftsanordning for skip, med skovler som rager ut fra en ring og inn mot midten av røret, og funger som en pumpe. Fra JP 9177652, US 6648589, US 6729840 og US 5592816 er det også kjent med en vannturbin hvor rotoren ha skovler som er festet i periferien og som rager inn mot sentrum av røret. Rotorene har ikke nav. Kraftoverføring er mekanisk ved at rotoren driver et drivhjul som igjen driver en aksling til en generator. Fra EP 0977343 A1 er det kjent å utforme rotorpolene i en turbingenerator i form av permanentmagneter, men turbingeneratoren i nevnte dokument er aksialopplagret. From prior art, US 4123666 should be mentioned, among other things, where the document deals with a water turbine where the turbine wheel is stored in a tube, and with vanes attached to a hub in the center and at the outer end to a ring that rotates together with the rest of the turbine wheel. Furthermore, the rotor part of an electric generator is attached to the ring. US 2652505 relates to a propulsion device for ships, with vanes projecting from a ring towards the center of the tube, and functioning as a pump. From JP 9177652, US 6648589, US 6729840 and US 5592816 it is also known a water turbine where the rotor has vanes which are fixed in the periphery and which project towards the center of the tube. The rotors do not have hubs. Power transmission is mechanical in that the rotor drives a drive wheel which in turn drives a shaft to a generator. From EP 0977343 A1 it is known to design the rotor poles of a turbine generator in the form of permanent magnets, but the turbine generator in the said document is axially supported.

Av de fremtrukne dokumenter er det US 2652505 som anses som det nærmestliggende mothold. Det som særlig skiller de to systemene er at foreliggende turbingenerator består av kun fire hovedkomponenter, nemlig stator, rotor, lagre og flenser, mens løsningen omtalt i US 2652505 består av svært mange deler, der noen av delene er svært sårbare for vanninntrengning på grunn av nødvendig tetning mellom den roterende delen og stator (børster/sleperinger). I tillegg er lagrene oljesmurte og kun på periferien mellom rotor og stator. Foreliggende oppfinnelse anvender et annet elektrisk prinsipp, nemlig permanentmagnetgenerator. Dermed faller behovet bort for elektrisk børsteoverføring mellom rotor og stator, idet permanentmagnetene plasseres i den roterende delen. Dette medfører også at det ikke er behov for vanntett eller trykktett kapsling mellom rotor og stator. Regulering av spenning, frekvens og last, osv. i foreliggende løsning skjer ved hjelp av nyutviklet kraftelektronikk. Of the highlighted documents, it is US 2652505 that is considered the closest counterclaim. What particularly distinguishes the two systems is that the present turbine generator consists of only four main components, namely stator, rotor, bearings and flanges, while the solution described in US 2652505 consists of very many parts, where some of the parts are very vulnerable to water ingress due to necessary seal between the rotating part and stator (brushes/slip rings). In addition, the bearings are oil-lubricated and only on the periphery between the rotor and stator. The present invention uses another electrical principle, namely the permanent magnet generator. This eliminates the need for electric brush transmission between rotor and stator, as the permanent magnets are placed in the rotating part. This also means that there is no need for waterproof or pressure-tight enclosure between rotor and stator. Regulation of voltage, frequency and load, etc. in the present solution takes place with the help of newly developed power electronics.

Videre er det i foreliggende oppfinnelse utviklet et prinsipp med å støpe inn hjelpeviklinger i rotoren for å kunne oppmagnetisere permanentmagnetene hvis magnetismen av ulike årsaker forsvinner. Isolerte kontaktpunkter kan åpnes i enden av rotoren for oppmagnetisering uten å demontere rotoren, slik man må gjøre i dag. Dette vil lette drift og vedlikehold. Opplagringen av den roterende delen er annerledes, idet foreliggende løsning kan benytte kulelagre i hver ende i tillegg til avstandsruller mellom rotor og stator. Dette er nødvendig for å oppta de store radiale og aksiale kreftene. Videre kan lagrene være vannsmurte. Furthermore, in the present invention, a principle has been developed of casting auxiliary windings into the rotor in order to be able to magnetize the permanent magnets if the magnetism disappears for various reasons. Isolated contact points can be opened at the end of the rotor for magnetization without disassembling the rotor, as one has to do today. This will facilitate operation and maintenance. The storage of the rotating part is different, as the present solution can use ball bearings at each end in addition to spacer rollers between rotor and stator. This is necessary to absorb the large radial and axial forces. Furthermore, the bearings can be water-lubricated.

Selve turbingeneratoren i følge oppfinnelsen består som nevnt i hovedsak av kun fire hoveddeler: Stator, rotor med skovler, og to endeflenser. Generatorens rotor er fortrinnsvis formet som et rør. I rørets (rotorens) vegger er det plassert permanentmagneter. Turbinskovlene (eller vingene) festes foretrukket til rørets indre vegger, og møtes ikke i sentrum. Statorens viklinger kan være vanntett forseglet. Det samme kan permanentmagnetene i rotoren være. Den elektriske kabeltilkoblingen kan også være utformet vanntett. The turbine generator itself according to the invention consists, as mentioned, mainly of only four main parts: Stator, rotor with blades, and two end flanges. The generator's rotor is preferably shaped like a tube. Permanent magnets are placed in the walls of the tube (rotor). The turbine blades (or vanes) are preferably attached to the inner walls of the tube, and do not meet in the centre. The stator windings can be watertight sealed. So can the permanent magnets in the rotor. The electrical cable connection can also be designed to be waterproof.

Denne kombinasjonen av turbin og permanentmagnetgenerator uten nav i en sammenbygget vanntett enhet, er ikke tidligere kjent, og fordelene er enkel og robust konstruksjon med få deler. Ingen mekaniske overføringer i form av girutveksling og aksling som gir lavt mekanisk tap. Størrelser opp til 500 KW eller mer, vil være mulig med foreliggende teknologi. This combination of turbine and permanent magnet generator without a hub in an integrated waterproof unit is not previously known, and the advantages are simple and robust construction with few parts. No mechanical transmissions in the form of gear exchange and shafting, which results in low mechanical loss. Sizes up to 500 KW or more will be possible with current technology.

Formålet med turbingeneratoren i følge oppfinnelsen er å omforme den kinetiske energien i langsomt flytende vannstrømmer, som elver og tidevannstrømmer, til elektrisk energi på en kosteffektiv måte uten å bygge dammer og rørgater. Med foreliggende teknologi utnyttes fornybare energikilder uten naturinngrep, og med enheter som enkelt kan demonteres og fjernes uten å etterlate seg skjemmende spor. The purpose of the turbine generator according to the invention is to transform the kinetic energy in slowly flowing water currents, such as rivers and tidal currents, into electrical energy in a cost-effective manner without building dams and pipelines. With current technology, renewable energy sources are utilized without interfering with nature, and with units that can be easily dismantled and removed without leaving unsightly traces.

Turbingeneratoren i følge oppfinnelsen kan ha mange anvendelsesområder. Enhetene kan enten monteres på rammeverk plassert på elvebunnen eller fjordbunnen, eller opphenges under pongtonger som blir ankret i strømmen. The turbine generator according to the invention can have many areas of application. The units can either be mounted on frameworks placed on the river bed or fjord bed, or suspended under pontoons that are anchored in the current.

Et annet alternativ kan være å feste enheten til uteliggere på elvebredden, eller festet/integrert i brokar som står i strømmen. Another option could be to attach the unit to outriggers on the riverbank, or attached/integrated into bridge vessels standing in the stream.

Ved disse ovenfor nevnte bruksområdene kan det for eksempel monteres en vannoppsamlingstrakt for å lede mest mulig av vannstrømmen inn i turbinen For these above-mentioned areas of use, for example, a water collection funnel can be installed to direct as much of the water flow as possible into the turbine

Et annet anvendelsesområde for turbingeneratoren kan være å flense enheten på utløpsrør fra dam, eller utløpsrenne fra eksisterende kraftstasjoner hvor fallhøyden er lav. I disse tilfellene kan turbingeneratoren flenses under et sneglehusformet innløp som setter vannet i sirkulasjon før det strømmer inn på turbinen. Med denne metoden oppnås bedre gjennomstrømming og lavere kavitasjon og dermed forbedret total virkningsgrad. Another area of application for the turbine generator could be to flange the unit on outlet pipes from dams, or outlet gutters from existing power stations where the drop height is low. In these cases, the turbine generator can be flanged under a snail-shaped inlet that circulates the water before it flows onto the turbine. With this method, better flow and lower cavitation are achieved and thus improved overall efficiency.

De overnevnte formål oppnås med en turbingenerator som omtalt i inn-ledningen, og som kjennetegnet ved karakteristikken i det selvstendige krav 1, ved at rotoren omfatter innstøpte, vanntette permanentmagneter, innrettet til å samvirke med magnetviklingene i statoren for å generere elektrisk kraft, og at rotoren er opplagret ved hjelp av minst et sidelager i hver ende samt nevnte topplager mellom statoren og rotoren, innrettet til å oppta både radial- og aksialkrefter og til å hindre at stator og rotor kommer i kontakt med hverandre. The above-mentioned purposes are achieved with a turbine generator as mentioned in the introduction, and which is characterized by the characteristic in independent claim 1, in that the rotor comprises cast-in, waterproof permanent magnets, designed to cooperate with the magnetic windings in the stator to generate electric power, and that the rotor is supported by means of at least one side bearing at each end as well as said top bearing between the stator and the rotor, designed to absorb both radial and axial forces and to prevent the stator and rotor from coming into contact with each other.

Alternative foretrukne utførelser er kjennetegnet ved de uselvstendige kravene 2-9. Rotorens sidelager, fortrinnsvis på hver sideflate, omfatter en på sideflaten sirkulært anordnet kulerlagerbanehalvdel og hver endeflens omfatter en samsvarende kulerlagerbanehalvdel, som sammen danner en kulelagerbane og som er innrettet for mottak av et antall lagerkuler, slik at rotoren er opplagret i en bestemt avstand fra endeflensene, avhengig av lagerkulenes diameter. Topplageret er anordnet innvendig i statoren og omfatter fortrinnsvis et antall rullelagre, tilstøtende begge sider av statorens innvendige boring, innrettet for å rulle mot rotorens ytterflate og for å holde rotoren i en bestemt avstand fra statoren. Alternative preferred embodiments are characterized by the independent claims 2-9. The rotor's side bearing, preferably on each side surface, comprises a circularly arranged ball bearing track half on the side surface and each end flange comprises a corresponding ball bearing track half, which together form a ball bearing track and which is arranged to receive a number of bearing balls, so that the rotor is stored at a certain distance from the end flanges , depending on the diameter of the bearing balls. The top bearing is arranged inside the stator and preferably comprises a number of roller bearings, adjacent both sides of the stator's internal bore, arranged to roll against the outer surface of the rotor and to keep the rotor at a certain distance from the stator.

Vannturbinen i følge oppfinnelsen kan omfatte et kraftelektronisk reguleringssystem for regulering av spenning, frekvens, last, etc, til nettet, og hvor systemet omfatter minst en av en aktiv likeretter, reaktiv effektkompensator, nettstabilisator, aktivt filter og/eller heldigital styreelektronikk. The water turbine according to the invention can comprise a power electronic regulation system for regulation of voltage, frequency, load, etc., to the grid, and where the system comprises at least one of an active rectifier, reactive power compensator, grid stabilizer, active filter and/or fully digital control electronics.

Videre kan rotoren omfatte innstøpte hjelpviklinger, innrettet til å oppmagnetisere permanentmagnetene dersom magnetismen forsvinner. For oppmagnetisering kan det være anordnet isolerte kontaktpunkter til enden av rotoren, hvor kontaktpunktene er innrettet til å åpnes. Furthermore, the rotor can include cast-in auxiliary windings, designed to magnetize the permanent magnets if the magnetism disappears. For magnetization, insulated contact points can be arranged at the end of the rotor, where the contact points are arranged to open.

Foretrukket er det til minst en av statorens sider anordnet en innløpskanal i form av en ledetrakt, hvor ledetrakten innvendig kan være spiralformet. Innløpsvinkel i ledetrakten kan i en utførelse foretrukket være mellom 5° og 20°, mer foretrukket mellom 10° og 15°, og mest foretrukket omtrent 11°. Preferably, an inlet channel in the form of a guide funnel is arranged on at least one of the stator's sides, where the guide funnel can be spiral-shaped internally. In one embodiment, the inlet angle in the guide funnel can preferably be between 5° and 20°, more preferably between 10° and 15°, and most preferably approximately 11°.

Oppfinnelsen skal nå beskrives nærmere med henvisning til de vedlagte tegninger, hvori: Figur 1 viser i perspektiv en permanentmagnetgenerator i følge oppfinnelsen. The invention will now be described in more detail with reference to the attached drawings, in which: Figure 1 shows in perspective a permanent magnet generator according to the invention.

Figur 2 viser eksplodert permanentmagnetgeneratoren vist i figur 1. Figure 2 shows an exploded view of the permanent magnet generator shown in Figure 1.

Figur 3 viser en generell oppstilling av et generatorsystem i følge oppfinnelsén, sett fra siden. Figur 4 viser et delvis snitt av permanentmagnetgeneratoren i følge oppfinnelsen. Figur 5 viser et delvis snitt av permanentmagnetgeneratoren i følge oppfinnelsen, i aksial retning. Figur 6 og 7 viser delsnitt av hjelpeviklinger i permanentmagnetgeneratorens rotor. Figur 8 og 9 viser et eksempel på en innløpstrakt til bruk ved en generator i følge oppfinnelsen. Figurene 10 til 18 viser ulike anvendelsesområder for et generatorsystem i følge oppfinnelsen. Figure 3 shows a general arrangement of a generator system according to the invention, seen from the side. Figure 4 shows a partial section of the permanent magnet generator according to the invention. Figure 5 shows a partial section of the permanent magnet generator according to the invention, in axial direction. Figures 6 and 7 show sections of auxiliary windings in the rotor of the permanent magnet generator. Figures 8 and 9 show an example of an inlet funnel for use with a generator according to the invention. Figures 10 to 18 show various areas of application for a generator system according to the invention.

Som figurene viser omfatter foreliggende oppfinnelse en permanentmagnetgenerator med en rørformig stator 12 innbefattende innstøpte, vanntette elektriske magnetviklinger 22, en rørformig rotor 10 uten nav som er opplagret roterbart i statoren 12 og endeflenser 14a, 14b for opplagring av rotoren 10 i statoren 12, hvor rotoren 10 danner turbinrøret og innbefatter en gjennom-løpende, indre åpning 38, samt skovler 16 som rager inn mot senter av nevnte åpning, innrettet til å drives av det gjennomstrømmende vannet. Rotoren 10 er følgelig plassert omdreibart i statoren 12 og innvendig i rotoren 10 er et antall rotorblader 16 eller skovler anordnet med innbyrdes avstand. Rotorbladene 16 rager inn mot sentrum av rotorens innvendige boring, fortrinnsvis uten at rotorbladene støter mot hverandre. Det blir således en åpning i sentrum som gir bedre vanngjennomstrømming og mindre kavitasjon. Rotoren 10 kan derved på grunn av bladene 16 drives for å omforme den kinetiske energien i langsomt flytende vannstrømmer, så som i elver og fjorder med tidevannstrømmer, eller utløp fra dammer og kraftverk hvor fallhøyden er for lav til benytte konvensjonelle turbiner, til elektrisk kraft som kan gjøres tilgjengelig for kraftselskap og/eller privatpersoner. Det skal bemerkes at oppfinnelsen også kan benyttes ved hurtigflytende strømmer, men den må da tilpasses til bruksområdet. As the figures show, the present invention comprises a permanent magnet generator with a tubular stator 12 including cast-in, watertight electric magnet windings 22, a tubular rotor 10 without a hub which is supported rotatably in the stator 12 and end flanges 14a, 14b for supporting the rotor 10 in the stator 12, where the rotor 10 forms the turbine tube and includes a continuous, internal opening 38, as well as vanes 16 which project towards the center of said opening, designed to be driven by the flowing water. The rotor 10 is consequently placed rotatably in the stator 12 and inside the rotor 10 a number of rotor blades 16 or vanes are arranged at a distance from each other. The rotor blades 16 project towards the center of the rotor's internal bore, preferably without the rotor blades bumping into each other. There will thus be an opening in the center which provides better water flow and less cavitation. Due to the blades 16, the rotor 10 can thereby be driven to transform the kinetic energy in slow-flowing water currents, such as in rivers and fjords with tidal currents, or outlets from dams and power plants where the drop height is too low to use conventional turbines, into electrical power which can be made available to power companies and/or private individuals. It should be noted that the invention can also be used for fast-flowing currents, but it must then be adapted to the area of use.

Statoren 12, eller mer presist statorhuset, omfatter fortrinnsvis vanntette, elektriske tilkoblingspunkter 20 og inngår i et kraftelektronisk reguleringssystem 18 for regulering av spenning, frekvens, last, etc, til nettet, hvor systemet omfatter minst en av en aktiv likeretter, reaktiv effektkompensator, nettstabilisator, aktivt filter og/eller heldigital styreelektronikk. The stator 12, or more precisely the stator housing, preferably comprises watertight, electrical connection points 20 and forms part of a power electronic regulation system 18 for regulation of voltage, frequency, load, etc., to the grid, where the system comprises at least one of an active rectifier, reactive power compensator, grid stabilizer , active filter and/or fully digital control electronics.

For å generere elektrisk kraft omfatter statoren 12 de innstøpte nevnte feltviklinger 22, mens rotoren 10 omfatter innstøpte permanentmagneter 24. Når rotoren 10 omdreies på grunn av vannets påvirkning på rotorbladene 16, genereres den elektriske kraften på grunn av feltene som oppstår mellom viklingene 22 og magnetene 24. Bruk av permanentmagneter er tidligere kjent og vil derfor ikke beskrives nærmere idet en fagmann vil ha kunnskap om denne teknologien. In order to generate electric power, the stator 12 comprises the cast-in said field windings 22, while the rotor 10 comprises cast-in permanent magnets 24. When the rotor 10 is rotated due to the action of the water on the rotor blades 16, the electric force is generated due to the fields that arise between the windings 22 and the magnets 24. The use of permanent magnets is previously known and will therefore not be described in more detail as a specialist will have knowledge of this technology.

For at rotoren 10 hele tiden skal være korrekt anordnet og opplagret i statoren 12 er det frembrakt minst et sidelager 26 med en kulelagerbane 28 mellom rotoren og endeflensen(e). Kulelagerbanen 28 er oppdelt i to halvdeler 28a,28b, av lik eller ulik radius, hvor en halvdel 28a er anbrakt sirkulært innvendig på endeflensene 14a og 14b, mens den andre halvdelen 28b er motsvarende anbrakt utvendig på rotorens 10 sideflate. Fortrinnsvis er det frembrakt en kulelagerbane 28 på hver side, men det skal ikke utelukkes at det kan benyttes en eller flere enn det som er vist på tegningene. I kulelager-banene 28 er det videre anbrakt et antall lagerkuler 30. Tilsvarende er det frembrakt minst et topplager 32 mellom rotoren og statoren, hvor topplageret 32 er anordnet innvendig i statorens 12 boring og omfatter et antall rullelagre 34, som for eksempel er opplagret på en aksling 36. Det er foretrukket anordnet et topplager 32 tilstøtende begge sider av statorens innvendige boring, og som er innrettet for å rulle mot rotorens 10 ytterflate og for å holde rotoren 10 i en bestemt avstand fra statoren 12. Nevnte sidelagre og topplagre kan være vannsmurte. In order for the rotor 10 to be correctly arranged and stored in the stator 12 at all times, at least one side bearing 26 with a ball bearing track 28 has been provided between the rotor and the end flange(s). The ball bearing track 28 is divided into two halves 28a, 28b, of equal or different radius, where one half 28a is placed circularly internally on the end flanges 14a and 14b, while the other half 28b is correspondingly placed externally on the side surface of the rotor 10. Preferably, a ball bearing track 28 is produced on each side, but it should not be ruled out that one or more can be used than what is shown in the drawings. A number of bearing balls 30 are also placed in the ball bearing tracks 28. Correspondingly, at least one top bearing 32 is produced between the rotor and the stator, where the top bearing 32 is arranged inside the bore of the stator 12 and comprises a number of roller bearings 34, which are, for example, supported on a shaft 36. A top bearing 32 is preferably arranged adjacent both sides of the stator's internal bore, and which is arranged to roll against the outer surface of the rotor 10 and to keep the rotor 10 at a certain distance from the stator 12. Said side bearings and top bearings can be water lubricated.

Figurene 6 og 7 viser en prinsippskisse av rotoren 10 med permanentmagnetene 24 anordnet i rotorens periferi, og med et antall hjelpeviklinger 40 anordnet mellom magnetene for oppmagnetisering ved behov. Disse hjelpeviklingene 40 kan benyttes for ettermagnetisering ved bortfall av remanentfelt i generatoren. Videre er det frembrakt kontaktpunkter 42, som fortrinnsvis er forseglet, og hvor det er tilkomst fra en eller begge sider av rotorens ender for tilkobling av hjelpespenning. De isolerte kontaktpunktene 42 kan åpnes i enden av rotoren for oppmagnetisering uten å demontere rotoren, slik det må gjøres i dag. Dette vil følgelig lette drift og vedlikehold. Figures 6 and 7 show a schematic diagram of the rotor 10 with the permanent magnets 24 arranged in the periphery of the rotor, and with a number of auxiliary windings 40 arranged between the magnets for magnetisation if necessary. These auxiliary windings 40 can be used for post-magnetization in the event of a loss of remanent field in the generator. Furthermore, contact points 42 have been produced, which are preferably sealed, and where there is access from one or both sides of the rotor's ends for connecting auxiliary voltage. The insulated contact points 42 can be opened at the end of the rotor for magnetization without dismantling the rotor, as has to be done today. This will therefore facilitate operation and maintenance.

For å øke virkningsgraden i turbingeneratoren kan det anordnes en innløpstrakt 50 eller tilførselsrør i innstrømsretningen til vannet. Trakten 50 er utformet med tanke på å oppnå best mulig vanngjennomstrømning med minst mulig kavitasjon, og trakten er derfor fortrinnsvis innvendig spiralformet. Spiralformen kan om ønskelig utelattes. Innløpsvinkel i ledetrakten 50 kan foretrukket være mellom 5° og 20°, mer foretrukket mellom 10° og 15°, og mest foretrukket omtrent 11°. In order to increase the efficiency of the turbine generator, an inlet funnel 50 or supply pipe can be arranged in the direction of the inflow of the water. The funnel 50 is designed with a view to achieving the best possible water flow with the least possible cavitation, and the funnel is therefore preferably internally spiral-shaped. The spiral shape can be omitted if desired. Inlet angle in the guide funnel 50 can preferably be between 5° and 20°, more preferably between 10° and 15°, and most preferably approximately 11°.

Ved å forme innløpstrakten 50 som en trakt med profiler/ledeskinner 52 i spiralform oppnås to ting: Fange mest mulig vann og øke hastigheten på vannstrømmen, og å sette vannstrømmen i rotasjon før vannet treffer turbinbladene. Forsøk har vist opp til 25% forbedret vanngjennomstrømning ved enkle innretninger. Utformingen av ledeskinnene må tilpasses for optimalisering i hvert enkelt tilfelle, ut fra strømningstekniske beregninger. By shaping the inlet funnel 50 as a funnel with profiles/guide rails 52 in a spiral shape, two things are achieved: Capture as much water as possible and increase the speed of the water flow, and to set the water flow in rotation before the water hits the turbine blades. Tests have shown up to 25% improved water flow with simple devices. The design of the guide rails must be adapted for optimization in each individual case, based on flow engineering calculations.

Kraftproduksjonen fra integrerte turbin/generatorer basert på permanentmagnetgenerator ifølge oppfinnelsen, må harmoniseres med nettet før innfasing. Tradisjonelt gjøres slik harmonisering delvis mekanisk ved endring av vannstrømmen, og delvis elektrisk ved bruk av kraftelektronikk. The power production from integrated turbine/generators based on the permanent magnet generator according to the invention must be harmonized with the grid before phasing in. Traditionally, such harmonization is done partly mechanically by changing the water flow, and partly electrically by using power electronics.

Mye utbredt er AC/DC-omformere, synkronisert mot AC-nett, alternativt mot for eksempel vindmøllegeneratorer. Utfordringene som oppstår når kraftelektroniske omformere kobles til nettet har å gjøre med omformerdimensjoneringen. Det er spesielt ved "svake" nett at problemene er størst. De forhold som volder problemer er resonans og stabilitet, spenningskvalitet, effektstyring og opp-førsel ved feil (komponentbegrensninger). Very widespread are AC/DC converters, synchronized to the AC grid, alternatively to, for example, wind turbine generators. The challenges that arise when power electronic converters are connected to the grid have to do with the converter dimensioning. It is especially with "weak" networks that the problems are greatest. The conditions that cause problems are resonance and stability, voltage quality, power management and behavior in the event of a fault (component limitations).

Det har skjedd en stor utvikling på kraftelektroniske omformere de senere årene. En moderne kraftelektronisk omformer for benyttelse i permanentmagnetgeneratoren kan bestå av: Aktiv likeretter (trekker aktiv effekt. Denne kan konfigureres til å trekke sinusformede strømmer. Effekten kan også kjøres i begge retninger og endres momentant). Reaktiv effektkompensator. Nettstabilisator. Aktivt filter ("reparerer spenningskurveformene" ved å injisere strømovertoner, dvs. kan også gå som elektronisk styrt resitiv last). Heldigital styreelektronikk. There has been a major development in power electronic converters in recent years. A modern power electronic converter for use in the permanent magnet generator can consist of: Active rectifier (draws active power. This can be configured to draw sinusoidal currents. The power can also run in both directions and change instantaneously). Reactive power compensator. Network stabilizer. Active filter ("repairs the voltage curve shapes" by injecting current harmonics, i.e. can also operate as an electronically controlled reactive load). Fully digital control electronics.

Krafthalvledere er under stadig utvikling, hvor ytelsene vokser og robusthet, pålitelighet og svitsjeegenskapene øker. Styringen er blitt enklere og produksjonskostnadene faller. Også interaksjon mellom komponentene forbedres stadig. Det kraftelektronisk reguleringssystem kan følgelig utgjøres av kjente løsninger, eller løsninger som utvikles i fremtiden. Power semiconductors are under constant development, where performance increases and robustness, reliability and switching properties increase. Management has become easier and production costs are falling. Interaction between the components is also constantly being improved. The power electronic control system can therefore be made up of known solutions, or solutions that will be developed in the future.

Figurene 10 til 18 viser implementering av oppfinnelsen i ulike miljøer. Figur 10 og 11 viser prinsippskisser for minikraftverk som nytter utslippsvannet fra en eksisterende kraftstasjon. Innløpstrakten kan i disse tilfellene være montert rettvendt eller tverrstilt til turbingeneratorens innløp. Figur 12 viser en variant for tilslutning til dam, sluse, utløp drikkevannskilde, etc. Figur 13 viser et eksempel på montering av generatoren i forbindelse med brokar i elver og tidevanns-strømmer, hvor generatoren er plassert til side for brokaret. Imidlertid kan også generatoren være integrert i brokaret. Figurene 14 og 15 viser eksempler på plassering ved en elvebredd, henholdsvis hengende eller bunnmontert. Figur 16 viser generatorsystemet opphengt under en lekter. Videre viser figurene 17 og 18 generatorsystemet opphengt i pongtonger eller bøyer, hvor systemet således er overseilbart for båter og skip. Figures 10 to 18 show implementation of the invention in various environments. Figures 10 and 11 show principle sketches for mini power plants that use the discharge water from an existing power station. In these cases, the inlet funnel can be mounted facing straight or transversely to the turbine generator inlet. Figure 12 shows a variant for connection to a dam, lock, outlet drinking water source, etc. Figure 13 shows an example of mounting the generator in connection with bridge vessels in rivers and tidal streams, where the generator is placed to the side of the bridge vessel. However, the generator can also be integrated into the bridge vessel. Figures 14 and 15 show examples of placement by a river bank, respectively suspended or bottom mounted. Figure 16 shows the generator system suspended under a barge. Furthermore, figures 17 and 18 show the generator system suspended in pontoons or buoys, where the system is thus navigable for boats and ships.

Claims (9)

