NO322779B1 - Stock with permanent magnetic elements - Google Patents

Stock with permanent magnetic elements Download PDF

Info

Publication number
NO322779B1
NO322779B1 NO20043556A NO20043556A NO322779B1 NO 322779 B1 NO322779 B1 NO 322779B1 NO 20043556 A NO20043556 A NO 20043556A NO 20043556 A NO20043556 A NO 20043556A NO 322779 B1 NO322779 B1 NO 322779B1
Authority
NO
Norway
Prior art keywords
accordance
bearing
permanent magnetic
ring
magnetic elements
Prior art date
Application number
NO20043556A
Other languages
Norwegian (no)
Other versions
NO20043556L (en
NO20043556D0 (en
Inventor
Reidar Vardal
Normann Sandoy
Original Assignee
Norpropeller As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norpropeller As filed Critical Norpropeller As
Priority to NO20043556A priority Critical patent/NO322779B1/en
Publication of NO20043556D0 publication Critical patent/NO20043556D0/en
Priority to PCT/NO2005/000306 priority patent/WO2006022554A1/en
Priority to EP05779375A priority patent/EP1817505A4/en
Publication of NO20043556L publication Critical patent/NO20043556L/en
Publication of NO322779B1 publication Critical patent/NO322779B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/06Bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0427Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0429Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/30Ships, e.g. propelling shafts and bearings therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

Lager med permanentmagnetiske elementer Bearings with permanent magnetic elements

Oppfinnelsen gjelder et lager som angitt i innledningen til patentkrav 1, med permanetmagnetiske elementer, særlig for å ta opp aksielle krefter, for eksempel i en navløs skipspropell, generatorturbin eller ei pumpe. The invention relates to a bearing as stated in the introduction to patent claim 1, with permanent magnetic elements, in particular to take up axial forces, for example in a hubless ship propeller, generator turbine or a pump.

Bakgrunn Background

Det er ønskelig å bruke lager med permanentmagnetiske element eller passive magnetiske lager (PM-lager) i forskjellige sammenhenger hvor de ikke har vært egnet tidligere. Et eksempel er ved truster-propeller på båter. Det er foreslått bruk av vannsmurt glidelager ved slike propeller, som skal ta opp de aksielle kreftene under drift. Det er ønskelig å utvikle et lager med permanentmagneter, som kan brukes enten alene eller kombinert med et væskesmurt glidelager for dette og liknende formål, hvor lageret er neddykket i ei væske.. It is desirable to use bearings with permanent magnetic elements or passive magnetic bearings (PM bearings) in various contexts where they have not been suitable before. An example is truster propellers on boats. The use of water-lubricated sliding bearings has been proposed for such propellers, which will absorb the axial forces during operation. It is desirable to develop a bearing with permanent magnets, which can be used either alone or combined with a liquid-lubricated sliding bearing for this and similar purposes, where the bearing is immersed in a liquid.

Det er kjent passive magnetiske lager med permanente magneter (PM). Men ofte i sammenheng med aktive elektromagneter, ofte brukt i små applikasjoner med elektriske maskiner og høyt turtall og stort sett i radiell retning. Magnetiske lager er populære i sammenheng med svinghjul og roterende energilagre. Dette gir andre problemstillinger enn i denne løsningen hvor turtallet er relativt lavt og arealet som er tilgjengelig for magnetene er relativt stort. Passive magnetic bearings with permanent magnets (PM) are known. But often in conjunction with active electromagnets, often used in small applications with electrical machines and high speed and mostly in the radial direction. Magnetic bearings are popular in the context of flywheels and rotating energy bearings. This gives rise to different problems than in this solution where the speed is relatively low and the area available for the magnets is relatively large.

Dokument WO 99/37912 tar for seg en konstruksjon som ligner på oppfinnelsen og beskriver fordeler og utfordringer med konstruksjonen. Når det gjelder opplagring, så omhandler dokumentet en anordning med trekkende og aktivt styrte elektromagneter. Document WO 99/37912 deals with a construction similar to the invention and describes advantages and challenges with the construction. When it comes to storage, the document deals with a device with moving and actively controlled electromagnets.

Dokument WO 01/84693 omhandler et passivt magnetisk aksial/radiallager med statiske og roterende PM innrettet med alternerende polaritet. Her roterer en ferromagnetisk del sammen med rotoren. Document WO 01/84693 deals with a passive magnetic axial/radial bearing with static and rotating PM arranged with alternating polarity. Here, a ferromagnetic part rotates together with the rotor.

Patentskrift US S894181 omfatter et passivt magnetisk aksial/radiallager med aksielt roterende PM, hvor lageret er et kompromiss mellom aksiell- og radiell stivhet som motvirker hverandre. Patent document US S894181 includes a passive magnetic axial/radial bearing with an axially rotating PM, where the bearing is a compromise between axial and radial stiffness that oppose each other.

Fra japansk patentsøknad 59037332 (Mitshubishi 1984) er det kjent å innleire kranser av permanentmagnetisk materiale i en faststående og en roterbar bærer, slik at ved monterte lager blir de omsluttende flatene på den faststående og og den roterbare bæreren liggende overfor hverandre. Denne konstruksjonen gir ikke vesentlig forsterkning av feltet. From Japanese patent application 59037332 (Mitshubishi 1984) it is known to embed wreaths of permanent magnetic material in a stationary and a rotatable carrier, so that when bearings are mounted, the enclosing surfaces of the stationary and and the rotatable carrier lie opposite each other. This construction does not significantly strengthen the field.

Fra US 4180296 (Habermann 1979) er det kjent et magnetlager hvor det på motstående sider av ei roterende plate er anordnet en faststående krans av magnetelement. Denne konstruksjonen er beregnet for et spesielt formål, særlig som trustlager for skiver som roterer med høg hastighet. From US 4180296 (Habermann 1979) a magnetic bearing is known where a fixed ring of magnetic elements is arranged on opposite sides of a rotating plate. This construction is intended for a special purpose, in particular as a trust bearing for disks that rotate at high speed.

Formål Purpose

Hovedformålet med oppfinnelsen er å skape en lageranordning som primært tar opp aksielle krefter mer effektivt enn kjente magnetlager. Lageret skal gi optimal frastøtningskraft og stivhet. Det skal kunne tilpasses til ulike toleransekrav. The main purpose of the invention is to create a bearing device which primarily absorbs axial forces more effectively than known magnetic bearings. The bearing must provide optimal repulsion force and stiffness. It must be adaptable to different tolerance requirements.

Oppfinnelsen The invention

Oppfinnelsen er angitt i patentkrav 1. Det har vist seg at større antall spor og del-magneter gir et stivere lager enn ett spor og en enkelt magnetring. The invention is stated in patent claim 1. It has been shown that a larger number of tracks and sub-magnets gives a stiffer bearing than one track and a single magnet ring.

Lageret er et passivt magnetisk lager som kan f.eks. brukes til opplagring av et roterende maskinelement uten aksel. Lageret har en stasjonær og en roterende del. Magnetene er utformet som ringer, og er montert innbyrdes frastøtende. Vanligvis brukes trekkende magneter fordi tiltrekningskraften mellom ulike poler er sterkere enn frastøtningskraften mellom like poler ved samme avstand. Magneter med aksiell magnetisering i samme retning plasseres i konsentriske spor i et ferromagnetiske materialet for vekslende N/S polaritet, hvilket gir komprimering av flux og dermed større frastøtende magnetkraft. Dette gir økt stivhet i lageret. Magnetene som skal plasseres i det ferromagnetiske materialet, beregnes på forhånd mht. sporbredde, avstand og dybde, t forhold til magnetspesifikasjonen for å gi optimal frastøtningskraft og stivhet. Utførelsesformen og plassering av magnetene i lageret er avgjørende for kraften som lageret kan oppta, samt vekten og lengden til lageret. En fordel med lageret er blant annet at spaltedimensjonen kan optimaliseres, ved hjelp av moderne FEM-analyseverktøy i forhold til mediet som systemet arbeider i, og belastning for å redusere viskøse tap. En annen fordel med permanentmagneter i forhold til andre lagermaterialer i de aktuelle applikasjonsområdene, er at prisen på permanentmagneter er meget fordelaktig i forhold til komposittmaterialer som brukes til vannsmurte lager. The bearing is a passive magnetic bearing which can e.g. used for storage of a rotating machine element without a shaft. The bearing has a stationary and a rotating part. The magnets are designed as rings, and are mounted mutually repulsive. Generally, pulling magnets are used because the attractive force between different poles is stronger than the repulsive force between like poles at the same distance. Magnets with axial magnetization in the same direction are placed in concentric grooves in a ferromagnetic material for alternating N/S polarity, which gives compression of flux and thus greater repulsive magnetic force. This gives increased stiffness in the bearing. The magnets to be placed in the ferromagnetic material are calculated in advance with regard to track width, distance and depth, t relative to the magnet specification to provide optimum repulsion force and stiffness. The design and placement of the magnets in the bearing are decisive for the force that the bearing can absorb, as well as the weight and length of the bearing. An advantage of the bearing is, among other things, that the gap dimension can be optimised, using modern FEM analysis tools, in relation to the medium in which the system works, and load to reduce viscous losses. Another advantage of permanent magnets compared to other bearing materials in the relevant application areas is that the price of permanent magnets is very advantageous compared to composite materials used for water-lubricated bearings.

Forskjellen fra tidligere kjent teknikk som er vist i WO 99/37912, WO 01/84693 og US 5894181 er bl. a. at den foreliggende oppfinnelsen er et passivt system basert på permanente magneter med frastøtende polaritet, hvilke er lagt inn i spor i et ferromagnetisk materiale som generer motsatt rettede krefter over lagerflaten og på denne måten komprimerer flukstettheten. Oppfinnelsen gir betydelig økt stivhet i lageret. The difference from prior art which is shown in WO 99/37912, WO 01/84693 and US 5894181 is, among other things, a. that the present invention is a passive system based on permanent magnets with repulsive polarity, which are inserted into grooves in a ferromagnetic material that generate oppositely directed forces across the bearing surface and in this way compress the flux density. The invention provides significantly increased stiffness in the bearing.

Flere detaljer ved oppfinnelsen er angitt i den etterfølgende eksempelbeskrivelsen. More details of the invention are given in the following example description.

Eksempel Example

Oppfinnelsen er nedenfor beskrevet under henvisning til tegningene, hvor The invention is described below with reference to the drawings, where

Fig. 1 viser et skjematisk tverrsnitt gjennom gjennom et ringformet lager i samsvar med en første utførelsesform av oppfinnelsen, Fig. 1 shows a schematic cross-section through an annular bearing in accordance with a first embodiment of the invention,

Fig. 2 viser et planriss av en magnetring ved lageret i Fig. 1, Fig. 2 shows a plan view of a magnetic ring at the bearing in Fig. 1,

Fig. 3-4 viser tverrsnitt gjennom tre ytterligere varianter av ringformete lager i samsvar med oppfinnelsen, mens Fig. 5 viser et perspektivriss av en delvis åpnet en elektrisk periferidrevet propell, hvor lageret er utformet i samsvar med oppfinnelsen. Fig. 3-4 show cross-sections through three further variants of annular bearings in accordance with the invention, while Fig. 5 shows a perspective view of a partially opened, electrically peripherally driven propeller, where the bearing is designed in accordance with the invention.

Alle lagrene er i figurene 1 og 3 - 4 er vist med åpen magnetspalte, som vil reduseres betydelig ved belastning. Fig. 1 og 2 viser et lager 11 med to lagerringer 12,13, der den nedre lagerringen 12 er faststående med vertikal akse 14. Den øvre lagerringen 13 blir dermed lastbærende. Hver lagerring 12, 13 omfatter en krans 15 av bløtjern med et ringspor 16 med rektangulært tverrsnitt som danner en bunn eller åk 17.1 ringsporet 16 er det innleiret, for eksempel ved klebing, en krans av magnetsegmenter 18, i eksemplet seksten. Magnetsegmentene 18 kan være hensiktsmessige permanentmagneter, f.eks. av sintrert neodym-jern-bor-legering eller samarium-kobolt-legering.En grunnleggende parameter for dimensjonering av bredden av de to aksiale flensene 19 og 20 av bløtjern, som dannes av ringsporet 16, synes å være at de skal ligge like under metning Figur 3 viser snitt gjennom en alternativ utførelsesform, der to lagerringer 22,23 hver har to spor 24, 25 for opptak av segmenter 26 av permanentmagneter på tilsvarende måte som ved sporene 16 i utførelsesformen i fig. 1 og 2. Det dannes på den måten tre steg 27, 28, 29 i det magnetisk ledende bløtjernet. Her vil en få mer bærekraft desto tynnere det magnetisk ledende materialet er, ned til en viss grense hvor materialet går i metning. Figur 4 viser en ytterligere alternativ utførelsesform med to lagerringer 30, 31, hver med tre parallelle ringformete spor 32, 33, 34.1 tillegg til et radialt indre steg 35, og to mellomsteg 36, 37 som alle ender i magnetsegmentenes grenseplan, har den øvre lagerringen 31 en utvendig flens 38 som strekker seg ned utvendig i forhold til den nedre lagerringen 30, slik at det dannes en luftspalte 39 som er lagerets spalte ved nominell last. Dette lageret har en viss radiell stivhet. All the bearings in Figures 1 and 3 - 4 are shown with an open magnetic gap, which will be significantly reduced under load. Fig. 1 and 2 show a bearing 11 with two bearing rings 12,13, where the lower bearing ring 12 is fixed with vertical axis 14. The upper bearing ring 13 thus becomes load-bearing. Each bearing ring 12, 13 comprises a wreath 15 of soft iron with an annular groove 16 of rectangular cross-section which forms a bottom or yoke 17.1 the annular groove 16 is embedded, for example by gluing, a wreath of magnet segments 18, in example sixteen. The magnet segments 18 can be suitable permanent magnets, e.g. of sintered neodymium-iron-boron alloy or samarium-cobalt alloy. A basic parameter for dimensioning the width of the two axial flanges 19 and 20 of soft iron, which are formed by the annular groove 16, seems to be that they should lie just below saturation Figure 3 shows a section through an alternative embodiment, where two bearing rings 22, 23 each have two grooves 24, 25 for receiving segments 26 of permanent magnets in a similar way to the grooves 16 in the embodiment in fig. 1 and 2. Three steps 27, 28, 29 are thus formed in the magnetically conductive soft iron. Here, you will get more carrying capacity the thinner the magnetically conductive material is, down to a certain limit where the material reaches saturation. Figure 4 shows a further alternative embodiment with two bearing rings 30, 31, each with three parallel annular grooves 32, 33, 34.1 in addition to a radial inner step 35, and two intermediate steps 36, 37 which all end in the boundary plane of the magnetic segments, the upper bearing ring has 31 an external flange 38 which extends down externally in relation to the lower bearing ring 30, so that an air gap 39 is formed which is the bearing's gap at nominal load. This bearing has a certain radial stiffness.

I fig. 5 er det vist en utførelsesform av et lager i samsvar med oppfinnelsen brukt for opplagring av en elektrisk periferidrevet propell 48. Propellen 48 er omgitt av et sylindrisk rørformet hus 49 med en oppragende, sentralt plassert rørstuss 50, som delvis tjener for tilførsel av elektriske kabler, delvis for montering til et fartøy ved hjelp av en monteringsflens 51. In fig. 5 shows an embodiment of a bearing in accordance with the invention used for storage of an electrically peripherally driven propeller 48. The propeller 48 is surrounded by a cylindrical tubular housing 49 with a protruding, centrally located pipe socket 50, which partly serves for the supply of electrical cables , partly for mounting to a vessel by means of a mounting flange 51.

Ved hver ende av huset 49 er det opptil propellen 48 utformet et ringspor 52. Innerst i ringsporet 52 er det plassert en indre lagerring 53 i samsvar med oppfinnelsen, for eksempel som vist i Fig. 3. Lagerringen 53 har en bærekrans 54 av bløttstål, med to magnetringer 55, 56 satt sammen av segmenter montert inn i ringspor. Symmetrisk mot lagerringen 53 er det plassert en identisk ytre lagerring 57. Lagerringen 53 er skrudd fast til propellen 48 med skruer i bunnen av ringsporet 52. At each end of the housing 49, an annular groove 52 is formed up to the propeller 48. Inside the annular groove 52, an inner bearing ring 53 is placed in accordance with the invention, for example as shown in Fig. 3. The bearing ring 53 has a bearing ring 54 of mild steel, with two magnetic rings 55, 56 assembled from segments fitted into ring grooves. An identical outer bearing ring 57 is placed symmetrically to the bearing ring 53. The bearing ring 53 is screwed to the propeller 48 with screws at the bottom of the ring groove 52.

En tilsvarende lagerring er plassert ved den andre enden av det rørformete huset 49. Hver av de to lagerringene holdes på plass av en klemring 58 som presser den ytre lagerringen 57 fast mot en avtrapning 59 i ringsporet 52. Klemringene 58 monteres med ei rekke festeskruer. rundt omkretsen. A corresponding bearing ring is placed at the other end of the tubular housing 49. Each of the two bearing rings is held in place by a clamping ring 58 which presses the outer bearing ring 57 firmly against a taper 59 in the ring groove 52. The clamping rings 58 are mounted with a series of fastening screws. around the perimeter.

Lagerringene kan dekkes med et belegg som hindrer korrosjon når lagrene brukes nedsenket i vann. The bearing rings can be covered with a coating that prevents corrosion when the bearings are used submerged in water.

Oppfinnelsen er blitt utviklet for en lOOkW truster som er montert på en båt. Utgangspunktet for lageret var at det skullel yte en kraft (støte fra) på ISOOkg med en avstand på 2mm mellom lagerflatene. Dimensjonene på lageret var: The invention has been developed for a lOOkW truster which is mounted on a boat. The starting point for the bearing was that it should produce a force (impact) of ISOOkg with a distance of 2mm between the bearing surfaces. The dimensions of the warehouse were:

Det ble brukt permanentmagneter av en neodym-Iegering. Permanent magnets of a neodymium Iegering were used.

Modifikasjon Modification

Det kan anordnes flere rekker magneter limet inn ende mot ende i ringspor enn det som er vist.. De ringformete magnetene kan videre være sammensatte av færre eller flere segmenter en det som er vist i eksemplene. More rows of magnets can be arranged glued end to end in ring grooves than what is shown. The ring-shaped magnets can also be composed of fewer or more segments than what is shown in the examples.

Stegene eller tennene mellom og ved siden av magnetringene er i eksemplene vist med avslutning jevnt med magnetringene. Det kan også lages utførelsesformer der disse stegene og endeflensene rager litt ut fra permanentmagnetene, for å ta av for støt og for å kompensere for unøyaktighet i sammenstillingen. Disse vil da fortrinnsvis bli utformet som et belegg i komposittmateriale. The steps or teeth between and next to the magnet rings are shown in the examples with a finish flush with the magnet rings. Designs can also be made where these steps and end flanges protrude slightly from the permanent magnets, to absorb shocks and to compensate for assembly inaccuracies. These will then preferably be designed as a coating in composite material.

Claims (9)

1. Anordning ved lager (11) med permanentmagnetiske elementer(lS), som er anordnet i to innbyrdes roterbare, konsentriske ringformete kranser (12,13), hvor en er stasjonær, hvor en av de ringformete kransene (13) er forbundet med eller integrert i et roterende element, og hvor det mellom de to ringformete kransene med permanentmagnetiske elementer opprettholdes ei spalte (a) på grunn av den frastøtende kraft som virker mellom dem, særlig for bruk ved navløse sktpspropeller, generatorturbiner og pumper, karakterisert ved at de permanentmagnetiske elementene (18) er opptatt i hver sin magnetholder (15) av ferromagnetisk ledende materiale, som danner par av motstående, konsentrisk ringformete krager (19, 20) som skaper konsentrerte, generelt aksiale magnetfelt mellom seg.1. Device at bearing (11) with permanent magnetic elements (lS), which are arranged in two mutually rotatable, concentric ring-shaped rings (12,13), one of which is stationary, where one of the ring-shaped rings (13) is connected with or integrated in a rotating element, and where a gap (a) is maintained between the two annular rings with permanent magnetic elements due to the repulsive force acting between them, particularly for use with hubless propellers, generator turbines and pumps, characterized in that the permanent magnetic the elements (18) are each held in a magnet holder (15) of ferromagnetically conductive material, which forms pairs of opposite, concentric ring-shaped collars (19, 20) which create concentrated, generally axial magnetic fields between them. 2. Anordning i samsvar med patentkrav 1, karakterisert ved at utsparingene (16) strekker seg radialt over bredden av magnetholderne (15).2. Device in accordance with patent claim 1, characterized in that the recesses (16) extend radially across the width of the magnet holders (15). 3. Anordning i samsvar med patentkrav 1, karakterisert ved at det ferromagnetisk ledende materialet er bløtjern.3. Device in accordance with patent claim 1, characterized in that the ferromagnetically conductive material is soft iron. 4. Anordning i samsvar med et av patentkravene 1 -3, karakterisert ved at den omfatter to eller flere rekker av utsparinger (24,25; 32-34) anordnet side om side.4. Device in accordance with one of patent claims 1 -3, characterized in that it comprises two or more rows of recesses (24,25; 32-34) arranged side by side. 5. Anordning i samsvar med et av patentkravene 1-4, karakterisert ved at de to permanentmagnetene er satt sammen av bueformete elementer (18) som er plassert med innbyrdes endekontakt5. Device in accordance with one of the patent claims 1-4, characterized in that the two permanent magnets are assembled from arc-shaped elements (18) which are placed with mutual end contact 6. Anordning i samsvar med et av patentkravene 1- 5, karakterisert ved at de permanentmagnetiske elementene (18) er klebet fast til den bærende kransen (12; 13).6. Device in accordance with one of patent claims 1-5, characterized in that the permanent magnetic elements (18) are glued firmly to the supporting ring (12; 13). 7. Anordning i samsvar med et av patentkravene 1 • 4, karakterisert ved at spalta mellom de to innbyrdes roterbare rekkene av permanentmagnetiske elementene har konisk form.7. Device in accordance with one of patent claims 1 • 4, characterized in that the gap between the two mutually rotatable rows of permanent magnetic elements has a conical shape. 8. Anordning i samsvar med patentkravene 1-7, karakterisert ved at det arrangeres like magnetiske trykklager i begge ender av et roterende element, slik at rotoren er labil i sentrert posisjon.8. Device in accordance with patent claims 1-7, characterized in that equal magnetic pressure bearings are arranged at both ends of a rotating element, so that the rotor is unstable in the centered position. 9. Anordning i samsvar med et av patentkravene 1 - 8, karakterisert ved at den ene magnetholderen (31) av ferromagnetisk ledende materiale har en krage (38) som rager aksialt ned utenfor den andre magnetholderen (30), slik at de dannes en luftspalte (39) mot denne.9. Device in accordance with one of the patent claims 1 - 8, characterized in that one magnet holder (31) made of ferromagnetically conductive material has a collar (38) which projects axially down outside the other magnet holder (30), so that they form an air gap (39) against this one.
NO20043556A 2004-08-25 2004-08-25 Stock with permanent magnetic elements NO322779B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20043556A NO322779B1 (en) 2004-08-25 2004-08-25 Stock with permanent magnetic elements
PCT/NO2005/000306 WO2006022554A1 (en) 2004-08-25 2005-08-24 Bearing with permanent magnetic elements
EP05779375A EP1817505A4 (en) 2004-08-25 2005-08-24 Bearing with permanent magnetic elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20043556A NO322779B1 (en) 2004-08-25 2004-08-25 Stock with permanent magnetic elements

Publications (3)

Publication Number Publication Date
NO20043556D0 NO20043556D0 (en) 2004-08-25
NO20043556L NO20043556L (en) 2006-02-27
NO322779B1 true NO322779B1 (en) 2006-12-11

Family

ID=35044506

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20043556A NO322779B1 (en) 2004-08-25 2004-08-25 Stock with permanent magnetic elements

Country Status (3)

Country Link
EP (1) EP1817505A4 (en)
NO (1) NO322779B1 (en)
WO (1) WO2006022554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331651B1 (en) * 2009-05-20 2012-02-13 Rolls Royce Marine As Storage of propeller unit for a vessel
CN103629232A (en) * 2013-11-18 2014-03-12 钱坤喜 Permanent-magnetic de-loading radial roller bearing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032443A1 (en) * 2007-07-10 2009-01-15 Voith Patent Gmbh Hybrid bearing and method for its production
IT1390881B1 (en) * 2008-07-17 2011-10-19 Zeta Camini S R L FUME EXTRACTOR FIXTURE FOR CHIMNEY, CHIMNEYS, SMOKE AND SIMILAR CANES
DE102008038067A1 (en) * 2008-08-16 2010-02-18 Schaeffler Kg Storage arrangement for a machine table with magnetic discharge
GB2479367A (en) * 2010-04-06 2011-10-12 Donald Robertson Hubless turbine tube
EP2564054A1 (en) 2010-04-30 2013-03-06 Clean Current Limited Partnership Unidirectional hydro turbine with enhanced duct, blades and generator
EP2762985B1 (en) * 2013-02-04 2018-04-04 Montres Breguet SA Magnetic or electrostatic pivot of a clock mobile
CN103629233A (en) * 2013-11-18 2014-03-12 钱坤喜 Permanent-magnetic de-loading axial roller bearing
EP2886890B1 (en) * 2013-12-18 2019-06-26 Skf Magnetic Mechatronics Thrust disc, magnetic bearing and apparatus
DE102021111401A1 (en) * 2021-05-03 2022-11-03 Rosen Swiss Ag Propulsion device for propelling a watercraft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180296A (en) * 1978-01-06 1979-12-25 Societe Europeenne De Propulsion Axial electromagnetic bearing for a shaft rotating at high speed
JPS5937332A (en) * 1982-08-25 1984-02-29 Mitsubishi Electric Corp Thrust bearing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2136371A1 (en) * 1971-07-21 1973-02-01 Braun Karl MAGNETIC STORAGE OF SHAFTS OR THE LIKE
JPS50145750A (en) * 1974-05-17 1975-11-22
US4379598A (en) * 1980-12-22 1983-04-12 North American Philips Corporation Magnetic bearing
JPS5883552A (en) * 1981-11-12 1983-05-19 Hitachi Koki Co Ltd Rotary machine
DE3638129A1 (en) * 1986-11-08 1988-05-11 Licentia Gmbh Large diameter turbogenerator for generating electrical energy at high power
DE10062065A1 (en) * 2000-12-13 2002-03-28 Siemens Ag Magnetic bearing device e.g. for electrical machine shaft, uses opposing magnets for supporting rotating part relative to stationary part in both axial and radial directions
US7679245B2 (en) * 2001-09-17 2010-03-16 Beacon Power Corporation Repulsive lift systems, flywheel energy storage systems utilizing such systems and methods related thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180296A (en) * 1978-01-06 1979-12-25 Societe Europeenne De Propulsion Axial electromagnetic bearing for a shaft rotating at high speed
JPS5937332A (en) * 1982-08-25 1984-02-29 Mitsubishi Electric Corp Thrust bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331651B1 (en) * 2009-05-20 2012-02-13 Rolls Royce Marine As Storage of propeller unit for a vessel
US9592897B2 (en) 2009-05-20 2017-03-14 Rolls-Royce Marine As Support of propeller unit for a vessel
CN103629232A (en) * 2013-11-18 2014-03-12 钱坤喜 Permanent-magnetic de-loading radial roller bearing

Also Published As

Publication number Publication date
NO20043556L (en) 2006-02-27
EP1817505A4 (en) 2012-03-07
NO20043556D0 (en) 2004-08-25
EP1817505A1 (en) 2007-08-15
WO2006022554A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US10340768B2 (en) Flywheel energy storage device with induction torque transfer
EP2112370B1 (en) A hydro-electric turbine having a magnetic bearing
EP2472117B1 (en) Disposable magnetic-suspension centrifugal pump
NO322779B1 (en) Stock with permanent magnetic elements
EP2536009A1 (en) Magnetic levitation supporting structure for vertical shaft disc-type motor
US8134264B2 (en) Large capacity hollow-type flywheel energy storage device
JP2010527224A5 (en)
CA2894788A1 (en) Permanent magnet machine with segmented sleeve for magnets
CA2819035C (en) Water flow electricity generating device
KR101350514B1 (en) Contra rotating propeller marine propulsion device with super conductor bearing and a ship having the same
US20090146515A1 (en) Magnetic axial bearing and a spindle motor having this kind of magnetic axial bearing
JP2013519044A (en) Magnetic Levitation Support Structure for Vertical Axis Generator and Vertical Axis Generator Using It
US11732684B2 (en) Ocean current vortex-induced vibration power generation device
EP3669441A1 (en) Submerged electrical machines
CN202111544U (en) Rotor of permanent magnet synchronous motor
KR100751588B1 (en) A high speed motor with embedded permanent magnets
ATE412826T1 (en) PUMP WITH MAGNETIC BEARINGS
JP4397417B2 (en) Rotating mechanism
CN208874418U (en) Electromagnetic levitation type motor
CN203481988U (en) Magnetic suspension flywheel motor
CN204794617U (en) Synchronous submersible electric motor of two poles of earth permanent magnetism
US10804782B2 (en) Energy conserving power generator
CN204794616U (en) Magnet steel is fixed towards piece and two poles of earth permanent magnetism motor of diving in step
KR101256297B1 (en) Tidal generator
KR102544989B1 (en) Eddy current levitation motor and system

Legal Events

Date Code Title Description
CB Opposition filed (par. 26,5 patents act)

Opponent name: SWAY AS, FANAVEIEN 96, RADAL, 5239, NO

Effective date: 20070911

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: BERTEL O. STEEN POWER SOLUTIONS NORWAY AS, NO

MM1K Lapsed by not paying the annual fees