NO180043B - Superconducting Bi-Sr-Ca-Cu oxide material - Google Patents

Superconducting Bi-Sr-Ca-Cu oxide material Download PDF

Info

Publication number
NO180043B
NO180043B NO903160A NO903160A NO180043B NO 180043 B NO180043 B NO 180043B NO 903160 A NO903160 A NO 903160A NO 903160 A NO903160 A NO 903160A NO 180043 B NO180043 B NO 180043B
Authority
NO
Norway
Prior art keywords
superconducting
approx
materials
oxides
temperature
Prior art date
Application number
NO903160A
Other languages
Norwegian (no)
Other versions
NO903160D0 (en
NO180043C (en
NO903160L (en
Inventor
Jagannatha Gopalakrishnan
Arthur William Sleight
Munirpallam Appado Subramanian
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1989/000355 external-priority patent/WO1989007087A1/en
Application filed by Du Pont filed Critical Du Pont
Publication of NO903160D0 publication Critical patent/NO903160D0/en
Publication of NO903160L publication Critical patent/NO903160L/en
Publication of NO180043B publication Critical patent/NO180043B/en
Publication of NO180043C publication Critical patent/NO180043C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

Oppfinnelsens område Field of the invention

Denne oppfinnelse angår nye vismut-strontium-kalsium-kobberoxydmaterialer som er .supraledende. This invention relates to new bismuth-strontium-calcium-copper oxide materials which are superconducting.

Henvisninger Referrals

Bednorz og Muller, Z. Phys. B64, 189 (1986), be- Bednorz and Muller, Z. Phys. B64, 189 (1986), be-

skriver en ..supraledende fase i La-Ba-Cu-O-systemet med en writes a ..superconducting phase in the La-Ba-Cu-O system with a

supraledende overgangstemperatur på ca. 35 K. Denne opp-lysning ble senere bekreftet av flere forskere [se for eksempel Rao og Ganguly, Current Science, 56, 47 (1987), superconducting transition temperature of approx. 35 K. This information was later confirmed by several researchers [see for example Rao and Ganguly, Current Science, 56, 47 (1987),

Chu et al., Science 235, 567 (1987), Chu et al., Phys. Rev. Lett. 58. 405 (1987), Cava et al., Phys. Rev. Lett. 58, 408 Chu et al., Science 235, 567 (1987), Chu et al., Phys. Fox. Easy. 58. 405 (1987), Cava et al., Phys. Fox. Easy. 58, 408

(1987), Bednorz et al., Europhys. Lett. 3, 379 (1987)]. (1987), Bednorz et al., Europhys. Easy. 3, 379 (1987)].

Den supraledende fase er blitt identifisert som materialet La^_x(Ba,Sr,Ca)x04_y med den tetragonale struktur av I^NiF^-typen og med x typisk ca. 0,15 og y antydende oxygenledig-heter. The superconducting phase has been identified as the material La^_x(Ba,Sr,Ca)xO4_y with the tetragonal structure of the I^NiF^ type and with x typically approx. 0.15 and y suggesting oxygen vacancies.

Wu et al., Phys. Rev. Lett. 58, 908 (1987), beskriver Wu et al., Phys. Fox. Easy. 58, 908 (1987), describes

en supraledende fase i Y-Ba-Cu-O-systemet med en supraled- a superconducting phase in the Y-Ba-Cu-O system with a superconducting

ende overgangstemperatur på ca. 90 K. Cava et al., Phys. end transition temperature of approx. 90 K. Cava et al., Phys.

Rev. Lett. 58, 1676 (1987), har identifisert denne supraledende Y-Ba-Cu-O-fase til å være orthorombisk, forvrengt, oxygenmangelfullt perovskitt YBa-^Cu^Og^ hvor & er ca. Fox. Easy. 58, 1676 (1987), have identified this superconducting Y-Ba-Cu-O phase to be orthorhombic, distorted, oxygen-deficient perovskite YBa-^Cu^Og^ where & is ca.

2,1, og presenterer pulverrøntgendiffraksjonsmønsteret og gitterparametrene. 2.1, and presents the powder X-ray diffraction pattern and lattice parameters.

C. Michel et al., Z. Phys. B - Condensed Matter 68, C. Michel et al., Z. Phys. B - Condensed Matter 68,

417 (1987), beskriver innføring av Bi i supralederen La2-xSrxCu04-y ^or å danne oxydene La2_x<B>ix, S<r>x_x,417 (1987), describes the introduction of Bi into the superconductor La2-xSrxCu04-y ^or to form the oxides La2_x<B>ix, S<r>x_x,

CuO^_y. Undersøkelsen ble begrenset til materialer som overensstemte med det område hvor supraledningsevne hoved-sakelig ble iakttatt, x - x' = 0,1-0,2. Enkeltfaser ble oppnådd når x - 3 og x' 2. En prøve på materialet La^^Big iSrQ 2Cu04-y har en suPraledende omvandlings temperatur på ca. 42 K som bestemt ved resistivitetsmålinger til sammenligning med ca. 38 K for La,0Srn-CuO, CuO^_y. The investigation was limited to materials that corresponded to the area where superconductivity was mainly observed, x - x' = 0.1-0.2. Single phases were obtained when x - 3 and x' 2. A sample of the material La^^Big iSrQ 2Cu04-y has a superconducting transformation temperature of approx. 42 K as determined by resistivity measurements for comparison with approx. 38 K for La,0Srn-CuO,

3 1,80,2 4-y 3 1,80,2 4-y

C. Michel et al., Z. Phys. B - Condensed Matter 68, C. Michel et al., Z. Phys. B - Condensed Matter 68,

421 (1987), beskriver en ny familie av supraledende oxyder 421 (1987), describes a new family of superconducting oxides

i Bi-Sr-Cu-O-systemet med sammensetning nær Bi2Sr2CU20^+ g . En ren fase ble isolert for sammensetningen Bi-^S^Ci^O.^^ . Røntgendiffraksjonsmønsteret for dette materiale oppviser endel likhet med det for perovskitt, og elektrondiffraksjons-mønsteret viser perovskittundercellen med de orthorombiske in the Bi-Sr-Cu-O system with composition close to Bi2Sr2CU20^+ g . A pure phase was isolated for the composition Bi-^S^Ci^O.^^ . The X-ray diffraction pattern for this material shows complete similarity to that of perovskite, and the electron diffraction pattern shows the perovskite subcell with the orthorhombic

celleparametre a = 5,32 A (0,532 nm), b = 26,6, A (2,66 nm) og c = 48,8 A (4,88 nm). Materialet fremstilt fra ultra-rene oxyder har en supraledende omvandling med et midtpunkt av 22 K som bestemt ved resistivitetsmålinger og nullmot-stand under 14 K. Materialet fremstilt fra oxyder av teknisk kvalitet har en supraledende omvandlig med et midtpunkt av 7 K. cell parameters a = 5.32 A (0.532 nm), b = 26.6, A (2.66 nm) and c = 48.8 A (4.88 nm). The material made from ultra-pure oxides has a superconducting transition with a midpoint of 22 K as determined by resistivity measurements and zero resistance below 14 K. The material made from technical grade oxides has a superconducting transition with a midpoint of 7 K.

Oppsummering av oppfinnelsen Summary of the invention

Oppfinnelsen angår et supraledende materiale som er særpreget ved at det inneholder en metalloxydfase som har formelen The invention relates to a superconducting material which is characterized by the fact that it contains a metal oxide phase having the formula

og gitterparameterne a= 5,4Å, b= 5,4Å og c= 31Å basert på en A-sentrert ortorombisk enhetscelle, og hvori z er fra 0,1 til 0,9 og w er større enn null, men mindre enn 1. and the lattice parameters a= 5.4Å, b= 5.4Å and c= 31Å based on an A-centered orthorhombic unit cell, and where z is from 0.1 to 0.9 and w is greater than zero but less than 1.

Det supraledende materiale ifølge oppfinnelsen kan fremstilles ved å oppvarme en blanding som utgjøres av støkiomet-riske mengder av metalloxydene, for eksempel B±20^, SrO The superconducting material according to the invention can be produced by heating a mixture made up of stoichiometric amounts of the metal oxides, for example B ± 2 O 2 , SrO

eller SrO eller Sr0o, CaO, og CuO, eller utgangsmaterialer for metalloxydene, f.eks. carbonater, slike som CaCO^, nitrater, slike som Sr(N03)2, etc. ved 775°C til 900°C i 8 til 4 8 timer eller mer i luft. Oppvarmingstemperaturer av 850°C til 900°C er foretrukne. or SrO or Sr0o, CaO, and CuO, or starting materials for the metal oxides, e.g. carbonates such as CaCO 2 , nitrates such as Sr(NO 3 ) 2 , etc. at 775°C to 900°C for 8 to 48 hours or more in air. Heating temperatures of 850°C to 900°C are preferred.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

De supraledende materialer ifølge oppfinnelsen som har den nominelle formel Bi2Sr3_zCaz Cu20g+w har supraledende omvandlingstemperaturer fra over 77 K opp til 120 Kfdvs. The superconducting materials according to the invention which have the nominal formula Bi2Sr3_zCaz Cu20g+w have superconducting transformation temperatures from over 77 K up to 120 Kfdvs.

over temperaturen for flytende nitrogen. above the liquid nitrogen temperature.

De supraledende materialer ifølge oppfinnelsen kan fremstilles ved hjelp av den følgende prosess. Støkiometriske mengder av Bi^, SrO, CaO og CuO blandes, for eksempel ved å male disse sammen i en morter. Utgangsmaterialet for oxydene, slike som carbonater, kan erstatte ett eller flere av oxydene. Alternativt kan en intim støkiometrisk blanding av utgangsmaterialer for oxydene fremstilles fra en oppløs-ning av utgangsmaterialer, slike som nitrater eller acetater, enten ved utfelling fra en slik oppløsning eller ved tørking av en slik oppløsning ved fordampning av løsningsmidlet eller ved forstøvnings- eller frysetørking. Blandingen av oxyder eller utgangsmaterialer i form av et pulver eller en presset pellet blir derefter anbragt i en beholder laget av et ikke-reaktivt materiale, slikt som alumina eller gull. Beholderen blir derefter anbragt i en ovn og oppvarmet ved 775°C til 900°C i 8 til 48 timer i luft, fortrinnsvis fra 850°C til 900°C. Den supraledende The superconducting materials according to the invention can be produced using the following process. Stoichiometric amounts of Bi^, SrO, CaO and CuO are mixed, for example by grinding these together in a mortar. The starting material for the oxides, such as carbonates, can replace one or more of the oxides. Alternatively, an intimate stoichiometric mixture of starting materials for the oxides can be prepared from a solution of starting materials, such as nitrates or acetates, either by precipitation from such a solution or by drying such a solution by evaporation of the solvent or by spray or freeze drying. The mixture of oxides or starting materials in the form of a powder or a pressed pellet is then placed in a container made of a non-reactive material, such as alumina or gold. The container is then placed in a furnace and heated at 775°C to 900°C for 8 to 48 hours in air, preferably from 850°C to 900°C. The superconducting

omvandlingstemperatur er generelt høyere dersom oppvarmings-temperaturen er innen det foretrukne område. Smelting bør unngås. Da smelting finner sted ved oppvarmingstemperaturer av ca. 900°C og høyere, må reaksjon finne sted under disse temperaturer. conversion temperature is generally higher if the heating temperature is within the preferred range. Melting should be avoided. Since melting takes place at heating temperatures of approx. 900°C and higher, reaction must take place below these temperatures.

Avkjøling kan gjøres langsomt ved enten å stenge av effekten til ovnen og tillate beholderen å avkjøles i ovnen eller ved å programmere ovnen til å avkjøles med en langsom hastighet, f.eks. med 2°C pr. minutt. Når temperaturen er under 100°C, f.eks. omgivelsestemperatur (ca, 20°C), blir beholderen fjernet fra ovnen, og det sorte krystallinske produkt blir utvunnet." Avkjøling kan også oppnås ved brå-kjøling ved omgivelsestemperatur av det materiale som var blitt oppvarmet til 850-900°C. Cooling can be done slowly by either turning off the power to the oven and allowing the container to cool in the oven or by programming the oven to cool at a slow rate, e.g. with 2°C per minute. When the temperature is below 100°C, e.g. ambient temperature (approx. 20°C), the container is removed from the furnace, and the black crystalline product is recovered." Cooling can also be achieved by quenching at ambient temperature the material that had been heated to 850-900°C.

Et supraledende materiale ifølge oppfinnelsen kan fremstilles selv når de relative mengder av reaktanter velges utenfor de støkiometriske grenser som er diktert av de om-råder som formelen for metalloxydfasen tilkjennegir. Det supraledende materiale vil da være sammensatt av minst én supraledende fase sammen med andre ikke-supraledende faser. A superconducting material according to the invention can be produced even when the relative amounts of reactants are chosen outside the stoichiometric limits dictated by the ranges indicated by the formula for the metal oxide phase. The superconducting material will then be composed of at least one superconducting phase together with other non-superconducting phases.

Supraledningsevne kan bekreftes ved å iaktta magnetisk flukseksklusjon, dvs. Meissner-effekten. Denne effekt kan måles med den metode som er beskrevet i en artikkel av E. Polturak og B. Fisher i Physical Review B, 36, 5586 Superconductivity can be confirmed by observing magnetic flux exclusion, i.e. the Meissner effect. This effect can be measured with the method described in an article by E. Polturak and B. Fisher in Physical Review B, 36, 5586

(1987) . (1987).

De supraledende materialer ifølge denne oppfinnelse kan anvendes for å lede strøm ekstremt effektivt eller for å tilveiebringe et magnetfelt for magnetisk avbildning for medisinske formål. Ved avkjøling av materialet i form av en tråd eller stang til en temperatur under den supraledende omvandlingstemperatur, f.eks. ved eller under ca. The superconducting materials of this invention can be used to conduct electricity extremely efficiently or to provide a magnetic field for magnetic imaging for medical purposes. By cooling the material in the form of a wire or rod to a temperature below the superconducting transformation temperature, e.g. at or below approx.

115 K, fortrinnsvis ved eller under ca. 85 K, ved å 115 K, preferably at or below approx. 85 K, by

eksponere materialet for flytende nitrogen på en måte som er velkjent for fagfolk innen dette område, og ved å igangsette en strøm av elektrisk strøm kan man således oppnå en slik strøm uten noen elektriske motstandstap. For å tilveiebringe eksepsjonelt høye magnetfelt med minimale effekttap vil tråden som tidligere er nevnt, kunne vikles under dannelse av en spole som vil bli eksponert for flytende helium før en strøm induseres inn i spolen. De supraledende materialer ifølge denne oppfinnelse kan også anvendes for å tilveiebringe diamagnetfelter som er ekstremt varige. Slike felter oppnås ved å eksponere materialet i form av et ark eller en lignende konstruksjon for et eksternt magnetfelt, idet arket avkjøles til en temperatur under den supraledende omvandlingstemperatur, f.eks. avkjølt til mellom 77 K og 115 K, ved eksponering for flytende nitrogen. Slike felter kan anvendes for å heve gjenstander som er så store som jenbanevogner. Disse supraledende materialer er også exposing the material to liquid nitrogen in a manner well known to those skilled in the art, and by initiating a flow of electric current such a current can thus be obtained without any electrical resistance losses. In order to provide exceptionally high magnetic fields with minimal power loss, the wire previously mentioned could be wound to form a coil which would be exposed to liquid helium before a current is induced into the coil. The superconducting materials of this invention can also be used to provide diamagnetic fields which are extremely durable. Such fields are obtained by exposing the material in the form of a sheet or a similar construction to an external magnetic field, the sheet being cooled to a temperature below the superconducting transformation temperature, e.g. cooled to between 77 K and 115 K, by exposure to liquid nitrogen. Such fields can be used to raise objects as large as railway carriages. These superconducting materials are also

nyttige i Josephson-innretninger, slike som SQUIDS (supraledende kvantuminterferensinnretninger) og i instrumenter som er basert på Josephson-effekten, slike som høyhastighets- ! prøvetagningskretser og spenningsstandarder. Disse materialer synes å være mer stabile, spesielt i nærvær av vann, useful in Josephson devices, such as SQUIDS (superconducting quantum interference devices) and in instruments based on the Josephson effect, such as high-speed ! sampling circuits and voltage standards. These materials seem to be more stable, especially in the presence of water,

enn tidligere supraledende materialer med omvandlingstemperaturer innen det samme område. Materialene kan også be-arbeides lettere enn materialer i henhold til teknikkens stand. than previous superconducting materials with transformation temperatures within the same range. The materials can also be processed more easily than materials according to the state of the art.

Eksempel Example

Et materiale med nominell formel Bi2Sr2CaCu3Ox ble fremstilt på den følgende måte. Bi203A material with the nominal formula Bi2Sr2CaCu3Ox was prepared in the following manner. Bi203

(4,6596 g), Sr02(2,3924 g), CaC03(1,0009 g) og CuO (4.6596 g), Sr02 (2.3924 g), CaC03 (1.0009 g) and CuO

l l

(2,38 65 g) ble blandet og malt sammen i en agatmorter i 30 minutter. Pulverblandingen ble anvendt for å presse 10 pellets hver med en diameter av 10 mm og en tykkelse av ca. 2 mm. (2.38 65 g) were mixed and ground together in an agate mortar for 30 minutes. The powder mixture was used to press 10 pellets each with a diameter of 10 mm and a thickness of approx. 2 mm.

Én av de pressede pellets ble anbragt på et gull-brett og brettet anbragt i en ovn og oppvarmet i luft med en hastighet på 10°C pr. minutt til 875°C og derefter holdt ved 875°C i 36 timer. Ovnen ble derefter avkjølt med en hastighet på 1°C pr. minutt til en temperatur under ca. 100°C før brettet ble fjernet. One of the pressed pellets was placed on a gold tray and the tray placed in an oven and heated in air at a rate of 10°C per minute. minute to 875°C and then held at 875°C for 36 hours. The furnace was then cooled at a rate of 1°C per minute to a temperature below approx. 100°C before the tray was removed.

Platelignende krystaller som oppviste kløvning i grunnplanet var dominerende i smeiten. De ble mekanisk separert og anvendt for ytterligere karakterisering og strukturbestemmelse. Både flukseksklusjons- og elektrisk resistivitetsmåling på enkeltkrystallene avslørte en skarp supraledende omvandling ved Tcav ca. 95 K. Plate-like crystals showing cleavage in the ground plane were dominant in the melt. They were mechanically separated and used for further characterization and structure determination. Both flux exclusion and electrical resistivity measurements on the single crystals revealed a sharp superconducting transition at Tcav approx. 95 K.

Den supraledende metalloxydfase for dette materiale ble identifisert som The superconducting metal oxide phase for this material was identified as

hvori "z" var ca. 0,65 og "w" var mindre enn 1, men større enn null. Strukturen som var basert på en A-sentrert orthorombisk celle med a = 5,409Å, b = 5,414Å og c = 30,914Å where "z" was approx. 0.65 and "w" was less than 1 but greater than zero. The structure which was based on an A-centered orthorhombic cell with a = 5.409Å, b = 5.414Å and c = 30.914Å

ble bestemt ved anvendelse av enkeltkrystallrøntgendiffrak-sjonsdata. was determined using single crystal X-ray diffraction data.

Strukturen var bygget opp av avvekslende dobbelte kobber-oxygenplater og dobbelte vismut-oxygenplater. Det The structure was made up of alternating double copper-oxygen plates and double bismuth-oxygen plates. The

2+ 2+ 2+ 2+

var Ca - og Sr -kationer mellom de tilgrensende Cu-O-plater. Sr 2+-kationer ble også funnet mellom Cu-O- og Bi-O-platene. Høyoppløsningstransmisjonselektronmikroskopi-undersøkelser viste at b-aksen i virkeligheten er 27,07Å hvilket er en økning med en faktor på 5 over undercelle-dimensjonen. Denne superstruktur kan også iakttas ved røntgendiffraksjon på enkeltkrystaller, men tvillingdannelse kan gjøre at det synes som om superstrukturen er langs både A- og B-aksene. were Ca - and Sr -cations between the adjacent Cu-O plates. Sr 2+ cations were also found between the Cu-O and Bi-O plates. High-resolution transmission electron microscopy investigations showed that the b-axis is actually 27.07Å which is an increase of a factor of 5 over the sub-cell dimension. This superstructure can also be observed by X-ray diffraction on single crystals, but twinning can make it appear as if the superstructure is along both the A and B axes.

Det bør forstås at når "z" i formelen for den metall-oxydsupraledende fase er hvor som helst fra 0,1 til 0,9, er "a" og "b" begge ca. 5,4Å og "c" er ca. 31Å, mens a,|3 og r (vinklene som er forbundet med enhetscellen som kjent for fagfolk innen denne teknikk) er ca. 90°. Dessuten kan, som vist i dette eksempel, én eller to av undercelledimensjonene 1 (a eller b eller c) multipliseres med et heltall av fra 2 til 10 for å oppnå en celle som oppviser superstrukturen for den supraledende fase for materialet ifølge oppfinnelsen. It should be understood that when "z" in the formula for the metal oxide superconducting phase is anywhere from 0.1 to 0.9, "a" and "b" are both approx. 5.4Å and "c" is approx. 31Å, while a,|3 and r (the angles associated with the unit cell as known to those skilled in the art) are approx. 90°. Also, as shown in this example, one or two of the subcell dimensions 1 (a or b or c) can be multiplied by an integer from 2 to 10 to obtain a cell that exhibits the superstructure of the superconducting phase for the material according to the invention.

Claims (3)

1. Supraledende materiale/ karakterisert vedat det inneholder en metalloxydfase som har formelen Bi„Sr0 Ca Cu„0o^ 2 3-z z 2 8*w og gitterparameterne a= 5,4Å, b= 5,4Å og c= 31Å basert på en A-sentrert ortorombisk enhetscelle, og hvori z er fra 0,1 til 0,9 og v w er større enn null*men mindre enn 1.1. Superconducting material/ characterized in that it contains a metal oxide phase having the formula Bi„Sr0 Ca Cu„0o^ 2 3-z z 2 8*w and the lattice parameters a= 5.4Å, b= 5.4Å and c= 31Å based on an A-centered orthorhombic unit cell, and where z is from 0.1 to 0.9 and v w is greater than zero*but less than 1. 2. Supraledende materiale ifølge krav 1,karakterisert vedatzer fra 0,4 til 0,8.2. Superconducting material according to claim 1, characterized by vedatzer from 0.4 to 0.8. 3. Supraledende materiale ifølge krav 1 eller 2,karakterisert vedatzer fra 0,6 til 0,7.3. Superconducting material according to claim 1 or 2, characterized by vedatzer from 0.6 to 0.7.
NO903160A 1988-02-08 1990-07-13 Superconducting Bi-Sr-Ca-Cu oxide material NO180043C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15310788A 1988-02-08 1988-02-08
PCT/US1989/000355 WO1989007087A1 (en) 1988-02-04 1989-02-03 SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITONS AND PROCESS FOR MANUFACTURE

Publications (4)

Publication Number Publication Date
NO903160D0 NO903160D0 (en) 1990-07-13
NO903160L NO903160L (en) 1990-07-13
NO180043B true NO180043B (en) 1996-10-28
NO180043C NO180043C (en) 1997-02-05

Family

ID=22545802

Family Applications (1)

Application Number Title Priority Date Filing Date
NO903160A NO180043C (en) 1988-02-08 1990-07-13 Superconducting Bi-Sr-Ca-Cu oxide material

Country Status (8)

Country Link
JP (1) JP2850310B2 (en)
KR (1) KR970000482B1 (en)
AU (1) AU617765B2 (en)
CA (1) CA1341237C (en)
DK (1) DK172938B1 (en)
HU (1) HU217018B (en)
NO (1) NO180043C (en)
RU (1) RU2056068C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58908712D1 (en) * 1988-02-05 1995-01-19 Hoechst Ag Superconductor and process for its manufacture.
JPH01212227A (en) * 1988-02-17 1989-08-25 Nippon Telegr & Teleph Corp <Ntt> Oxide superconducting material
DE4108869A1 (en) * 1991-03-19 1992-09-24 Hoechst Ag METHOD FOR PRODUCING A SUPRAL-CONDUCTIVE MATERIAL CONTAINING BISMUT
RU2460175C1 (en) * 2011-05-12 2012-08-27 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Superconducting composite material based on hts compounds and method of producing said material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506892B2 (en) 1988-02-05 1996-06-12 松下電器産業株式会社 Oxide superconducting material
JP2629771B2 (en) 1988-02-05 1997-07-16 松下電器産業株式会社 Oxide superconducting material
US5181481A (en) * 1991-03-25 1993-01-26 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having multiple furnace sections
JPH0643268A (en) * 1992-07-27 1994-02-18 Casio Comput Co Ltd Stop watch device

Also Published As

Publication number Publication date
HUT57939A (en) 1991-12-30
AU617765B2 (en) 1991-12-05
DK188190D0 (en) 1990-08-07
CA1341237C (en) 2001-05-22
JP2850310B2 (en) 1999-01-27
AU3068989A (en) 1989-08-25
NO903160D0 (en) 1990-07-13
KR970000482B1 (en) 1997-01-13
RU2056068C1 (en) 1996-03-10
NO180043C (en) 1997-02-05
JPH03502918A (en) 1991-07-04
HU891437D0 (en) 1991-11-28
DK188190A (en) 1990-08-07
KR900700390A (en) 1990-08-13
DK172938B1 (en) 1999-10-11
NO903160L (en) 1990-07-13
HU217018B (en) 1999-11-29

Similar Documents

Publication Publication Date Title
Liang et al. Phase diagram of SrO CaO CuO ternary system
US4894361A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-O compositions and processes for manufacture and use
US4929594A (en) Superconducting composition Tl2 Ba2 CuO6+x and process for manufacture
US5126316A (en) Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions
US6855670B1 (en) Superconducting bismuth-strontium-calcium-copper oxide compositions and process for manufacture
NO180043B (en) Superconducting Bi-Sr-Ca-Cu oxide material
US5017554A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-Cu-O compositions and processes for manufacture and use
US5264414A (en) Superconducting metal oxide (Tl,Bi)1 Sr2 Ca2 Cu3 O.sub.y
EP0489087B1 (en) Superconducting metal oxide compositions and processes for manufacture and use
US5219833A (en) Process for manufacturing single phase Tl2 Ba2 CuO6-x superconductors
Shrivastava Synthesis of high-TC superconducting cuprate materials through solid state reaction route
AU632076B2 (en) Superconducting metal oxide compositions and processes for manufacture and use
EP0428630B1 (en) Superconducting metal oxide compositions and processes for manufacture and use
EP0441903A1 (en) Superconducting metal oxide compositions and processes for manufacture and use
Subramanian et al. Superconducting metal oxide (Tl, Bi) 1 Sr 2 Ca 2 Cu 3 O y
WO1991011391A1 (en) Superconducting metal oxyde compositions

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees