NO20130995A1 - regeneration vessel - Google Patents

regeneration vessel Download PDF

Info

Publication number
NO20130995A1
NO20130995A1 NO20130995A NO20130995A NO20130995A1 NO 20130995 A1 NO20130995 A1 NO 20130995A1 NO 20130995 A NO20130995 A NO 20130995A NO 20130995 A NO20130995 A NO 20130995A NO 20130995 A1 NO20130995 A1 NO 20130995A1
Authority
NO
Norway
Prior art keywords
catalyst
regeneration
chamber
underwater
hyperbaric
Prior art date
Application number
NO20130995A
Other languages
Norwegian (no)
Inventor
Helge Lockert Hansen
Mikal Sjur Lothe
Arnstein Seljeflot Solli
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of NO20130995A1 publication Critical patent/NO20130995A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/40Diving chambers with mechanical link, e.g. cable, to a base of closed type adapted to specific work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0061Underwater arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/26Repairing or joining pipes on or under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/66Other type of housings or containers not covered by B01J2220/58 - B01J2220/64
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Regenereringsbeholder for undersjøisk hyperbarisk kammer omfattende i det minste en katalysator, hvor katalysatoren omfatter i det minste et heterogent katalysatorsystem innbefattende aktivt gull på et uorganisk bæremedium. Bruk av et slikt katalysatorsystem i en katalysator for en regenereringsbeholder 5 for undersjøisk hyperbarisk kammer er funnet å være mye mer effektiv enn tradisjonelle katalysatorer som f.eks. Sofnocat 423.Submarine hyperbaric chamber regeneration vessel comprising at least one catalyst, the catalyst comprising at least one heterogeneous catalyst system including active gold on an inorganic carrier medium. The use of such a catalyst system in a catalyst for a submarine hyperbaric chamber regeneration vessel 5 has been found to be much more efficient than traditional catalysts such as e.g. Sofnocat 423.

Description

REGENERERINGSBEHOLDER REGENERATION CONTAINER

Den foreliggende oppfinnelsen vedrører en katalysatorbeholder for et undersjøisk hyperbarisk kammer, og et undersjøisk hyperbarisk kammer som omfatter et gassregenereringssystem som innbefatter en slik beholder. The present invention relates to a catalyst container for an underwater hyperbaric chamber, and an underwater hyperbaric chamber comprising a gas regeneration system that includes such a container.

Undersjøiske hyperbariske kamre er kjent for å tilveiebringe egnede steder og beting-elser for ulike undervannsaktiviteter, særlig, men ikke utelukkende, for undersjøisk hyperbarisk sveising. Slik sveising er prosessen med sveising ved forhøyede trykk under vann. Underwater hyperbaric chambers are known to provide suitable locations and conditions for various underwater activities, particularly, but not exclusively, for underwater hyperbaric welding. Such welding is the process of welding at elevated pressures under water.

Hyperbarisk sveising undervann innebærer at sveisingen utføres i et kammer fylt med en gassblanding og avtettet rundt den konstruksjonen som sveises. Kammeret er fylt med en gass (vanligvis helium inneholdende en prosentandel oksygen). Selv om slik sveising kan kreve store mengder komplekst utstyr og betydelig kostnad, er frem-gangsmåten ikke desto mindre i stand til å fremstille sveiser av en kvalitet som kan sammenlignes med sveiser i friluft så vel som med å utføre sveisingen i et varmt, tørt og godt opplyst miljø. Hyperbaric welding underwater means that the welding is carried out in a chamber filled with a gas mixture and sealed around the structure being welded. The chamber is filled with a gas (usually helium containing a percentage of oxygen). Although such welding may require large amounts of complex equipment and considerable expense, the process is nonetheless capable of producing welds of a quality comparable to open air welds as well as performing the welding in a warm, dry and well-lit environment.

Ytterligere informasjon om hyperbarisk sveising kan finnes i boken med tittelen "Un-derwater Repair Technology " (teknologi for undervannsreparasjoner) av John H. Nixon, tilgjengelig fra Waterhead Publishing, 2000. Det finnes et hyperbarisk kom-pleks, the National Hyperbaric Centre, i Aberdeen, Skottland, hvor prosedyrer for hyperbarisk sveising kodes og testes. Additional information on hyperbaric welding can be found in the book entitled "Underwater Repair Technology" by John H. Nixon, available from Waterhead Publishing, 2000. There is a hyperbaric complex, the National Hyperbaric Centre, in Aberdeen, Scotland, where hyperbaric welding procedures are coded and tested.

Under sveisingen produseres det karbonmonoksid (CO). Dette er en meget giftig gass, og blir vanligvis omdannet kontinuerlig til karbondioksid (CO2) ved hjelp av en katalysator, som regel ved at sveisekammerets atmosfære blir ført gjennom en "regenereringsbeholder" forsynt med flere seksjoner eller lag. Den første eller øvre seksjonen er en katalysator som f.eks. platina/palladium båret på tinnoksid tilveiebrakt under handelsnavnet Sofnocat 423 (tilgjengelig fra Molecular Products Limited). Deretter kan det være et ikke-porøst lag av amorft karbon, etterfulgt av et karbondioksidabsorpsjons- Carbon monoxide (CO) is produced during welding. This is a very toxic gas, and is usually converted continuously into carbon dioxide (CO2) by means of a catalyst, usually by passing the welding chamber's atmosphere through a "regeneration vessel" provided with several sections or layers. The first or upper section is a catalyst such as platinum/palladium supported on tin oxide supplied under the trade name Sofnocat 423 (available from Molecular Products Limited). Then there may be a non-porous layer of amorphous carbon, followed by a carbon dioxide absorption

middel. medium.

Det er et formål med den foreliggende oppfinnelsen å tilveiebringe en forbedret regenereringsbeholder, så vel som et system for bruk av en slik beholder. It is an object of the present invention to provide an improved regeneration container, as well as a system for using such a container.

Det er således ifølge ett aspekt ved den foreliggende oppfinnelsen tilveiebrakt en regenereringsbeholder for undersjøisk hyperbarisk kammer omfattende i det minste en katalysator, hvor katalysatoren omfatter i det minste et heterogent katalysatorsystem som innbefatter katalytisk aktivt gull på et uorganisk bæremedium. It is thus according to one aspect of the present invention provided a regeneration container for underwater hyperbaric chamber comprising at least one catalyst, where the catalyst comprises at least a heterogeneous catalyst system that includes catalytically active gold on an inorganic carrier medium.

Bruken av et slikt katalysatorsystem i et undersjøisk hyperbarisk kammer er funnet å være mye mer effektivt enn en tradisjonell katalysatorregenereringsenhet som benyt-ter Sofnocat 423. The use of such a catalyst system in a subsea hyperbaric chamber has been found to be much more efficient than a traditional catalyst regeneration unit using Sofnocat 423.

Regenereringsbeholderen ifølge den foreliggende oppfinnelsen kan ha hvilken som helst egnet fasong, størrelse eller utforming, som generelt er den samme som eller ligner regenereringsbeholdere som for tiden blir brukt, slik at regenereringsbeholderen ifølge den foreliggende oppfinnelsen kan være en direkte erstatning for eksisterende regenereringsbeholdere. The regeneration container according to the present invention can have any suitable shape, size or design, which is generally the same as or similar to regeneration containers that are currently used, so that the regeneration container according to the present invention can be a direct replacement for existing regeneration containers.

Katalysatoren til bruk i den foreliggende oppfinnelsen omfatter i det minste et heterogent katalysatorsystem, og valgfritt én eller flere andre komponenter, som f.eks. de som er alminnelig kjent innen katalysatorutforming og kjent for fagfolk på området, og derfor ikke omtales nærmere i dette skriftet. The catalyst for use in the present invention comprises at least a heterogeneous catalyst system, and optionally one or more other components, such as e.g. those which are generally known in the field of catalyst design and known to professionals in the field, and are therefore not discussed in more detail in this document.

Det heterogene katalysatorsystemet til bruk i den foreliggende oppfinnelsen omfatter katalytisk aktivt gull. Et slikt materiale kan identifiseres ved ett eller flere nødvendige trekk innbefattende størrelse, farge og/eller elektriske egenskaper. Hvis en gullprøve har ett eller flere av disse nødvendige trekkene, og fortrinnsvis to eller flere av disse trekkene, vil den i alminnelighet bli bedømt til å være katalytisk aktiv for utøvelsen av den foreliggende oppfinnelsen. Det kreves vanligvis nanoskalastørrelse da gulls kataly-tiske aktivitet i stor grad er en funksjon av om gullet har en tykkelsesdimensjon i nanoskalaområdet. Foretrukket katalytisk aktivt gull kan følgelig ha en nanoskalastør-relse over et vidt område, dvs. i partikkel- eller klasedimensjoner i området fra omtrent 0,5 nm til omtrent 50 nm, fortrinnsvis omtrent 1 nm til omtrent 10 nm. The heterogeneous catalyst system for use in the present invention comprises catalytically active gold. Such a material can be identified by one or more necessary features including size, color and/or electrical properties. If a gold sample has one or more of these required features, and preferably two or more of these features, it will generally be judged to be catalytically active for the practice of the present invention. Nanoscale size is usually required as gold's catalytic activity is largely a function of whether the gold has a thickness dimension in the nanoscale range. Preferred catalytically active gold can therefore have a nanoscale size over a wide range, ie in particle or cluster dimensions in the range from about 0.5 nm to about 50 nm, preferably about 1 nm to about 10 nm.

Det uorganiske bæremediet kan være hvilket som helst egnet medium som er kjent innenfor fagområdet og som er i stand til å bære katalytisk aktivt gull. Det er kjent mange materialer, herunder karbonholdige materialer, kiselholdige materialer, metall-forbindelser som metalloksider eller metallsulfider, og kombinasjoner av disse. Det uorganiske bæremediet er fortrinnsvis et sammensatt nanoporøst bæremedium, mer fortrinnsvis oppnådd fra ingredienser omfattende et gjestemateriale og et karbonholdig vertsmateriale. Gjestematerialer innbefatter relativt fine materialer (så som < 100 mikrometer), og vertsmaterialer er vanligvis større. The inorganic support medium can be any suitable medium known in the art and capable of supporting catalytically active gold. Many materials are known, including carbonaceous materials, siliceous materials, metal compounds such as metal oxides or metal sulphides, and combinations of these. The inorganic support medium is preferably a composite nanoporous support medium, more preferably obtained from ingredients comprising a guest material and a carbonaceous host material. Guest materials include relatively fine materials (such as < 100 micrometers), and host materials are usually larger.

Egnede gjestematerialer innbefatter ett eller flere metalloksider som titanoksid og aluminiumoksid, mens egnede vertsmaterialer innbefatter aktivkull og lignende. Suitable guest materials include one or more metal oxides such as titanium oxide and aluminum oxide, while suitable host materials include activated carbon and the like.

Denne gjest-vert-sammensetningsstrukturen tilveiebringer større samlet utvendig overflateareal under bibehold av de ønskede gassledeegenskapene, dvs. lavt trykkfall, eller en grovere partikkel. This guest-host composition structure provides greater overall external surface area while maintaining the desired gas conduction properties, i.e. low pressure drop, or a coarser particle.

Mange ulike metoder kan brukes for å bygge opp det uorganiske bæremediet, og for påføringen av det katalytisk aktive gullet på det uorganiske bæremediet. Slike metoder er velkjent innenfor faget og innbefatter fysisk gassfasedeponering (PVD = physi-cal vapour deposition). PVD er velkjent innen fagområdet fysisk overføring av et første stoff som f.eks. gull fra en første stoffinneholdende kilde og til en bærer. De mulige og optimale betingelsene for PVD kan beregnes av en fagmann på området; eksempler på dette er beskrevet i WO2006/074126 som innlemmes i sin helhet i dette skriftet gjennom henvisning. Many different methods can be used to build up the inorganic support medium, and for the application of the catalytically active gold to the inorganic support medium. Such methods are well known in the field and include physical gas phase deposition (PVD = physical vapor deposition). PVD is well known in the field of physical transfer of a first substance such as e.g. gold from a first substance-containing source and to a carrier. The possible and optimal conditions for PVD can be calculated by a person skilled in the art; examples of this are described in WO2006/074126, which is incorporated in its entirety in this document by reference.

Regenereringsbeholderen ifølge den foreliggende oppfinnelsen omfatter fortrinnsvis videre en komponent av amorft karbon. Slike karbonkomponenter er velkjent innenfor fagområdet regenereringsenheter. The regeneration container according to the present invention preferably further comprises a component of amorphous carbon. Such carbon components are well known in the field of regeneration units.

Regenereringsenheten ifølge den foreliggende oppfinnelsen omfatter fortrinnsvis videre et CCh-adsorpsjonsmiddel. Slike adsorpsjonsmidler er også velkjent innen fagområdet regenereringsenheter. The regeneration unit according to the present invention preferably further comprises a CCh adsorption agent. Such adsorbents are also well known in the field of regeneration units.

Ifølge én utførelsesform av den foreliggende oppfinnelsen er det tilveiebrakt en regenereringsenhet omfattende et katalysatorlag, og et amorft lag og et CO2-adsorpsjonsmiddellag. According to one embodiment of the present invention, a regeneration unit comprising a catalyst layer, and an amorphous layer and a CO2 adsorbent layer is provided.

Regenereringsbeholderen ifølge den foreliggende oppfinnelsen kan omfatte én/ett eller flere seksjoner eller lag, fortrinnsvis en flerhet av lag av komponenter eller materialer som gassen eller gassene passerer igjennom. Hver seksjon eller hvert lag kan være fysisk atskilt eller separat, eller innbefatte ett eller flere overgangslag, avgrensninger eller seksjoner innimellom. Atskillelse av to eller flere lag kan oppnås gjennom hvilke som helst kjente skilleelementer, så som filtre eller skilleplater eller ledeplater. Regenereringsbeholderen ifølge den foreliggende oppfinnelsen kan omfatte ett eller flere gassinnløp, og ett eller flere gassutløp, vanligvis ett av hvert. Der hvor enheten omfatter et katalysatorlag, en komponent eller lag med amorft karbon og et CO2-adsorpsjonsmiddellag, er disse fortrinnsvis i rekkefølge fra utløpet og til innløpet: al-ternativt omfatter enheten fra sitt innløp: CCh-adsorpsjonsmiddellaget, komponenten med amorft karbon etterfulgt av katalysatoren, før gassutløpet. The regeneration container according to the present invention may comprise one or more sections or layers, preferably a plurality of layers of components or materials through which the gas or gases pass. Each section or layer may be physically separate or separate, or include one or more transition layers, boundaries or sections in between. Separation of two or more layers can be achieved through any known separating elements, such as filters or separating plates or baffles. The regeneration container according to the present invention can comprise one or more gas inlets, and one or more gas outlets, usually one of each. Where the unit comprises a catalyst layer, a component or layer of amorphous carbon and a CO2 adsorbent layer, these are preferably in order from the outlet to the inlet: alternatively, the unit comprises from its inlet: the CCh adsorbent layer, the component with amorphous carbon followed by the catalyst, before the gas outlet.

Den andelen av regenereringsenheten ifølge den foreliggende oppfinnelsen som opptas av katalysatoren, kan være ulik, den samme som eller lignende den som for tiden opptas av dagens katalysatorer som f.eks. Sofnocat. The proportion of the regeneration unit according to the present invention which is taken up by the catalyst may be different, the same as or similar to that which is currently taken up by today's catalysts such as e.g. Sofnocat.

Pa lignende måte kan den andelen eller prosentandelen av regenereringsbeholderen som opptas av en aktivkullkomponent og/eller et CCh-adsorpsjonsmiddel, være den samme som, lignende eller ulik den som fortiden tilveiebringes i tradisjonelle regenereringsenheter. Similarly, the portion or percentage of the regeneration vessel occupied by an activated carbon component and/or a CCh adsorbent may be the same as, similar to, or different from that historically provided in traditional regeneration units.

Ifølge én utførelsesform av den foreliggende oppfinnelsen, er enheten en regenereringsenhet for undersjøisk hyperbarisk sveisekammer. According to one embodiment of the present invention, the unit is a regeneration unit for underwater hyperbaric welding chamber.

Ifølge et andre aspekt ved den foreliggende oppfinnelsen er det tilveiebrakt bruk av en katalysator omfattende i det minste et heterogent katalysatorsystem innbefattende katalytisk aktivt gull på et uorganisk bæremedium i en regenereringsprosess for un-dersjøisk hyperbarisk kammer. According to a second aspect of the present invention, there is provided the use of a catalyst comprising at least a heterogeneous catalyst system including catalytically active gold on an inorganic carrier medium in a regeneration process for a submarine hyperbaric chamber.

Regenereringsprosessen innebærer fortrinnsvis katalyse av CO til CO2, og adsorbering av den således dannede CO2. The regeneration process preferably involves catalysis of CO to CO2, and adsorption of the CO2 thus formed.

En slik katalysator er fortrinnsvis som ytterligere angitt ovenfor i dette skriftet. Such a catalyst is preferably as further indicated above in this document.

Bruken av katalysatoren skjer fortrinnsvis i en regenereringsbeholder som angitt ovenfor i dette skriftet. The catalyst is preferably used in a regeneration container as stated above in this document.

Ifølge et tredje aspekt ved den foreliggende oppfinnelsen er det tilveiebrakt et under-sjøisk hyperbarisk kammer omfattende et gassregenereringssystem, hvilket system innbefatter en regenereringsbeholder som angitt før i dette skriftet. According to a third aspect of the present invention, there is provided an undersea hyperbaric chamber comprising a gas regeneration system, which system includes a regeneration container as indicated earlier in this document.

Det hyperbariske kammeret kan ha hvilken som helst egnet størrelse, fasong og utforming, og kan være beregnet for bemannet eller ubemannet undervannsoperasjon. Parametrene og betingelsene for atmosfæren eller habitatet i et hyperbarisk kammer er kjent innen fagområdet, og innbefatter vanligvis et overtrykk på i det minste 2 bar, vanligvis i det minste 5-10 bar eller høyere. Atmosfæren er vanligvis overveiende he- Num, med en andel oksygen. Gassblandingen i kammeret blir vanligvis kontrollert re-gelmessig ut fra helse- og sikkerhetsmessige hensyn og krav, og bruken, størrelsen og andre parametrer eller egenskaper ved det hyperbariske kammeret vil avgjøre antallet regenereringsbeholdere som er nødvendig, avhengig av deres størrelse og utforming, for å opprettholde det nødvendige habitatet i kammeret ut fra helse- og sikkerhets-hensyn. The hyperbaric chamber may be of any suitable size, shape and design, and may be intended for manned or unmanned underwater operation. The parameters and conditions of the atmosphere or habitat in a hyperbaric chamber are known in the art, and usually include an overpressure of at least 2 bar, usually at least 5-10 bar or higher. The atmosphere is usually predominantly he-Num, with a proportion of oxygen. The gas mixture in the chamber is usually controlled regularly based on health and safety considerations and requirements, and the use, size and other parameters or characteristics of the hyperbaric chamber will determine the number of regeneration vessels required, depending on their size and design, to maintain the necessary habitat in the chamber for health and safety reasons.

Det undersjøiske hyperbariske kammeret er fortrinnsvis beregnet for sveiseoperasjo-ner og er fortrinnsvis et undersjøisk hyperbarisk sveisekammer. The underwater hyperbaric chamber is preferably intended for welding operations and is preferably an underwater hyperbaric welding chamber.

Utførelsesformer av den foreliggende oppfinnelsen vil nå bli beskrevet bare som eksempel, idet det henvises til de medfølgende tegningene, hvor: Figur 1 er et skjematisk sideriss i tverrsnitt av et undersjøisk hyperbarisk sveisekammer ifølge én utførelsesform av den foreliggende oppfinnelsen innbefattende en regenereringsbeholder ifølge en utførelsesform av den foreliggende oppfinnelse; Embodiments of the present invention will now be described by way of example only, referring to the accompanying drawings, where: Figure 1 is a schematic side view in cross section of an underwater hyperbaric welding chamber according to one embodiment of the present invention including a regeneration container according to an embodiment of the present invention;

Figur 2 er et sideriss i tverrsnitt av regenereringsbeholderen på figur 1; og Figure 2 is a cross-sectional side view of the regeneration container in Figure 1; and

Figur 3 er en graf over en sammenligning av bruken av en regenereringsbehol-derifølge den foreliggende oppfinnelse og en regenereringsbeholder ifølge kjent teknikk i et undersjøisk hyperbarisk sveisekammer under en sveise-ope rasjon. Figure 3 is a graph of a comparison of the use of a regeneration container according to the present invention and a regeneration container according to prior art in an underwater hyperbaric welding chamber during a welding operation.

Det vises til tegningene hvor Figur 1 viser et undersjøisk hyperbarisk kammer som er utformet for undervannssveising og derved er et undersjøisk hyperbarisk sveisekammer 2. Kammeret 2 har en ytre ramme 4, et indre sveiserom 6, og bunndører 8 på en måte som er kjent innen faget. Tilgang for dykkere for sveising av en rørledning 10 i det tørre habitatet tilveiebrakt av sveiserommet 6, oppnås gjennom dørene 8. Reference is made to the drawings where Figure 1 shows an underwater hyperbaric chamber designed for underwater welding and is thereby an underwater hyperbaric welding chamber 2. The chamber 2 has an outer frame 4, an inner welding space 6, and bottom doors 8 in a manner known in the art . Access for divers for welding a pipeline 10 in the dry habitat provided by the welding room 6 is achieved through the doors 8.

Under sveising produseres karbonmonoksid (CO). Kammeret 2 innbefatter et gass-rege ne re ringssystem som omfatter et fleksibelt rør 12 vanligvis plassert på eller i ti I— støting til sveisestedet inne i eller utenfor kammeret 2, hvor gass eller gasser blir trukket gjennom dette og gjennom et filter 14 og en vifte 16 og deretter inn i innløpet 18 i en regenereringsbeholder 20. Det fleksible røret 12 suger gass fra sveisestedet eller sveiseområdet. I tillegg blir eller kunne atmosfæren i kammeret 2 bli sugd inn fra ett eller flere andre steder i kammeret 2 og også bli pumpet gjennom regenereringsbeholderen 20. Carbon monoxide (CO) is produced during welding. The chamber 2 includes a gas control system comprising a flexible pipe 12 usually located on or in contact with the welding location inside or outside the chamber 2, where gas or gases are drawn through this and through a filter 14 and a fan 16 and then into the inlet 18 in a regeneration container 20. The flexible tube 12 sucks gas from the welding site or welding area. In addition, the atmosphere in the chamber 2 is or could be sucked in from one or more other places in the chamber 2 and also be pumped through the regeneration container 20.

Figur 2 viser regenereringsbeholderen 20 mer detaljert. Regenereringsbeholderen 20 er typisk sirkulær i tverrsnitt og har et sirkulært innløp 18 i den ene enden eller siden, vist i den øvre enden på fig. 1 og 2, etterfulgt av et antall lag eller seksjoner som beskrevet nærmere nedenfor i dette skriftet, og et tilsvarende utløp 22 som vanligvis er den andre enden eller siden av regenereringskatalysatoren. Regenereringsbeholderen 20 omfatter vanligvis en sentral kjerne 24 som er i stand til å bære én av sirkulære ledeplater 26 beliggende mellom innløpet 18 og utløpet 22, og i stand til å tilveiebringe lag eller seksjoner for avstøtting og/eller begrensning av komponenter inne i regenereringsbeholderen 20. Figure 2 shows the regeneration container 20 in more detail. The regeneration container 20 is typically circular in cross-section and has a circular inlet 18 at one end or side, shown at the upper end in fig. 1 and 2, followed by a number of layers or sections as described further below in this document, and a corresponding outlet 22 which is usually the other end or side of the regeneration catalyst. The regeneration vessel 20 usually comprises a central core 24 capable of supporting one of circular baffles 26 located between the inlet 18 and the outlet 22, and capable of providing layers or sections for repelling and/or limiting components within the regeneration vessel 20.

Eksemplet på regenereringsbeholderen 20 vist på figur 2 har fire seksjoner. Med ut-gangspunkt i innløpet 18 omfatter de første to seksjonene 28 to CCh-adsorpsjons-middellag. C02-adsorpsjonsmidler er velkjent innen fagområdet og innbefatter ulike typer aktivkull, så som det som tilveiebringes under handelsnavnet Sofnofil (tilgjengelig fra Molecular Products Limited). The example of the regeneration container 20 shown in Figure 2 has four sections. Starting from the inlet 18, the first two sections 28 comprise two CCh adsorption medium layers. CO 2 adsorbents are well known in the art and include various types of activated carbon, such as that supplied under the trade name Sofnofil (available from Molecular Products Limited).

Deretter er det tilveiebrakt et komponentlag med amorft karbon, fortrinnsvis et ikke-porøst amorft karbon som f.eks. trekull 30, etterfulgt av et katalysatorlag 32 og deretter utløpet 22. A component layer of amorphous carbon, preferably a non-porous amorphous carbon such as e.g. charcoal 30, followed by a catalyst layer 32 and then the outlet 22.

Katalysatorlaget 32 omfatter en katalysator som omfatter i det minste et heterogent katalysatorsystem innbefattende katalytisk aktivt gull på et uorganisk bæremedium. The catalyst layer 32 comprises a catalyst comprising at least one heterogeneous catalyst system including catalytically active gold on an inorganic support medium.

Det uorganiske bæremediet er fortrinnsvis anatastitandioksid i forholdet 5-20 vektprosent av katalysatoren og 80-100 vektprosent aktivkull. Det katalytisk aktive gullet utgjør fortrinnsvis < 1 vektprosent av katalysatorsystemet. Ett eksempel på slikt materiale tilveiebringes under handelsnavnet NanAucat (tilgjengelig fra 3M), og bruker gullkatalysatoren AUC-16-1. The inorganic carrier medium is preferably anatase titanium dioxide in a ratio of 5-20% by weight of the catalyst and 80-100% by weight of activated carbon. The catalytically active gold preferably constitutes < 1% by weight of the catalyst system. One example of such material is provided under the trade name NanAucat (available from 3M), and uses the gold catalyst AUC-16-1.

Katalysatorlaget 32 er plassert nedstrøms for de øvrige lagene for å unngå katalysa-torforu rensning. Catalyst layer 32 is placed downstream of the other layers to avoid catalyst contamination.

Katalysatorlaget 32 omdanner CO i gasstrømmen tilført gjennom røret 12 osv. til CO2, hvilken CO2deretter kan adsorberes ved gjeninnføring av slik gass gjennom røret 12 osv. og via C02-adsorpsjonsmiddellagene 28. Figur 1 og 2 viser dermed også bruk av en katalysator i et katalysatorlag 32 omfattende i det minste et heterogent katalysatorsystem innbefattende katalytisk aktivt gull på et uorganisk bæremedium i en regenereringsprosess for et undersjøisk hyperbarisk sveisekammer 2. The catalyst layer 32 converts CO in the gas stream supplied through the pipe 12 etc. to CO2, which CO2 can then be adsorbed by reintroducing such gas through the pipe 12 etc. and via the C02 adsorbent layers 28. Figures 1 and 2 thus also show the use of a catalyst in a catalyst layer 32 comprising at least one heterogeneous catalyst system including catalytically active gold on an inorganic carrier medium in a regeneration process for an underwater hyperbaric welding chamber 2.

Figur 1 og 2 viser også et undersjøisk hyperbarisk sveisekammer 2 omfattende et gassregenereringssystem, hvilket system innbefatter en regenereringsbeholder20 som angitt ovenfor i dette skriftet. Figures 1 and 2 also show an underwater hyperbaric welding chamber 2 comprising a gas regeneration system, which system includes a regeneration container 20 as indicated above in this document.

Sammenliqninqseksempel 1 Comparison example 1

Beregninger av testbeholderdimensjon og mengde gassvaskermaterialer var basert på en gassrensingsbeholder i et oppholdskammer. Det kreves minimum seks luftutskif-tinger pr. time under en hyperbarisk sveiseoperasjon. Dette tilsvarer en gasstrømning på 84 m<3>/h for et oppholdskammer på 14 m<3>, og 780 l/h (13 l/min) for testkammeret på 130 liter som ble brukt i denne testen. Testenhetsdimensjonene og mengden CO-katalysator, trekull og CCh-adsorpsjonsmiddel ble skalert ned tilsvarende for å oppnå en ekvivalent gassoppholdstid i gassvaskermaterialene. Calculations of test container dimensions and quantity of gas scrubber materials were based on a gas cleaning container in a holding chamber. A minimum of six air changes per hour during a hyperbaric welding operation. This corresponds to a gas flow of 84 m<3>/h for a 14 m<3> residence chamber, and 780 l/h (13 l/min) for the 130 liter test chamber used in this test. The test unit dimensions and the amount of CO catalyst, charcoal and CCh adsorbent were scaled down accordingly to achieve an equivalent gas residence time in the scrubber materials.

Et sylindrisk kar med en innvendig diameter på 30 mm og høyde på 25 cm ble brukt som beholder for katalysatorene og adsorpsjonsmidlene. For å unngå katalysatorfor-urensning, ble katalysatoren plassert nedstrøms for både CCh-adsorpsjonsmidlet og trekullet. Adsorpsjonsmidlene og katalysatoren ble skilt fra hverandre fysisk ved bruk av partikkelfiltre. Rekkefølgen av komponenter i beholderen var: 1 Sofnolime CCh-adsorpsjonsmiddel (Molecular Products Limited), 2,0-3,0 mm, 100 ml A cylindrical vessel with an internal diameter of 30 mm and a height of 25 cm was used as a container for the catalysts and adsorbents. To avoid catalyst contamination, the catalyst was placed downstream of both the CCh adsorbent and the charcoal. The adsorbents and catalyst were separated physically using particulate filters. The order of components in the container was: 1 Sofnolime CCh adsorbent (Molecular Products Limited), 2.0-3.0 mm, 100 ml

2 Aktivkull, Norit RB3, 30 ml 2 Activated charcoal, Norit RB3, 30 ml

3 CO-katalysator, 20 ml 3 CO catalyst, 20 ml

En sentrifugalvifte ble modifisert slik at beholderutløpsenden var koplet til viftens inn-taksside. Pilene på figur 2 viser gasstrømretningen gjennom beholderen. Strømnings-raten ble målt med en Velocicalc-lufthastighetsmåler og regulert til omtrent 780 l/h før kammeret ble trykksatt. Viftehastigheten ble kontrollert med et potensiometer fra ut-siden av kammeret. A centrifugal fan was modified so that the container outlet end was connected to the inlet side of the fan. The arrows in Figure 2 show the direction of gas flow through the container. The flow rate was measured with a Velocicalc air velocity meter and regulated to approximately 780 l/h before pressurizing the chamber. The fan speed was controlled with a potentiometer from the outside of the chamber.

Katalysatortestene ble utført i en kammeratmosfære med et CO-nivå nær det hyperbariske eksponeringsnivået på 12 ubar (se tabell 1 nedenfor). CCh-nivået ble valgt til 1/3 av eksponeringsgrensen på 10 mbar, og kammertrykket ble valgt til å være 11 bar. The catalyst tests were performed in a chamber atmosphere with a CO level close to the hyperbaric exposure level of 12 ubar (see Table 1 below). The CCh level was chosen to be 1/3 of the exposure limit of 10 mbar, and the chamber pressure was chosen to be 11 bar.

Det fastsatte nivået av CO og CO2ble oppnådd ved å sprøyte 520 ml av en gassblanding inneholdende 3000 ppm CO og 390 ml ren CO2via gassledninger inn i den midtre delen av kammeret ved bruk av en massestrømsregulator (gasstrøm 100 ml/min) med integrator. The set level of CO and CO2 was achieved by injecting 520 ml of a gas mixture containing 3000 ppm CO and 390 ml of pure CO2 via gas lines into the middle part of the chamber using a mass flow controller (gas flow 100 ml/min) with integrator.

Figur 3 viser en graf over resultatene av en sammenligning av bruk av Sofnocat 423 som en tradisjonell katalysator i et regenereringskammer og bruk av NanAucat-katalysator som en katalysator ifølge den foreliggende oppfinnelsen, i samme mengde og under de samme betingelsene. Figur 3 viser at med bruk av NanAucat skjer det tydelig en dramatisk reduksjon i CO-trykket i løpet av få minutter, etterfulgt av en vedvarende periode hvor CO-trykket er nær null. Bruk av Sofnocat-katalysatoren viser derimot en mye saktere nedgang fra høyere innledende nivåer, og et CO-trykk fremdeles nær to etter 150 minutter, hvilket fremdeles tyder på et signifikant nærvær av CO i kammeratmosfæren. Figure 3 shows a graph of the results of a comparison of the use of Sofnocat 423 as a traditional catalyst in a regeneration chamber and the use of NanAucat catalyst as a catalyst according to the present invention, in the same amount and under the same conditions. Figure 3 shows that with the use of NanAucat there is clearly a dramatic reduction in the CO pressure within a few minutes, followed by a sustained period where the CO pressure is close to zero. Using the Sofnocat catalyst, on the other hand, shows a much slower decline from higher initial levels, and a CO pressure still close to two after 150 minutes, still indicating a significant presence of CO in the chamber atmosphere.

Slike resultater viser at katalysatoren som angitt ved den foreliggende oppfinnelsen er mye mer effektiv til bruk i en regenereringsenhet for undersjøisk hyperbarisk sveisekammer enn tradisjonell Sofnocat-katalysator, hvilket fører til økt helse og sikkerhet for bemannede undervannssveiseoperasjoner i et slikt hyperbarisk kammer. En slik enhet ville åpenbart også kunne brukes i andre typer av eller former for undersjøiske hyperbariske kamre som krever den samme eller lignende atmosfærisk regenerering og de samme eller lignende regenereringsenheter. Such results show that the catalyst as indicated by the present invention is much more effective for use in a regeneration unit for underwater hyperbaric welding chamber than traditional Sofnocat catalyst, leading to increased health and safety for manned underwater welding operations in such a hyperbaric chamber. Obviously, such a device could also be used in other types or forms of underwater hyperbaric chambers that require the same or similar atmospheric regeneration and the same or similar regeneration devices.

Den økte effektiviteten tilveiebringer også en kostnadsbesparelse uttrykt i et krav om "gjenbruks"-gass, hvor det er mulig å gjenbruke kammeratmosfæren i en lengre periode, og å unngå eller utsette lenger behovet for å pumpe inn "ny" gass mens "gam-mel", forurenset gass tas ut for å redusere CO-nivået i kammeratmosfæren. Dette forbedrer også, når det utføres hyperbariske operasjoner som f.eks. sveising til havs, logistikken når det gjelder mengden pustegass som må bringes, ved at det reduserer The increased efficiency also provides a cost saving expressed in a requirement for "reuse" gas, where it is possible to reuse the chamber atmosphere for a longer period, and to avoid or postpone for longer the need to pump in "new" gas while "old-mel ", contaminated gas is withdrawn to reduce the CO level in the chamber atmosphere. This also improves, when performing hyperbaric operations such as e.g. welding at sea, the logistics in terms of the amount of breathing gas that must be brought, in that it reduces

samme. same.

Ulike modifikasjoner og variasjoner i de beskrevne utføre Isesforme ne av oppfinnelsen vil være innlysende for fagfolk på området uten å gå ut over oppfinnelsens ramme som angitt i dette skriftet. Selv om oppfinnelsen er blitt beskrevet i forbindelse med spesifikke, foretrukne utførelsesformer, skal det forstås at oppfinnelsen slik den er angitt i dette skriftet, ikke skal være urettmessig begrenset til slike spesifikke utførel-sesformer. Various modifications and variations in the described embodiments of the invention will be obvious to experts in the field without going beyond the scope of the invention as stated in this document. Although the invention has been described in connection with specific, preferred embodiments, it is to be understood that the invention as stated in this document shall not be unduly limited to such specific embodiments.

Claims (13)

1. Regenereringsbeholder for undersjøisk hyperbarisk kammer, omfattende i det minste en katalysator,karakterisert vedat katalysatoren omfatter i det minste et heterogent katalysatorsystem innbefattende katalytisk aktivt gull på et uorganisk bæremedium.1. Regeneration container for underwater hyperbaric chamber, comprising at least one catalyst, characterized in that the catalyst comprises at least one heterogeneous catalyst system including catalytically active gold on an inorganic carrier medium. 2. Regenereringsbeholder som angitt i krav 1, hvor bæremediet er et sammensatt nanoporøst bæremedium.2. Regeneration container as stated in claim 1, where the carrier medium is a composite nanoporous carrier medium. 3. Regenereringsbeholder som angitt i krav 1 eller krav 2, hvor bæremediet er oppnådd fra ingredienser omfattende et gjestemateriale så som titanoksid og et karbonholdig vertsmateriale så som aktivkullpartikler.3. Regeneration container as stated in claim 1 or claim 2, where the carrier medium is obtained from ingredients comprising a guest material such as titanium oxide and a carbonaceous host material such as activated carbon particles. 4. Regenereringsbeholder som angitt i hvilket som helst av de foregående krav, hvor den videre omfatter en amorf kullkomponent.4. Regeneration container as set forth in any one of the preceding claims, further comprising an amorphous carbon component. 5. Regenereringsbeholder som angitt i hvilket som helst av de foregående krav, hvor den videre omfatter et CCh-adsorpsjonsmiddel.5. Regeneration container as set forth in any one of the preceding claims, further comprising a CCh adsorbent. 6. Regenereringsbeholder som angitt i krav 5, hvor den videre omfatter et katalysatorlag, et amorft lag og et CCh-adsorpsjonsmiddellag.6. Regeneration container as stated in claim 5, where it further comprises a catalyst layer, an amorphous layer and a CCh adsorbent layer. 7. Regenereringsbeholder som angitt i krav 6, hvor den omfatter et gassinnløp og et gassutløp og har katalysatoren, den amorfe kullkomponenten og CO2-adsorpsjonsmiddellaget i rekkefølge fra utløpet til innløpet.7. Regeneration container as set forth in claim 6, wherein it comprises a gas inlet and a gas outlet and has the catalyst, the amorphous carbon component and the CO2 adsorbent layer in order from the outlet to the inlet. 8. Regenereringsbeholder som angitt i hvilket som helst av de foregående krav, hvor den er en regenereringsbeholder for undersjøisk hyperbarisk sveisekammer.8. A regeneration vessel as claimed in any one of the preceding claims, wherein it is a regeneration vessel for an underwater hyperbaric welding chamber. 9. Bruk av en katalysator omfattende i det minste et heterogent katalysatorsystem innbefattende katalytisk aktivt gull på et uorganisk bæremedium i en regenereringsprosess for undersjøisk hyperbarisk kammer.9. Use of a catalyst comprising at least one heterogeneous catalyst system including catalytically active gold on an inorganic carrier medium in a regeneration process for an underwater hyperbaric chamber. 10. Bruk som angitt i krav 9, hvor katalysatoren er som videre angitt i hvilket som helst av kravene 1 til 4.10. Use as set forth in claim 9, wherein the catalyst is as further set forth in any one of claims 1 to 4. 11. Bruk som angitt i krav 9 eller krav 10, hvor katalysatoren befinner seg i en regenereringsbeholder som angitt i hvilket som helst av kravene 1 til 8.11. Use as claimed in claim 9 or claim 10, wherein the catalyst is in a regeneration vessel as claimed in any one of claims 1 to 8. 12. Undersjøisk hyperbarisk kammer omfattende et gassregenereringssystem,karakterisert vedat systemet innbefatter en regenereringsbeholder som angitt i hvilket som helst av kravene 1 til 8.12. Subsea hyperbaric chamber comprising a gas regeneration system, characterized in that the system includes a regeneration container as set forth in any of claims 1 to 8. 13. Undersjøisk hyperbarisk kammer som angitt i krav 12, hvor det er et under-sjøisk hyperbarisk sveisekammer.13. An underwater hyperbaric chamber as set forth in claim 12, wherein it is an underwater hyperbaric welding chamber.
NO20130995A 2011-02-14 2013-07-17 regeneration vessel NO20130995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1102516.0A GB2487981A (en) 2011-02-14 2011-02-14 Regeneration Canister
PCT/EP2012/052350 WO2012110429A1 (en) 2011-02-14 2012-02-10 Regeneration canister

Publications (1)

Publication Number Publication Date
NO20130995A1 true NO20130995A1 (en) 2013-11-07

Family

ID=43859360

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20130995A NO20130995A1 (en) 2011-02-14 2013-07-17 regeneration vessel

Country Status (3)

Country Link
GB (1) GB2487981A (en)
NO (1) NO20130995A1 (en)
WO (1) WO2012110429A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1552340A (en) * 1975-07-11 1979-09-12 Comex Method and apparatus for welding under water
US8058202B2 (en) * 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
CN101394929B (en) * 2006-02-28 2011-12-21 3M创新有限公司 Low pressure drop, highly active catalyst systems using catalytically active gold

Also Published As

Publication number Publication date
WO2012110429A1 (en) 2012-08-23
GB2487981A (en) 2012-08-15
GB201102516D0 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US7875105B2 (en) Oxygen concentrator having structural sieve beds
TWI249429B (en) Fluid storage and delivery system utilizing low heels carbon sorbent medium
TW201021898A (en) Performance stability in shallow beds in pressure swing adsorption systems
CN107337295A (en) A kind of field purifier
TW201138932A (en) Adsorbent bed support
JP5875111B2 (en) Method and apparatus for separating and recovering carbon monoxide
NO20130995A1 (en) regeneration vessel
JP5010807B2 (en) Activation method of hydrogen adsorbent
US4089655A (en) Air purification system
EP2563496A1 (en) Contaminant mitigation in psa air fractionation
JP5109028B2 (en) Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
US20140230650A1 (en) Method to retrofit system with enhanced capacity for removing mercury from a produced hydrocarbon fluid.
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
US10549004B2 (en) Recirculating inert gas purification apparatus used with gloveboxes, gloveboxes incorporating the same and methods of using the same
US8147592B2 (en) Using a metallocene to remove oxygen from a stream of gas
JP5542315B2 (en) Fluid storage and transport system consisting of high capacity physical adsorbent
JP4817420B2 (en) Hydrogen production apparatus and method
JP2009008265A5 (en)
CN107789940A (en) A kind of simple type waste gas absorption processing system
JP2008240835A (en) Method and system for recovering gas using adsorbent for reuse
JP5715427B2 (en) Propylene gas separation and recovery method
Singh et al. Pressure swing adsorption based air filtration/purification systems for NBC collective protection
JP5113321B2 (en) Process for producing coated complex aggregate
JP2022519676A (en) Two-step recovery method for halogenated hydrocarbons
JP5441485B2 (en) Volatile organic substance processing apparatus and volatile organic substance processing method

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application