NO20093562A1 - Gas supply system for alternating fuel or gas engines and boiling gas recondensation - Google Patents

Gas supply system for alternating fuel or gas engines and boiling gas recondensation Download PDF

Info

Publication number
NO20093562A1
NO20093562A1 NO20093562A NO20093562A NO20093562A1 NO 20093562 A1 NO20093562 A1 NO 20093562A1 NO 20093562 A NO20093562 A NO 20093562A NO 20093562 A NO20093562 A NO 20093562A NO 20093562 A1 NO20093562 A1 NO 20093562A1
Authority
NO
Norway
Prior art keywords
lng
gas
bog
recondensation
optimizer
Prior art date
Application number
NO20093562A
Other languages
Norwegian (no)
Other versions
NO332739B1 (en
Inventor
Eirik Melaaen
Original Assignee
Hamworthy Oil & Gas Systems As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamworthy Oil & Gas Systems As filed Critical Hamworthy Oil & Gas Systems As
Priority to NO20093562A priority Critical patent/NO332739B1/en
Priority to PCT/NO2010/000476 priority patent/WO2011078689A1/en
Publication of NO20093562A1 publication Critical patent/NO20093562A1/en
Publication of NO332739B1 publication Critical patent/NO332739B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

System for gassforsyning til vekselbrensel- eller gassmotorer og BOG-rekondensering, der BOG- rekondenseringsanlegget innbefatter en kryogenisk varmeveksler (1), en BOG-kompressor (2) med en BOG-forvarmer (3), en nitrogensløyfe med en kompander (4), gass matet til motorene er i form av LNG fra minst en lastetank (5) eller kondensat fra rekondenseringsanlegget, og LNG eller kondensat føres gjennom en LNG-fordamper (6) anordnet i en lukket sløyfe, der den lukkede sløyfen har minst en pumpe (7) og en varmekilde (8) for et mellommedium sirkulerende i den lukkede sløyfen for å forsyne en kaldytelsesutvinning under produksjon av gass matet til motorene. Dessuten, i henhold til den foreliggende oppfinnelse, er en LNG- optimaliserer (9) er anordnet foran LNG-fordamperen, hvilket tillater varmeutveksling ved hjelp av tilgjengelig varm- og kaldytelse i BOG- rekondenseringsanlegget, og henholdsvis LNG eller kondensat mates som gass inn i motorene.Gas supply system for AC or gas engines and BOG recondensation, wherein the BOG recondensation plant includes a cryogenic heat exchanger (1), a BOG compressor (2) with a BOG preheater (3), a nitrogen loop with a compander (4), gas fed to the engines is in the form of LNG from at least one loading tank (5) or condensate from the recondensation plant, and LNG or condensate is passed through an LNG evaporator (6) arranged in a closed loop, where the closed loop has at least one pump (7). ) and a medium heat source (8) circulating in the closed loop to provide a cold performance recovery during the production of gas fed to the engines. In addition, according to the present invention, an LNG optimizer (9) is arranged in front of the LNG evaporator, which allows heat exchange by means of available heat and cold performance in the BOG recondensation plant, and LNG or condensate respectively are fed as gas into the gas. motors.

Description

Et system til vekselbrensel- eller gassmotorer og avkoksgassrekondensering A system for alternative fuel or gas engines and coking gas recondensation

Den foreliggende oppfinnelse vedrører energiintegrasjon og utnyttelse av spillvarme tilgjengelig i kombinerte systemer for brenselgassforsyning og avkoksgass (BOG, Boil-Off-Gass) rekondensering, og særskilt i et gassforsyningssystem for motorer slik som vekselbrensel- eller gassmotorer for fartøyer som transporterer flytende naturgass (LNG) og inkluderer et BOG rekondenseringsanlegg. Dette utelukker imidlertid ikke at det foreliggende system er installert på andre fartøy som anvender flytende gass som LNG, LPG etc. som brensel. The present invention relates to energy integration and utilization of waste heat available in combined systems for fuel gas supply and boil-off gas (BOG, Boil-Off-Gas) recondensation, and in particular in a gas supply system for engines such as alternative fuel or gas engines for vessels that transport liquefied natural gas (LNG) and includes a BOG recondensation plant. However, this does not rule out the present system being installed on other vessels that use liquefied gas such as LNG, LPG etc. as fuel.

LNG fartøy har tradisjonelt hatt dampturbin fremdriftssystemer, men endrer nå til lav-hastighets diesel-, vekselbrensel- eller gassfremdriftssystemer. LNG vessels have traditionally had steam turbine propulsion systems, but are now changing to low-speed diesel, alternative fuel or gas propulsion systems.

Redegjørelsen nedenfor er basert på et system for gassforsyning integrert med et BOG rekondenseringsanlegg samsvarende med NO patentsøknad nr. 20082158. De nye ho-vedvidereutviklingene er som følger: - Utnyttelse av kaldytelse i LNG. Før brenselet sendes til motoren må LNG varmes til omgivelsestemperatur. Den tilgjengelige kaldytelsen utnyttes til å kjøle ned og kondensere BOG i en LNG optimaliserer (optimizer). - Utnyttelse av kompresjons varme og spillvarme fra kompressoren for å varme opp LNG eller høytrykks LNG, f.eks. kompressorkjølevann eller varm nitrogen. The account below is based on a system for gas supply integrated with a BOG recondensation plant corresponding to NO patent application no. 20082158. The new main further developments are as follows: - Utilization of cold performance in LNG. Before the fuel is sent to the engine, LNG must be heated to ambient temperature. The available cold performance is utilized to cool down and condense BOG in an LNG optimizer. - Utilization of compression heat and waste heat from the compressor to heat up LNG or high-pressure LNG, e.g. compressor cooling water or hot nitrogen.

Det tidligere kombinerte systemet for BOG rekondensering og gassforsyning til vekselbrensel- eller gassmotorer er skjematisk vist i figur 1. Et prosessflytskjema illustrerer søkerens HGD 3dje generasjons rekondenseringsystem (Mark III) med et GassForsyningsSystem for vekselbrensel-/gassmotorer. De to systemene for rekondensering av BOG og gassforsyning med HP (høytrykk) pumping og fordampning er to "hver for seg" montasjer. I en LNG fordamper fjernes kaldytelse fra LNG under fordampning og vanning av denne. Kaldytelsen fjernes ved hjelp av en ekstern varmekilde og utnyttes ikke. The previously combined system for BOG recondensation and gas supply to alternative fuel or gas engines is schematically shown in Figure 1. A process flow diagram illustrates the applicant's HGD 3rd generation recondensation system (Mark III) with a Gas Supply System for alternative fuel/gas engines. The two systems for recondensing BOG and gas supply with HP (high pressure) pumping and evaporation are two "separate" assemblies. In an LNG evaporator, cold performance is removed from LNG during evaporation and watering of this. The cold performance is removed using an external heat source and is not utilized.

Kondensat fra BOG rekondenseringsanlegget eller LNG fra lastetanker forsynt med las-tepumpene sendes til minst én høytrykkspumpe (HP) for mating til fordamperen. LNG normalt over det superkritiske trykket varmes til en "gass" i en varmeveksler. Varme veksleren henvises til som en fordamper (evaporator, vaporizer). Deretter leveres høy-trykksgassen til fremdriftsmotorer eller gassturbiner, ikke vist. Condensate from the BOG recondensation plant or LNG from cargo tanks supplied with the cargo pumps is sent to at least one high-pressure pump (HP) for feeding to the evaporator. LNG normally above the supercritical pressure is heated to a "gas" in a heat exchanger. The heat exchanger is referred to as an evaporator (evaporator, vaporizer). The high-pressure gas is then delivered to propulsion engines or gas turbines, not shown.

Utløpstrykket for en slik høytrykkspumpe er typisk opptil 30 MPa (300 bar) i konstruk-sjonstilfellet. LNG temperaturen ved høyere trykk er typisk i området fra -140 til -150°C. Ettersom LNG ved høytrykk er superkritisk er det ikke mulig å skille mellom flytende- og gassfase. Likevel angis vanningen av LNG til omgivelsestemperatur ved høytrykk som fordampning i dette dokumentet. The outlet pressure for such a high-pressure pump is typically up to 30 MPa (300 bar) in the design case. The LNG temperature at higher pressure is typically in the range from -140 to -150°C. As LNG at high pressure is supercritical, it is not possible to distinguish between liquid and gas phase. Nevertheless, the watering of LNG to ambient temperature at high pressure is indicated as evaporation in this document.

Systemet vist i figur 1 er basert på fordampning av LNG ved høytrykk med en varmekilde. For å unngå å benytte kjølevann eller damp fra maskinrommet direkte i en varmeveksler med LNG, dvs. fordamperen, benyttes en lukket sløyfe med et mellommedium til å varme LNG. Mellommediet kan være en saltlake (brine), glykolblanding, hydrokar-bonblanding eller et kjølemedium, i det følgende angitt som "saltlake". The system shown in Figure 1 is based on the vaporization of LNG at high pressure with a heat source. To avoid using cooling water or steam from the engine room directly in a heat exchanger with LNG, i.e. the evaporator, a closed loop with an intermediate medium is used to heat the LNG. The intermediate medium can be a brine (brine), glycol mixture, hydrocarbon mixture or a cooling medium, hereinafter referred to as "brine".

For å fordampe LNG innbefatter den lukke sløyfen en LNG fordamper, en saltlakepumpe (brine pump), og en varmekilde i form av en damp-/varmtvannsvarmer. På denne måten forhindres faren ved å få LNG i maskinrommet ved tilfelle av indre lek-kasje i fordamperen. En annen viktig årsak for å bruke en mellomsløyfe er at mellom-sløyfen er sikrere med hensyn til muligheten for frysning. To vaporize LNG, the closed loop includes an LNG vaporizer, a brine pump (brine pump), and a heat source in the form of a steam/hot water heater. In this way, the danger of getting LNG into the engine room in the event of internal leakage in the evaporator is prevented. Another important reason for using an intermediate loop is that the intermediate loop is safer with regard to the possibility of freezing.

Fordamperen og dens lukkede sløyfe kan installeres i et Frakt Kompressor Rom (CCR-Cargo Compressor Room) sammen med BOG rekondenseringsanlegget, på et separat sted eller i motorrommet. The evaporator and its closed loop can be installed in a Frakt Kompressor Room (CCR-Cargo Compressor Room) together with the BOG recondensation plant, in a separate location or in the engine room.

LNG ved -160 °C og 2 til 4 bar trykksettes ved hjelp av minst en kryogenisk pumpe (HP pumpe) anordnet foran LNG fordamperen til typisk 300 bar. Deretter fordampes og varmes LNG til omgivelsesforhold - typisk +40 °C i en varmeveksler, dvs. fordamperen. LNG at -160 °C and 2 to 4 bar is pressurized using at least one cryogenic pump (HP pump) arranged in front of the LNG evaporator to typically 300 bar. The LNG is then evaporated and heated to ambient conditions - typically +40 °C in a heat exchanger, i.e. the evaporator.

I fordamperen varmes LNG med saltlake, mens saltlaken vannes med varmt vann fra motoren (kjølevann), damp, f.eks. maskinrom, kjølevann fra prosessutstyr i "damp-/- varmtvannsvarmeren" nevnt ovenfor. In the evaporator, LNG is heated with brine, while the brine is watered with hot water from the engine (cooling water), steam, e.g. engine room, cooling water from process equipment in the "steam/hot water heater" mentioned above.

Etter LN- fordamperen pumpes mellomstrømmen (saltlake) til en varmeveksler for å varme opp saltlaken igjen. Denne varmeveksleren, der saltlaken varmes, er varmekilden angitt som "damp-/varmtvannsvarmeren". After the LN evaporator, the intermediate stream (brine) is pumped to a heat exchanger to heat the brine again. This heat exchanger, where the brine is heated, the heat source is indicated as the "steam/hot water heater".

Begge systemene for avkoksgassrekondensering og brenselgass krever energi for å ut-øve sine arbeidsoppgaver. For kjøling og kondensering av avkoksgassen er et system for å produsere kaldytelse nødvendig. Kaldytelsen produseres med en nitrogensløyfe drevet av en kompressor avkjølt med kjølevann. LNG brenselgassforsyningen behøver varme for å varme LNG før mating til motoren. Dette betyr at én prosess, dvs. rekondenseringsystemet, behøver kaldytelse, og den andre prosessen, dvs. brenselgassforsyningsyste-met behøver varmytelse. For å oppnå samlet reduksjon av energi- og kraftforbruk inte-greres og optimaliseres de to prosessystemene. Det er således et åpenbart behov for re-dusert energiforbruk for slike systemer. Both systems for coke gas recondensation and fuel gas require energy to carry out their tasks. For cooling and condensing the decoction gas, a system to produce cold performance is necessary. The cold performance is produced with a nitrogen loop driven by a compressor cooled with cooling water. The LNG fuel gas supply needs heat to heat the LNG before feeding it to the engine. This means that one process, i.e. the recondensation system, needs cold performance, and the other process, i.e. the fuel gas supply system, needs hot performance. In order to achieve an overall reduction in energy and power consumption, the two process systems are integrated and optimized. There is thus an obvious need for reduced energy consumption for such systems.

I henhold til den foreliggende oppfinnelse er det foreslått et system for gassforsyning til vekselbrensel- eller gassmotorer og BOG rekondensering, der BOG rekondenseringsanlegget innbefatter en kryogenisk varmeveksler, en BOG kompressor som har en BOG forvarmer, og en nitrogensløyfe med en kompander, motorene mates med gass i form av LNG fra minst én lastetank og/eller kondensat fra rekondenseringsanlegget, og LNG og/eller kondensat passeres gjennom en LNG fordamper anordnet i en lukket sløyfe som har minst én pumpe og en varmekilde for et mellommedium sirkulerende i den lukkede sløyfen for å tilveiebringe kaldytelsesutvinning når den produserer gass matet inn i motorene, der en LNG optimaliserer er anordnet foran LNG fordamperen, hvilket tillater varmeutveksling ved hjelp av tilgjengelig varm- og kaldytelse i BOG rekondenseringsanlegget, og henholdsvis LNG eller kondensat mates som gass inn i motorene. According to the present invention, a system for gas supply to alternative fuel or gas engines and BOG recondensation is proposed, where the BOG recondensation plant includes a cryogenic heat exchanger, a BOG compressor which has a BOG preheater, and a nitrogen loop with a compander, the engines are fed with gas in the form of LNG from at least one cargo tank and/or condensate from the recondensation plant, and the LNG and/or condensate is passed through an LNG evaporator arranged in a closed loop having at least one pump and a heat source for an intermediate medium circulating in the closed loop to provide cold performance extraction when it produces gas fed into the engines, where an LNG optimizer is arranged in front of the LNG vaporizer, which allows heat exchange using available hot and cold performance in the BOG recondensation plant, and respectively LNG or condensate is fed as gas into the engines.

Fortrinnsvis kan henholdsvis LNG eller kondensat fra den minst ene lastetanken og kryogeniske varmeveksleren rettes inn i LNG optimalisereren direkte eller via en separator, eller BOG fra rekondenseringsanlegget kan rettes inn i LNG optimalisereren for å helt eller delvis kondenseres i varmeutveksling med LNG og deretter føres inn i separatoren for blanding, eller alternativt inn i den kryogeniske varmeveksleren. Preferably, respectively, LNG or condensate from the at least one cargo tank and the cryogenic heat exchanger can be directed into the LNG optimizer directly or via a separator, or BOG from the recondensation plant can be directed into the LNG optimizer to be fully or partially condensed in heat exchange with LNG and then fed into the separator for mixing, or alternatively into the cryogenic heat exchanger.

Det er også mulig å rette flytende væske fra separatoren via en sugetank (suction drum) inn i LNG optimalisereren eller returnere den til den minst ene lastetanken. It is also possible to direct liquid from the separator via a suction tank (suction drum) into the LNG optimizer or return it to at least one loading tank.

Alternativt kan varm nitrogen fra kompressortrinnet i kompanderen rettes inn i LNG optimalisereren, eller varm nitrogen kan blandes med nitrogen fra en etterkjøler koblet til kompanderen, eller varm nitrogen tatt ut oppstrøms minst én mellomkjøler og/eller etterkjøleren koblet til kompanderen kan rettes til minst en separat varmeveksler anordnet i lukket sløyfe koblet til LNG fordamperen eller minst én separat varmeveksler mel lom LNG optimalisereren og LNG fordamper, eller varm nitrogen tatt ut oppstrøms den kryogeniske varmeveksleren kan rettes inn i LNG optimalisereren. Alternatively, hot nitrogen from the compressor stage in the compander can be directed into the LNG optimizer, or hot nitrogen can be mixed with nitrogen from an aftercooler connected to the compander, or hot nitrogen taken out upstream of at least one intercooler and/or the aftercooler connected to the compander can be directed to at least a separate heat exchanger arranged in a closed loop connected to the LNG vaporizer or at least one separate heat exchanger between the LNG optimizer and LNG vaporizer, or hot nitrogen taken out upstream of the cryogenic heat exchanger can be directed into the LNG optimizer.

Således oppnås reduksjon av det totale energiforbruket: Thus, a reduction of the total energy consumption is achieved:

- Utnyttelse av kaldytelse i LNG når LNG varmes opp før mating til motoren. Kaldytelsen brukes for kjøling og kondensering av avkoksgass. - Varming av LNG før mating til motoren ved å anvende tilgjengelig "varm"-ytelse som kjølevann fra kompressorene i rekondenseringsystemet slik som BOG-kompressorer og N2-kompandere, eller annet tilgjengelig kjølevann eller varm nitrogen. - Utilization of cold performance in LNG when LNG is heated before feeding to the engine. The cold output is used for cooling and condensing coking gas. - Heating of LNG before feeding to the engine by using available "hot" output as cooling water from the compressors in the recondensation system such as BOG compressors and N2 companders, or other available cooling water or hot nitrogen.

Begge konseptene kan installeres sammen i et system, eller bare étt av dem. Den endelige konfigurasjonen avhenger av det endelige konseptet og hvordan systemet skal drif-tes etter installasjon. Both concepts can be installed together in a system, or just one of them. The final configuration depends on the final concept and how the system will be operated after installation.

Nå vil den foreliggende oppfinnelse beskrives med henvisning til de medfølgende teg-ninger, hvori: Figur 1 skjematisk fremstiller et system for gassforsyning til vekselbrensel- eller gassmotorer og BOG rekondensering i henhold til NO patents søknad nr. 20082158; og Figurer 2 til 6 skjematisk viser ulike foretrukne utførelser av den foreliggende oppfinnelse. The present invention will now be described with reference to the accompanying drawings, in which: Figure 1 schematically shows a system for gas supply to alternative fuel or gas engines and BOG recondensation according to NO patent application no. 20082158; and Figures 2 to 6 schematically show various preferred embodiments of the present invention.

Først anses det som nyttig å gi et mer detaljert sammendrag av systemet for gassforsyning til vekselbrensel- eller gassmotorer og BOG rekondensering med hensyn til patentsøknaden ovenfor. Både kondensat fra BOG rekondenseringsanlegget og LNG fra minst én lastetank 5 forsynt med en lastepumpe 51 via en ledning 52 sendes til minst én HP-pumpe 53 for mating til en fordamper 6 for å produsere og levere gass via en ledning 54 til fremdriftsmotorene eller gassturbinene, ikke vist. Kondensat kan returneres til lastetanken via en ledning 55. Det er også mulig å blande kondensat og LNG i en separator 10 anordnet oppstrøms HP-pumpen 53, der separatoren er ventilert ved hjelp av en ventil 101. First, it is considered useful to provide a more detailed summary of the system for gas supply to alternative fuel or gas engines and BOG recondensation with respect to the above patent application. Both condensate from the BOG recondensation plant and LNG from at least one cargo tank 5 provided with a cargo pump 51 via a line 52 are sent to at least one HP pump 53 for feeding to an evaporator 6 to produce and deliver gas via a line 54 to the propulsion engines or gas turbines, not shown. Condensate can be returned to the cargo tank via a line 55. It is also possible to mix condensate and LNG in a separator 10 arranged upstream of the HP pump 53, where the separator is ventilated by means of a valve 101.

Systemet vist i figur 1 er basert på en fordampning av LNG ved høyt trykk med en varmekilde. Fordampningen utføres ved hjelp av den lukkede sløyfen innbefattende LNG fordamperen (evaporator, vaporizer) 6, en saltlakepumpe 7, og en varmekilde i form av en damp-/varmtvannsvarmer 8. LNG ved typisk -160 °C og 2 til 40 bar trykksettes ved hjelp av minst én kryogenisk pumpe, dvs. HP-pumpen 53, anordnet foran LNG fordamperen 6 til typisk 300 bar. I fordamperen varmes LNG med saltlaken, mens saltlaken varmes med varmt vann fra motoren (kjølevann), damp, f.eks. maskinrom, kjølevann fra prosessutstyr i "damp-/varmtvannsvarmeren" nevnt ovenfor. The system shown in Figure 1 is based on a vaporization of LNG at high pressure with a heat source. The evaporation is carried out using the closed loop including the LNG vaporizer (evaporator, vaporizer) 6, a brine pump 7, and a heat source in the form of a steam/hot water heater 8. LNG at typically -160 °C and 2 to 40 bar is pressurized using of at least one cryogenic pump, i.e. the HP pump 53, arranged in front of the LNG evaporator 6 to typically 300 bar. In the evaporator, the LNG is heated with the brine, while the brine is heated with hot water from the engine (cooling water), steam, e.g. engine room, cooling water from process equipment in the "steam/hot water heater" mentioned above.

Hovedkomponentene i BOG rekondenseringsanlegget er en kryogenisk varmeveksler 1, en kjølemediumkompander 4, og en BOG kompressor 2 som har en BOG forvarmer 3. Som illustrert mates den kryogeniske varmeveksleren med kaldytelse som stammer fra kompressortrinnene 41,42,43 i kompanderen også utstyrt med en ekspander så vel som BOG forvarmeren. Kompanderen er anordnet i en sløyfe innbefattende et nitrogenreser-voar 42, minst en mellomkjøler (intercooler) 13, en etterkjøler (aftercooler) 12, en pum-pegrenseventil 46, og en ekspanderomløpsledning 47. Kjølevann for mellom- og etter-kjølerne leveres via ledning 48. Dessuten har BOG kompressoren 2 flere kompressortrinn 21, 22, 23 og er foran innløpet også utstyrt med en BOG forvarmer tilpasset over-føring av kaldytelse inn i den kryogeniske varmeveksleren. Samsvarende med kompanderen er BOG-kompressoren koblet til mellom- og etterkjølere 25,26,27, hvilke utveksler varme med kjølevann forsynt via en ledning 24. The main components of the BOG recondensation plant are a cryogenic heat exchanger 1, a refrigerant compander 4, and a BOG compressor 2 which has a BOG preheater 3. As illustrated, the cryogenic heat exchanger is fed with cold output originating from compressor stages 41,42,43 in the compander also equipped with an expander as well as the BOG preheater. The compander is arranged in a loop including a nitrogen reservoir 42, at least one intercooler (intercooler) 13, an aftercooler (aftercooler) 12, a pump limit valve 46, and an expander circulation line 47. Cooling water for the intercoolers and aftercoolers is supplied via line 48. In addition, the BOG compressor 2 has several compressor stages 21, 22, 23 and in front of the inlet is also equipped with a BOG pre-heater adapted to the transfer of cold performance into the cryogenic heat exchanger. Correspondingly with the compander, the BOG compressor is connected to intermediate and aftercoolers 25,26,27, which exchange heat with cooling water supplied via a line 24.

I henhold til den foreliggende oppfinnelse er et vesentlig formål å utnytte kaldytelsen tilgjengelig i LNG før inngang i fordamperen 6 og å innføre kaldytelsen inn i BOG rekondenseringsanlegget eller direkte inn i BOG. Således er kaldytelse i stand til å kjøle og kondensere BOG før blanding av BOG-strømmen med LNG fra lastetankene, kondensat fra BOG rekondenseirngsystemet eller en kombinasjon av LNG fra lastetankene og kondensat fra rekondenseringsystemet, jfr. figur 2, 3 og 4. According to the present invention, an essential purpose is to utilize the cold performance available in LNG before entering the evaporator 6 and to introduce the cold performance into the BOG recondensation plant or directly into the BOG. Thus, cold performance is able to cool and condense BOG before mixing the BOG stream with LNG from the cargo tanks, condensate from the BOG recondensation system or a combination of LNG from the cargo tanks and condensate from the recondensation system, cf. figures 2, 3 and 4.

Kaldytelsen utnyttes i en "LNG optimaliserer" 9, dvs. en innretning hvori BOG eller BOG-kondensat og LNG utveksler varme med hverandre. Avhengig av forholdene av BOG og LNG oppstrøms LNG optimalisereren, blir BOG delvis eller fullstendig kondensert nedstrøms LGN optimalisereren. BOG avkjølt i LNG optimalisereren blandes typisk med kondensat fra kuldeboks i form av en varmeveksler 1 eller/og LNG fra lastetankene 5 nedstrøms kuldeboksen, i en blander, ikke vist, eller i en separator 10. Hvis BOG ikke er fullstendig kondensert nedstrøms LNG optimalisereren, vil strømmen kondenseres ytterligere i blander-/separatorenheten etter blanding av BOG med kondensatet fra rekondenseringsanlegget og/eller LNG fra lagertankene, jfr. figurene 2 og 3. Ikke kondenserbare komponenter kan fjernes fra toppen av separatoren via en egnet ventil 101. Fra separatoren 10 sendes flytende væske til brenselgassforsyningssystemet eller alternativt delvis returneres til lastetankene 5 via ledningen 55. The cold performance is utilized in an "LNG optimizer" 9, i.e. a device in which BOG or BOG condensate and LNG exchange heat with each other. Depending on the conditions of the BOG and LNG upstream of the LNG optimizer, the BOG is partially or fully condensed downstream of the LGN optimizer. BOG cooled in the LNG optimizer is typically mixed with condensate from the cold box in the form of a heat exchanger 1 or/and LNG from the cargo tanks 5 downstream of the cold box, in a mixer, not shown, or in a separator 10. If the BOG is not completely condensed downstream of the LNG optimizer, the stream will be condensed further in the mixer/separator unit after mixing BOG with the condensate from the recondensation plant and/or LNG from the storage tanks, cf. figures 2 and 3. Non-condensable components can be removed from the top of the separator via a suitable valve 101. From the separator 10 liquid liquid is sent to the fuel gas supply system or alternatively partly returned to the cargo tanks 5 via the line 55.

LNG optimalisereren 9 kan installeres oppstrøms høytrykkspumpen 53; jfr. figur 2, eller nedstrøms den samme; jfr. figur 2, avhengig av tilgjengelige forhold for BOG og LNG strøm og begrensninger på utstyr. The LNG optimizer 9 can be installed upstream of the high-pressure pump 53; cf. Figure 2, or downstream of the same; cf. figure 2, depending on available conditions for BOG and LNG power and limitations on equipment.

I figur 4 forkjøles og delvis kondenseres BOG-strømmen i LNG optimalisereren 9 før strømmen gjeninnføres i kuldeboksen, dvs. den kryogeniske varmeveksleren 1. Dette er en alternativ løsning i stedet for å sende BOG strømmen direkte til separatoren 10. Høy-trykkspumpen 53 kan installeres oppstrøms eller nedstrøms LNG optimalisereren. En sugetank 11 kan også inkluderes. In Figure 4, the BOG stream is precooled and partially condensed in the LNG optimizer 9 before the stream is reintroduced into the cold box, i.e. the cryogenic heat exchanger 1. This is an alternative solution instead of sending the BOG stream directly to the separator 10. The high-pressure pump 53 can be installed upstream or downstream of the LNG optimizer. A suction tank 11 can also be included.

For en konfigurasjon med LNG optimalisereren 9, er trykkhøyden til en LP pumpe 56 typisk mellom 3 til 40 bar for å optimalisere varme- og kjølekurven i varmevekslerne. Utløpstrykket i HP pumpen 53 avhenger av motorkravene, f.eks. 300 bar. For a configuration with the LNG optimizer 9, the pressure head of an LP pump 56 is typically between 3 to 40 bar to optimize the heating and cooling curve in the heat exchangers. The outlet pressure in the HP pump 53 depends on the engine requirements, e.g. 300 bar.

I stedet for å anvende en ekstern varmekilde for vanningen av høytrykks LNG til påkrevd temperatur etter LNG optimalisereren 9, kan tilgjengelig varmytelse fra kjølevann eller varm nitrogengass fra kompressortrinnene 41, 42, 43 oppstrøms mellomkjølerne eller etterkjølerne 13, 12 benyttes. Hovedoppgaven er å utnytte kompresjonsvarme fra kompressortrinnene for å varme LNG til omgivelsesforhold før mating til motoren. Ty-piske løsninger for å varme opp høytrykks LNG for å redusere eksterne varmekilder kan være: 1. Varm nitrogen fra kompressortrinnene 41,42, 43 på grunn av kompresjonsvarme kan sendes direkte til LNG optimaliserer(e) eller blandes med nitrogen fra etter-kjøleren 23 før inngang i optimalisereren. Forholdet mellom en strøm fra etter-kjøleren og fra kompressortrinnene avhenger av den påkrevde ytelse i LNG optimalisereren. Avhengig av nitrogentemperatur kan nedkjølt nitrogen returneres nedstrøms nitrogenkompanderen 4, inn i kuldeboksen 1 eller oppstrøms nitro-genekspanderen 44; jfr. figur 5. 2. Varm nitrogen tatt ut oppstrøms mellomkjøleren(e) 13 og/eller etterkjøler 12 kan sendes til minst én separat varmeveksler, ikke vist, mellom optimalisereren 9 og LNG fordamper 6 eller til minst én varmeveksler 14 installert i den lukkede salt-lakesløyfen; jfr. figur 6. Kald LNG varmes med vann nitrogen fra kompressortrinnene 41,42,43. Avkjølt nitrogen returneres tilbake til hovednitrogensløyfen nedstrøms kompanderen 4 minst én mellomkjøler 13 og/eller etterkjøler 12. Om nødvendig kjøles deler av nitrogenet i mellornkjøleren(e)/etterkjøler for å møte den påkrevde temperaturen ved innløpet til kompressortrinnene. 3. Først utnytter LNG optimalisereren 9 kaldytelsen. Etter utnyttelsen av den tilgjengelige kaldytelsen i LNG, sendes LNG-brensel til den neste varmeveksleren. Hvis omgivelsestemperatur ikke er nådd kan LNG varmes ytterligere i denne varmeveksleren, f.eks. LNG fordamperen 6. Den lukkede saltlakesløyfen varmes med en ekstern varmekilde 8. For å redusere det eksterne energiforbruket utnyttes kompresjonsvarme for å varme saltlaken i en "saltlakeforvarmer" 14. Kompresjonsvarmen tas fra nitrogen som omløper mellomkjøleren(e) og/eller etter-kjøler 12. Kompresjonsvarmen kan utnyttes fra en eller flere av kompressortrinnene 41,42,43. Systemet som utnytter kompresjonsvarmen etter det siste kompressortrinnet er vist i figur 6. Kompresjonsvarmen kan også utnyttes direkte i minst én varmeveksler, ikke vist, mellom "optimalisereren" 9 og "LNG fordamperen" 6. 4. Kompressoren i form av BOG kompressor 2 og nitrogen kompander 4 er vanlig-vis vannkjølt. Kompresjonsvarmen fra slike kompressorer kan utnyttes direkte ved å anvende kjølevannet som den eksterne varmekilden for å varme LNG før mating til motoren. Varmen kan anvendes til å varme opp LNG direkte eller varme opp saltlaken i saltlakesløyfen. 5. I tillegg til standard vann- eller luftmellomkjøler(e) og etterkjøler for kompressorer, ikke vist, kan kompresjonsvarmen fjernes i en varmeveksler i parallell eller i serie med mellomkjøleren(e) og etterkjøleren, ikke vist. I en mellomsløyfe, som saltlakesløyfen, kan et mellommedium sirkulere mellom varmeveksleren og LNG fordamperen(e). Dette betyr at kompresjonsvarme omformes til brensel-gassystemet og anvendes for å varme opp LNG. Samtidig fjernes kompresjonsvarme. Instead of using an external heat source for watering the high-pressure LNG to the required temperature after the LNG optimizer 9, available heat output from cooling water or hot nitrogen gas from the compressor stages 41, 42, 43 upstream of the intercoolers or aftercoolers 13, 12 can be used. The main task is to utilize compression heat from the compressor stages to heat the LNG to ambient conditions before feeding it to the engine. Typical solutions to heat high-pressure LNG to reduce external heat sources can be: 1. Hot nitrogen from compressor stages 41,42, 43 due to compression heat can be sent directly to LNG optimizer(s) or mixed with nitrogen from the after-cooler 23 before entering the optimizer. The ratio between a flow from the after-cooler and from the compressor stages depends on the required performance in the LNG optimizer. Depending on the nitrogen temperature, cooled nitrogen can be returned downstream of the nitrogen compander 4, into the cold box 1 or upstream of the nitrogen expander 44; cf. figure 5. 2. Hot nitrogen withdrawn upstream of the intercooler(s) 13 and/or aftercooler 12 can be sent to at least one separate heat exchanger, not shown, between the optimizer 9 and LNG vaporizer 6 or to at least one heat exchanger 14 installed in the closed salt- the lake loop; cf. figure 6. Cold LNG is heated with water nitrogen from compressor stages 41,42,43. Cooled nitrogen is returned back to the main nitrogen loop downstream of the compander 4 at least one intercooler 13 and/or aftercooler 12. If necessary, parts of the nitrogen are cooled in the mill cooler(s)/aftercooler to meet the required temperature at the inlet to the compressor stages. 3. First, the LNG optimizer 9 utilizes the cold performance. After the utilization of the available cold performance in LNG, LNG fuel is sent to the next heat exchanger. If ambient temperature has not been reached, LNG can be further heated in this heat exchanger, e.g. The LNG vaporizer 6. The closed brine loop is heated with an external heat source 8. To reduce the external energy consumption, compression heat is used to heat the brine in a "brine preheater" 14. The compression heat is taken from nitrogen that bypasses the intercooler(s) and/or aftercooler 12 The compression heat can be utilized from one or more of the compressor stages 41,42,43. The system that utilizes the heat of compression after the last compressor stage is shown in Figure 6. The heat of compression can also be used directly in at least one heat exchanger, not shown, between the "optimizer" 9 and the "LNG evaporator" 6. 4. The compressor in the form of BOG compressor 2 and nitrogen compander 4 is usually water-cooled. The heat of compression from such compressors can be utilized directly by using the cooling water as the external heat source to heat the LNG before feeding it to the engine. The heat can be used to heat LNG directly or to heat the brine in the brine loop. 5. In addition to the standard water or air intercooler(s) and aftercooler for compressors, not shown, the heat of compression can be removed in a heat exchanger in parallel or in series with the intercooler(s) and aftercooler, not shown. In an intermediate loop, such as the brine loop, an intermediate medium can circulate between the heat exchanger and the LNG evaporator(s). This means that compression heat is transformed into the fuel-gas system and used to heat LNG. At the same time, compression heat is removed.

Hvis det ikke er tilstrekkelig spillvarme eller hvis kompressorene ikke er i drift er en ekstern overflødig varmekilde påkrevd for å varme opp LNG til omgivelsesforhold. Hvis tilleggsvarme er påkrevd, er slike typisk lagt til fira den eksterne varmekilden ("damp-/- varmtvannsvarmer") vist i de medfølgende figurer. If there is insufficient waste heat or if the compressors are not operating, an external redundant heat source is required to heat the LNG to ambient conditions. If additional heat is required, such is typically added to the external heat source ("steam/hot water heater") shown in the accompanying figures.

Claims (9)

1. System for gassforsyning til vekselbrensel- eller gassmotorer og BOG rekondensering, der BOG rekondenseringsanlegget innbefatter en kryogenisk varmeveksler (1), en BOG kompressor (2) med en BOG forvarmer (3), en nitrogensløyfe med en kompander (4), gass matet til motorene er i form av LNG fra minst én lastetank (5) eller kondensat fra rekondenseringsanlegget, og LNG eller kondensat føres gjennom en LNG fordamper (6) anordnet i en lukket sløyfe, der den lukkede sløyfen har minst én pumpe (7) og en varmekilde (8) for et mellommedium sirkulerende i den lukkede sløyfen for å forsyne en kaldytelsesutvinning under produksjon av gass matet til motorene, karakerisert ved at en LNG optimaliserer (9) er anordnet foran LNG fordamperen, hvilket tillater varmeutveksling ved hjelp av tilgjengelig varm-og kaldytelse i BOG rekondenseringsanlegget, og henholdsvis LNG eller kondensat mates som gass inn i motorene.1. System for gas supply to alternative fuel or gas engines and BOG recondensation, where the BOG recondensation plant includes a cryogenic heat exchanger (1), a BOG compressor (2) with a BOG preheater (3), a nitrogen loop with a compander (4), gas fed to the engines is in the form of LNG from at least one cargo tank (5) or condensate from the recondensation plant, and LNG or condensate is passed through an LNG evaporator (6) arranged in a closed loop, where the closed loop has at least one pump (7) and a heat source ( 8) for an intermediate medium circulating in the closed loop to supply a cold performance extraction during the production of gas fed to the engines, characterized in that an LNG optimizer (9) is arranged in front of the LNG evaporator, which allows heat exchange using available hot and cold performance in The BOG recondensation plant, and respectively LNG or condensate are fed as gas into the engines. 2. System ifølge krav 1, karakerisert ved at henholdsvis LNG eller kondensat fra den minst éne lastetanken (5) og kryogeniske varmeveksleren (1), rettes inn i LNG optimalisereren (9) via en separator (10).2. System according to claim 1, characterized in that respectively LNG or condensate from the at least one cargo tank (5) and the cryogenic heat exchanger (1) is directed into the LNG optimizer (9) via a separator (10). 3. System ifølge minst étt foregående krav, karakerisert ved at BOG fra rekondenseringsanlegget rettes inn i LNG optimalisereren (9) for å bli delvis eller fullstendig kondensert i varmeutveksling med LNG og deretter føres inn i separatoren (10) for blanding.3. System according to at least one preceding claim, characterized in that BOG from the recondensation plant is directed into the LNG optimizer (9) to be partially or completely condensed in heat exchange with LNG and then fed into the separator (10) for mixing. 4. System ifølge krav 1 eller 2, karakerisert ved at BOG fra rekondenseringsanlegget rettes inn i LNG optimalisereren (9) for å bli delvis eller fullstendig kondensert i varmeutveksling med LNG og deretter føres inn i den kryogeniske varmeveksleren (1).4. System according to claim 1 or 2, characterized in that BOG from the recondensation plant is directed into the LNG optimizer (9) to be partially or completely condensed in heat exchange with LNG and then fed into the cryogenic heat exchanger (1). 5. System ifølge krav 4, karakerisert ved at flytende væske fra separatoren (1) rettes via en sugetank (11) inn i LNG optimalisereren (9) eller returneres til den minst éne lastetanken (5).5. System according to claim 4, characterized in that liquid liquid from the separator (1) is directed via a suction tank (11) into the LNG optimizer (9) or is returned to the at least one loading tank (5). 6. System ifølge minst étt foregående krav, karakerisert ved at varm nitrogen fra kompressortrinn (41, 42, 43) i kompanderen (4) rettes inn i LNG optimalisereren (9).6. System according to at least one preceding claim, characterized in that hot nitrogen from compressor stages (41, 42, 43) in the compander (4) is directed into the LNG optimizer (9). 7. System ifølge krav 6, karakerisert ved at varm nitrogen blandes med nitrogen fra en etterkjøler (12) koblet til kompanderen (4).7. System according to claim 6, characterized in that hot nitrogen is mixed with nitrogen from an aftercooler (12) connected to the compander (4). 8. System ifølge krav 1 eller 2, karakerisert ved at varm nitrogen tatt ut oppstrøms minst én mellomkjøler (13) eller etterkjøleren (12) koblet til kompanderen (4) rettes til minst én separat varmeveksler (14) anordnet i den lukket sløyfen koblet til LNG fordamperen (6), eller minst én separat varmeveksler mellom LNG optimalisereren (9) og LNG fordamperen (6).8. System according to claim 1 or 2, characterized in that hot nitrogen taken upstream from at least one intercooler (13) or the aftercooler (12) connected to the compander (4) is directed to at least one separate heat exchanger (14) arranged in the closed loop connected to the LNG evaporator (6), or at least one separate heat exchanger between the LNG optimizer (9) and the LNG vaporizer (6). 9. System ifølge krav 8, karakerisert ved at varm nitrogen tatt ut oppstrøms den kryogeniske varmeveksleren (1) rettes til LNG optimalisereren (9).9. System according to claim 8, characterized in that hot nitrogen taken out upstream of the cryogenic heat exchanger (1) is directed to the LNG optimizer (9).
NO20093562A 2009-12-21 2009-12-21 Alternative fuel or gas engine system and decoder gas condensation NO332739B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20093562A NO332739B1 (en) 2009-12-21 2009-12-21 Alternative fuel or gas engine system and decoder gas condensation
PCT/NO2010/000476 WO2011078689A1 (en) 2009-12-21 2010-12-20 A system for gas supply to dual-fuel or gas engines and boil-off reliquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20093562A NO332739B1 (en) 2009-12-21 2009-12-21 Alternative fuel or gas engine system and decoder gas condensation

Publications (2)

Publication Number Publication Date
NO20093562A1 true NO20093562A1 (en) 2011-06-23
NO332739B1 NO332739B1 (en) 2012-12-27

Family

ID=44195974

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20093562A NO332739B1 (en) 2009-12-21 2009-12-21 Alternative fuel or gas engine system and decoder gas condensation

Country Status (2)

Country Link
NO (1) NO332739B1 (en)
WO (1) WO2011078689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032340A1 (en) 2011-09-02 2013-03-07 Hamworthy Oil & Gas Systems As System and method for boosting bog in a lng fuel system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537655A (en) * 2012-01-12 2012-07-04 张家港韩中深冷科技有限公司 Liquefied natural gas (LNG) supply system
US20130298572A1 (en) * 2012-05-09 2013-11-14 Fluor Technologies Corporation Configurations and methods of vapor recovery and lng sendout systems for lng import terminals
KR101350807B1 (en) 2012-10-24 2014-01-16 대우조선해양 주식회사 Hybrid fuel supply system for ship engine
KR101386543B1 (en) 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR101277965B1 (en) * 2013-02-19 2013-06-27 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
KR101277833B1 (en) * 2013-03-06 2013-06-21 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
KR101277844B1 (en) * 2013-03-28 2013-06-21 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas and driving method thereof
US20140352331A1 (en) * 2013-05-30 2014-12-04 Hyundai Heavy Industries Co., Ltd. Liquefied gas treatment system
KR101640768B1 (en) 2013-06-26 2016-07-29 대우조선해양 주식회사 Method for building a ship
GB201316227D0 (en) * 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
CN104792114B (en) * 2015-04-10 2017-11-07 四川金科深冷设备工程有限公司 The re-liquefied techniques of BOG and its re-liquefied recovery system
CN105715948A (en) * 2016-03-14 2016-06-29 江苏德邦工程有限公司 System and method for recovering BOG gas in LNG gas station through liquefaction
IT201800008157A1 (en) * 2018-08-22 2020-02-22 Saipem Spa CRYOGENIC THERMODYNAMIC CYCLE WITH THERMAL RECOVERY
IT201800010171A1 (en) * 2018-11-08 2020-05-08 Saipem Spa PROCESS FOR THE RE-LIQUEFACTION AND CONTEMPORARY DECREASE OF THE NITROGEN CONTENT IN THE BOG FOR SELF-REFRIGERATED ABSORPTION
EP4150273A1 (en) 2020-05-14 2023-03-22 Wärtsilä Gas Solutions Norway AS A boil-off gas reliquefaction system, a method for reliquefaction of boil-off gas in a reliquefaction system and a method for operating a boil-off gas reliquefaction system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804968B1 (en) * 2007-03-20 2008-02-20 대우조선해양 주식회사 Apparatus and method for measuring flow rate of fuel gas of lng carrier in differential pressure
KR100835090B1 (en) * 2007-05-08 2008-06-03 대우조선해양 주식회사 System and method for supplying fuel gas of lng carrier
NO330187B1 (en) * 2008-05-08 2011-03-07 Hamworthy Gas Systems As Gas supply system for gas engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032340A1 (en) 2011-09-02 2013-03-07 Hamworthy Oil & Gas Systems As System and method for boosting bog in a lng fuel system

Also Published As

Publication number Publication date
NO332739B1 (en) 2012-12-27
WO2011078689A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
NO20093562A1 (en) Gas supply system for alternating fuel or gas engines and boiling gas recondensation
EP2307694B1 (en) Gas supply systems for gas engines
US10767921B2 (en) Liquefied gas treatment system
KR101289212B1 (en) A treatment system of liquefied gas
JP5046998B2 (en) Liquefied gas storage facility and ship or marine structure using the same
KR101380427B1 (en) A treatment system of liquefied gas
KR101557571B1 (en) A Treatment System Of Liquefied Gas
KR101459962B1 (en) A Treatment System of Liquefied Gas
KR101431419B1 (en) A Treatment System of Liquefied Gas
KR102025939B1 (en) A Treatment System Of Boil-Off Gas
KR20150062826A (en) Treatment system of liquefied gas
KR101485685B1 (en) A Treatment System of Liquefied Gas
KR101824292B1 (en) A Treatment System of Liquefied Gas
KR20150099364A (en) A Treatment System of Liquefied Gas
KR101882552B1 (en) A Treatment System of Liquefied Gas
KR20150099360A (en) A Treatment System of Liquefied Gas
KR101883524B1 (en) A Treatment System of Liquefied Gas
KR101831178B1 (en) Vessel Operating System and Method
KR20150106868A (en) Treatment system of liquefied gas
KR101658278B1 (en) A Treatment System of Liquefied Gas
KR101910224B1 (en) A Treatment System of Liquefied Gas
KR20150115094A (en) A Treatment System of Liquefied Gas