1. Turbingenerator for å generere elektrisk kraft fra gjennomstrømmende vann, omfattende en rørformig stator (12) med innstøpte, vanntette elektriske magnetviklinger (22), en rørformig rotor (10) uten nav som er opplagret roterbart i statoren (12), samt minst et topplager (32) og endeflenser (14a, 14b) for opplagring av rotoren (10) i statoren (12), hvor rotoren (10) danner turbinrøret og innbefatter en gjennomløpende, indre åpning (38), og skovler (16) som rager inn mot senter av nevnte åpning, innrettet til å drives av det gjennomstrømmende vannet, karakterisert ved at rotoren (10) omfatter innstøpte, vanntette permanentmagneter (24), innrettet til å samvirke med magnetviklingene (22) i statoren (12) for å generere elektrisk kraft, og at rotoren (10) er opplagret ved hjelp av minst et sidelager (26) i hver ende samt nevnte topplager (32) mellom statoren (12) og rotoren (10), innrettet til å oppta både radial- og aksialkrefter og til å hindre at stator (12) og rotor (10) kommer i kontakt med hverandre.1. Turbine generator for generating electrical power from flowing water, comprising a tubular stator (12) with cast-in, waterproof electric magnetic windings (22), a tubular rotor (10) without a hub which is rotatably supported in the stator (12), as well as at least one top bearing (32) and end flanges (14a, 14b) for supporting the rotor (10) in the stator (12), where the rotor (10) forms the turbine tube and includes a continuous, internal opening (38), and vanes (16) projecting towards the center of said opening, adapted to be driven by the flowing water, characterized in that the rotor (10) comprises embedded, waterproof permanent magnets (24), adapted to cooperate with the magnetic windings (22) in the stator (12) to generate electric power , and that the rotor (10) is supported by means of at least one side bearing (26) at each end as well as said top bearing (32) between the stator (12) and the rotor (10), designed to absorb both radial and axial forces and to prevent stator (12) and rotor (10) from coming into contact beware of each other. 2. Turbingenerator i samsvar med krav 1, karakterisert ved at nevnte sidelager (26) omfatter en på rotorens (10) sideflater sirkulært anordnet kulerlagerbanehalvdel (28b) og en på hver endeflens (14a, 14b) samsvarende kulerlagerbanehalvdel (28a), hvor halvdelene (28a,28b) danner en kulelagerbane (28) som er innrettet for mottak av et antall lagerkuler (30), hvorved rotoren (10) er omdreibart opplagret i en bestemt avstand fra endeflensene (14a, 14b), avhengig av lagerkulenes (30) diameter.2. Turbine generator in accordance with claim 1, characterized in that said side bearing (26) comprises a ball bearing raceway half (28b) arranged circularly on the side surfaces of the rotor (10) and a matching ball bearing raceway half (28a) on each end flange (14a, 14b), where the halves ( 28a, 28b) form a ball bearing path (28) which is arranged to receive a number of bearing balls (30), whereby the rotor (10) is rotatably supported at a certain distance from the end flanges (14a, 14b), depending on the diameter of the bearing balls (30) . 3. Turbingenerator i samsvar med krav 1og2, karakterisert ved at topplageret (32) er anordnet innvendig i statorens (12) boring og omfatter et antall rullelagre (34), tilstøtende begge sider av statorens innvendige boring, innrettet for å rulle mot rotorens (10) ytterflate og for å holde rotoren (10) i en bestemt avstand fra statoren (12).3. Turbine generator in accordance with claims 1 and 2, characterized in that the top bearing (32) is arranged inside the bore of the stator (12) and comprises a number of rolling bearings (34), adjacent both sides of the inner bore of the stator, arranged to roll against the rotor's (10 ) outer surface and to keep the rotor (10) at a certain distance from the stator (12). 4. Turbingenerator i samsvar med krav 3, karakterisert ved at vannturbinen omfatter et kraftelektronisk reguleringssystem (18) for regulering av spenning, frekvens, last, etc, til nettet, og hvor systemet omfatter minst en av en aktiv likeretter, reaktiv effektkompensator, nettstabilisator, aktivt filter og/eller heldigital styreelektronikk.4. Turbine generator in accordance with claim 3, characterized in that the water turbine comprises a power electronic regulation system (18) for regulation of voltage, frequency, load, etc., to the grid, and where the system comprises at least one of an active rectifier, reactive power compensator, grid stabilizer, active filter and/or fully digital control electronics. 5. Turbingenerator i samsvar med krav 3 eller 4, karakterisert v e d at rotoren (10) omfatter innstøpte hjelpviklinger (40), innrettet til å oppmagnetisere permanentmagnetene (24) dersom magnetismen forsvinner.5. Turbine generator in accordance with claim 3 or 4, characterized in that the rotor (10) comprises cast-in auxiliary windings (40), arranged to magnetize the permanent magnets (24) if the magnetism disappears. 6. Turbingenerator i samsvar med krav 5, karakterisert ved at det for oppmagnetisering er anordnet isolerte kontaktpunkter (42) til enden av rotoren (10), hvor kontaktpunktene (42) er innrettet til å åpnes.6. Turbine generator in accordance with claim 5, characterized in that insulated contact points (42) are arranged at the end of the rotor (10) for magnetization, where the contact points (42) are arranged to open. 7. Turbingenerator i samsvar med et av de foregående krav, karakterisert ved at det til minst en av statorens (12) sider er anordnet en innløpskanal i form av en ledetrakt (50).7. Turbine generator in accordance with one of the preceding claims, characterized in that an inlet channel in the form of a guide funnel (50) is arranged on at least one of the stator's (12) sides. 8. Turbingenerator i samsvar med krav 7, karakterisert ved at ledetrakten (50) innvendig er spiralformet.8. Turbine generator in accordance with claim 7, characterized in that the guide funnel (50) is internally spiral-shaped. 9. Turbingenerator i samsvar med krav 7 eller 8, karakterisert v e d at innløpsvinkel i ledetrakten (50) foretrukket er mellom 5° og 20°, mer foretrukket mellom 10° og 15°, og mest foretrukket omtrent 11°.9. Turbine generator in accordance with claim 7 or 8, characterized in that the inlet angle in the guide funnel (50) is preferably between 5° and 20°, more preferably between 10° and 15°, and most preferably about 11°.
NO20055236A 2005-11-08 2005-11-08 Integrated water turbine and generator without hub NO323150B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20055236A NO323150B1 (en) 2005-11-08 2005-11-08 Integrated water turbine and generator without hub
EP06812816.4A EP1952014A4 (en) 2005-11-08 2006-11-08 Turbine generator
PCT/NO2006/000401 WO2007055585A1 (en) 2005-11-08 2006-11-08 Turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20055236A NO323150B1 (en) 2005-11-08 2005-11-08 Integrated water turbine and generator without hub

Publications (3)

Publication Number Publication Date
NO20055236D0 NO20055236D0 (en) 2005-11-08
NO20055236A NO20055236A (en) 2007-01-08
NO323150B1 true NO323150B1 (en) 2007-01-08

Family

ID=35432921

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20055236A NO323150B1 (en) 2005-11-08 2005-11-08 Integrated water turbine and generator without hub

Country Status (3)

Country Link
EP (1) EP1952014A4 (en)
NO (1) NO323150B1 (en)
WO (1) WO2007055585A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0123802D0 (en) * 2001-10-04 2001-11-21 Rotech Holdings Ltd Power generator and turbine unit
EP1878913B1 (en) * 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
EP1878911B1 (en) 2006-07-14 2008-09-24 OpenHydro Group Limited Turbines having a debris release chute
EP1878912B1 (en) 2006-07-14 2011-12-21 OpenHydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
EP1879280B1 (en) 2006-07-14 2014-03-05 OpenHydro Group Limited A hydroelectric turbine
GB0700128D0 (en) * 2007-01-04 2007-02-14 Power Ltd C Tidal electricity generating apparatus
ATE472056T1 (en) 2007-04-11 2010-07-15 Openhydro Group Ltd METHOD FOR INSTALLING HYDROELECTRIC TURBINES
EP2088311B1 (en) 2008-02-05 2015-10-14 OpenHydro Group Limited A hydroelectric turbine with floating rotor
EP2110910A1 (en) 2008-04-17 2009-10-21 OpenHydro Group Limited An improved turbine installation method
RU2453725C2 (en) * 2008-05-26 2012-06-20 Аратек Энженариа Консульториа Э Репрезентасойнс Лтда. Power-generating device
GB0818825D0 (en) * 2008-10-14 2008-11-19 Evans Michael J Water turbine utilising axial vortical flow
EP2199598B1 (en) 2008-12-18 2012-05-02 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
ATE481764T1 (en) 2008-12-19 2010-10-15 Openhydro Ip Ltd METHOD FOR INSTALLING A HYDROELECTRIC TURBINE GENERATOR
GB0905001D0 (en) * 2009-03-24 2009-05-06 Mackay Robert Bladeless turbine and power generator
ATE548562T1 (en) 2009-04-17 2012-03-15 Openhydro Ip Ltd IMPROVED METHOD FOR CONTROLLING THE OUTPUT OF A HYDROELECTRIC TURBINE GENERATOR
CH701829A2 (en) * 2009-09-06 2011-03-15 Dipl. El.-Ing. Eth Max Blatter Underwater turbine for generating electricity.
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302204A1 (en) 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
NO331329B1 (en) * 2010-02-18 2011-11-28 Energreen As Fluid cooled load resistance for use in energy production and its use
GB2479367A (en) * 2010-04-06 2011-10-12 Donald Robertson Hubless turbine tube
DE102010018804A1 (en) * 2010-04-29 2011-11-03 Voith Patent Gmbh water turbine
TR201007767A2 (en) * 2010-09-22 2011-06-21 Kabayel Fuat Portable electricity generator that generates energy from water movements.
EP2450562B1 (en) 2010-11-09 2015-06-24 Openhydro IP Limited A hydroelectric turbine recovery system and a method therefore
EP2469257B1 (en) 2010-12-23 2014-02-26 Openhydro IP Limited A hydroelectric turbine testing method
WO2014012150A1 (en) * 2012-07-20 2014-01-23 Genesis Energy Recovery Technology Pty Ltd An electricity generating device, a fluid pressure reducing device, and a fluid pump
GB2515095B (en) * 2013-06-14 2020-05-06 Ve Energy Ltd Generator Assembly
GB201318560D0 (en) * 2013-10-21 2013-12-04 Wellstream Int Ltd Electrical power generation
US9909555B2 (en) 2015-04-06 2018-03-06 John Calderone Underwater power generation apparatus
DE102016203596A1 (en) * 2016-03-04 2017-09-07 Wobben Properties Gmbh Hydro turbine, in particular axial turbine, and hydroelectric power plant with selbiger
CN106438166B (en) * 2016-08-23 2019-11-12 杭州江河水电科技有限公司 The shaftless two-way power station using ocean currents of full-tubular
UA149323U (en) * 2021-09-16 2021-11-03 Ігор Ігорович Грабовецький SPIRAL-BUCKET HYDROTURBINE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2652505A (en) * 1950-04-28 1953-09-15 Rudolph A Matheisel Inverse rotor
DE3718954A1 (en) * 1987-06-05 1988-12-22 Uwe Gartmann Propeller arrangement, in particular for ship propulsion plants
US5306183A (en) * 1993-02-25 1994-04-26 Harbor Branch Oceanographic Institute Inc. Propulsion systems for submarine vessels
DE19608369C2 (en) * 1996-03-05 1999-05-20 Popescu Mioara Fluid power plant
JPH10285890A (en) * 1997-03-31 1998-10-23 Mitsuhiro Fukada Permanent magnet type generator
CN1109817C (en) * 1998-01-27 2003-05-28 流体动力环有限公司 Machine, in particular electrical machine, in particular energy converter for flowing fluids and gases
SE526286C2 (en) * 2003-01-27 2005-08-16 Aegir Konsult Ab Rotary electric machine with bearing means arranged in or adjacent to the air gap, and power plant with such machine
US6957947B2 (en) * 2003-08-05 2005-10-25 Herbert Lehman Williams Hydroelectric turbine

Also Published As

Publication number Publication date
NO20055236D0 (en) 2005-11-08
NO20055236A (en) 2007-01-08
WO2007055585A1 (en) 2007-05-18
EP1952014A4 (en) 2015-12-02
EP1952014A1 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
NO323150B1 (en) Integrated water turbine and generator without hub
US9752550B2 (en) In-pipe turbine and hydro-electric power generation system with separable housing and detachable vane arrangements
JP5439386B2 (en) Hydroelectric turbine with floating rotor
US8080913B2 (en) Hollow turbine
AU2010303017B2 (en) A hydroelectric turbine with coil cooling
US7378750B2 (en) Tidal flow hydroelectric turbine
US9000604B2 (en) Unidirectional hydro turbine with enhanced duct, blades and generator
TWI491798B (en) Submersible power generating plant, driven by a water flow
CN104037959B (en) Shaftless screw gear power generation device
CA2842129A1 (en) Turbine generator
TW201250111A (en) Water wheel impeller blade type electric power generating apparatus
CN101265865A (en) Sea hydraulic drive apparatus
CN113202686B (en) Device for generating electricity by using tidal energy
JP4535753B2 (en) Power generation system
KR20100122253A (en) The power generation device and it's method which a wind and current was used
WO2019126834A1 (en) Runner, hydraulic turbine, hydraulic turbine module and the turbine system for generating electricity
KR20170046985A (en) hydraulic power generator
CN205260205U (en) Cast fluid power generation facility
JP2017125500A (en) Hydraulic power generating equipment
Polinder et al. Chapter Tidal Turbine Generators
BRPI0805515A2 (en) portable bulb type hydrokinetic turbine

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees