NO166610B - PROCEDURE AND ACCELERATING DEVICE FOR ACCELERATION OF AN ASYNCHRONIC MACHINE WITH A ROLLING ROTOR. - Google Patents

PROCEDURE AND ACCELERATING DEVICE FOR ACCELERATION OF AN ASYNCHRONIC MACHINE WITH A ROLLING ROTOR. Download PDF

Info

Publication number
NO166610B
NO166610B NO861910A NO861910A NO166610B NO 166610 B NO166610 B NO 166610B NO 861910 A NO861910 A NO 861910A NO 861910 A NO861910 A NO 861910A NO 166610 B NO166610 B NO 166610B
Authority
NO
Norway
Prior art keywords
converter
asynchronous machine
rotor
stator
acceleration
Prior art date
Application number
NO861910A
Other languages
Norwegian (no)
Other versions
NO166610C (en
NO861910L (en
Inventor
Walter Bruggisser
Rene Schaefer
Berislav Knaffl
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of NO861910L publication Critical patent/NO861910L/en
Publication of NO166610B publication Critical patent/NO166610B/en
Publication of NO166610C publication Critical patent/NO166610C/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/34Arrangements for transfer of electric power between networks of substantially different frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/30Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by progressive increase of frequency of supply to primary circuit of motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/076Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein both supplies are made via converters: especially doubly-fed induction machines; e.g. for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Motor And Converter Starters (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

1. Method of running up a slipring-rotor asynchronous machine (3), in particular a rotating system-tie frequency converter with a static subsynchronous/supersynchronous static converter cascade, a) the asynchronous machine (3) being connected, at least at the beginning of running-up, to a converter (4) and b) on reaching a switchover speed, corresponding to the system frequency (f1 ), its stator being switched over to the a.c. system (1; R, S, T), characterized c) in that, during the running-up, both the stator windings and the rotor windings of the asynchronous machine (3) are fed with increasing frequency from at least one converter (4, 4'), d) the feeding of the asynchronous machine (3) during running-up takes place in such a way that its stator rotating field rotates oppositely to its rotor rotating field.

Description

Ved oppfinnelsen tar man utgangspunkt i en fremgangsmåte for akselerasjon av en asynkronmaskin med sleperingsrotor, ifølge den innledende del av patentkrav 1. Oppfinnelsen vedrører også en akselerasjonsanordning for akselerasjon av en asynkron maskin med sleperingsrotor. The invention is based on a method for accelerating an asynchronous machine with a drag rotor, according to the introductory part of patent claim 1. The invention also relates to an acceleration device for acceleration of an asynchronous machine with a drag rotor.

Ifølge den innledende del av kravet tar oppfinnelsen utgangspunkt i en teknikkens stilling med hensyn til fremgangsmåter og akselerasjonsanordninger for akselerasjon av en asynkronmaskin, slik denne fremgår av det tys-ke firmatidsskrift: Techn. Mitt. AEG-Telefunken 63 (1973) 7, S. 249 - 253. For akselerasjon av en frekvensomform-ergruppe på 50/16 2/3 Hz for der en 3-fase-asynkronmaskin tilført en redusert spenning via en startetransformator. According to the introductory part of the claim, the invention is based on a state of the art with respect to methods and acceleration devices for acceleration of an asynchronous machine, as this appears from the German company journal: Techn. Mine. AEG-Telefunken 63 (1973) 7, S. 249 - 253. For acceleration of a frequency converter group of 50/16 2/3 Hz for which a 3-phase asynchronous machine supplied with a reduced voltage via a starting transformer.

I armaturkretsen for rotoren er i den forbindelse anord-net en væskestarter, hvis regulering holder startstrøm-men i asynkronmaskinens stator på ca. konstant nominell verdi. Starttiden utgjør ca. 100 s. Ved oppnåelse av nominelt omdreiningstall finner tilførselen til asynkronmaskinens rotorkrets sted via en styreomformer, som fremskaffer strøm og spenning med slipp-frekvens og derved regulerer asynkronmaskinens omdreiningstall. Etter tilkobling av energiseringen til en med asynkronmaskinen tilkoblet enfase-synkronmaskin, kan denne synkroniseres med nettet. In this connection, a liquid starter is arranged in the armature circuit for the rotor, the regulation of which keeps the starting current in the stator of the asynchronous machine at approx. constant nominal value. The start time is approx. 100 s. When the nominal speed is achieved, the supply to the asynchronous machine's rotor circuit takes place via a control converter, which provides current and voltage with a slip frequency and thereby regulates the asynchronous machine's speed. After connecting the energization to a single-phase synchronous machine connected to the asynchronous machine, this can be synchronized with the grid.

Denne akselerasjonsteknikk krever This acceleration technique requires

- et stort oppbud av sterkstrøm-hjelpeanordninger, - a large selection of high-current auxiliary devices,

mange koblingsforløp i sterkstrømsdelen ved akselerasjon, many switching sequences in the high-current section during acceleration,

høy rotorspenningsstabilitet ved kobling, og en konstruksjon av omformergruppen for innkoblings-strømstøt ved omkobling og tilkobling til nettet. high rotor voltage stability when switching, and a construction of the converter group for switch-on current surge when switching and connecting to the grid.

Oppfinnelsen, slik den er definert i patentkrav 1 og 3, løser den oppgave å gi anvisning på en fremgangsmåte og en akselerasjonsanordning for akselerasjon av en asyn kronmaskin, som muliggjør akselerasjon av asynkronmaskinen til nettfrekvens med et lite utlegg av apparater og innretninger. Samtidig skal høye rotorspenninger i stillstand og ved kobling, såvel som innkoblingsstrømstøt ved omkobling og tilkobling av asynkronmaskinen til veksel-strømsnettet, bli redusert. The invention, as defined in patent claims 1 and 3, solves the task of providing instructions for a method and an acceleration device for the acceleration of an asyn crown machine, which enables acceleration of the asynchronous machine to mains frequency with a small outlay of apparatus and devices. At the same time, high rotor voltages at standstill and when switching on, as well as switching current surges when switching and connecting the asynchronous machine to the AC mains, must be reduced.

En fordel ved oppfinnelsen består deri at starttransfor-ma toren, startmotstanden samt de tilhørende brytere kan spares inn, slik at resultatet blir meget rimeligere. An advantage of the invention is that the starting transformer, the starting resistor and the associated switches can be saved, so that the result is much more affordable.

Den dessuten foreliggende direkteomformer kan brukes som matekilde for akselerasjonen. The additionally present direct converter can be used as a feed source for the acceleration.

Oppfinnelsen vil i det følgende bli nærmere forklart ved hjelp av utførelseseksempler, idet der henvises til teg-ningsfigurene. Figur 1 viser en kobling for akselerasjon av en roterende frekvensomformer med en asynkronmaskin og en synkronmaskin, Figur 2 viser en kobling for akselerasjon av en asynkronmaskin med sleperingsrotor i parallellkobling, Figur 3 er en kobling for akselerasjon av en asynkronmaskin med sleperingsrotor i seriekobling. In the following, the invention will be explained in more detail with the help of exemplary embodiments, referring to the drawings. Figure 1 shows a connection for acceleration of a rotating frequency converter with an asynchronous machine and a synchronous machine, Figure 2 shows a connection for acceleration of an asynchronous machine with a drag rotor in parallel connection, Figure 3 is a connection for acceleration of an asynchronous machine with a drag rotor in series connection.

På figur 1 betegner 1 et. trefase-vekselstrømsnett, respektive et dreiestrømnett med en vekselspenning på = 12,5 kV og en nettfrekvens f^= 50 Hz, mens 2 betegner et enfase-vekselstrømsnett med en vekselspenning U2= 12 kV In figure 1, 1 denotes et. three-phase alternating current grid, respectively a rotating current grid with an alternating voltage of = 12.5 kV and a grid frequency f^= 50 Hz, while 2 denotes a single-phase alternating current grid with an alternating voltage U2= 12 kV

og en nettfrekvens på f2= 16 2/3 Hz, slik det er vanlig for jernbanedrift. Vekselstrømsnettet 1 er via en nettbryter Sl forbundet med statorviklingen for en asynkronmaskin 3. Rotorviklingen for asynkronmaskinen 3 står i forbindelse med en frekvensutgang A fra en omformer, respektive en direkteomf ormer 4, ved hvilken der kan taes, ut en innstillbar frekvens fxmellom 0 Hz og 26 Hz. and a mains frequency of f2= 16 2/3 Hz, as is usual for railway operation. The alternating current network 1 is connected via a circuit breaker Sl to the stator winding for an asynchronous machine 3. The rotor winding for the asynchronous machine 3 is connected to a frequency output A from a converter, respectively a direct converter 4, at which an adjustable frequency fx between 0 Hz and 26 Hz.

En tre x tre-faset inngang E av direkteomformeren 4 er via en transformator 8, som oppviser tre x tre-faser (bare fremstilt forenklet) tilkoblet vekselstrømsnettet 1. Utgangen A fra omformeren 4 er dessuten via en startskiller, respektive bryter S2 forbundet meH statorviklingene for asynkronmaskinen 3. En stiplet angitt annen start-direkteomformer er betegnet med 4', og en ytterligere startbryt-er betegnet med S2<1>. Dersom der foreligger en annen start-direkteomforrrer 4', kan rotor og stator for asynkronmaskinen 3 mates og reguleres uavhengig av hverandre. A three x three-phase input E of the direct converter 4 is via a transformer 8, which exhibits three x three-phases (only shown simplified) connected to the alternating current network 1. The output A from the converter 4 is also connected via a starter separator, respective switch S2 to the stator windings for the asynchronous machine 3. A dashed second starting direct converter is denoted by 4', and a further starting switch is denoted by S2<1>. If there is another starting direct inverter 4', the rotor and stator of the asynchronous machine 3 can be fed and regulated independently of each other.

Der foreligger også mulighet for separat stator- og rotormat-ning når der er tilstede en 12-pulsig omformer 4 for den under-/oversynkrone kaskade. Her kan den 12-pulsige omformer kobles om til to 6-pulsige omformere 4 og 4', med hver sin omformer for rotor og stator. There is also the possibility of separate stator and rotor feeding when a 12-pulse converter 4 is present for the under/oversynchronous cascade. Here, the 12-pulse converter can be switched to two 6-pulse converters 4 and 4', each with a separate converter for rotor and stator.

Rotoren i asynkronmaskinen 3 er via en koblingsaksel 7 stivt forbundet med rotoren i en enfase-synkronmaskin 5. n betegner omdreiningstallet for koblingsakselen 7. Statorviklingen i synkronmaskinen 5 er via en nettbryter S3 forbundet med det enfasede vekselstrømsnett 2. Rotorviklingen i synkronmaskinen 5 mates fra en likespen-ningsregulator 6 , som på inngangssiden er tilsluttet vekselstrømsnettet 1 via en transformator 9. The rotor in the asynchronous machine 3 is rigidly connected via a coupling shaft 7 to the rotor in a single-phase synchronous machine 5. n denotes the number of revolutions of the coupling shaft 7. The stator winding in the synchronous machine 5 is connected to the single-phase alternating current network 2 via a mains switch S3. The rotor winding in the synchronous machine 5 is fed from a direct voltage regulator 6, which on the input side is connected to the alternating current network 1 via a transformer 9.

Figur 2 viser en asynkronmaskin 3 ifølge figur 1 med en parallellkobling som benyttes under akselerasjonen, idet de tre faser av vekselstrømsnettet 1 og nettilslutnings-punktene for statorviklingene i asynkronmaskinen 3 er betegnet R, S og T, og tilkoblingene av rotorviklingene i asynkronmaskinen 3 er betegnet med r, s og t. Såvel rotor- som statorviklingene er koblet i stjerne, idet pil-ene tilkjennegir den motsatte dreining av stator- og rotorfelt. Figure 2 shows an asynchronous machine 3 according to figure 1 with a parallel connection that is used during acceleration, the three phases of the alternating current network 1 and the mains connection points for the stator windings in the asynchronous machine 3 are denoted R, S and T, and the connections of the rotor windings in the asynchronous machine 3 are denoted with r, s and t. Both the rotor and stator windings are star-connected, with the arrows indicating the opposite rotation of the stator and rotor fields.

Med utførelseseksemplet ifølge figur 3 er til forskjell fra utførelseseksemplet ifølge figur 2, stator- og rotorviklingene i asynkronmaskinen 3 for akselerasjonen koblet i seriedriftskobling ( vist koblingsposisjon ) With the design example according to figure 3, in contrast to the design example according to figure 2, the stator and rotor windings in the asynchronous machine 3 for the acceleration are connected in series operation connection (connection position shown)

ved hjelp av omkoblingsbrytere S4 og S5. by means of changeover switches S4 and S5.

Omkoblingen av seriedriftskobling ifølge figur 3, respektive fra parallelldriftskoblingen ifølge figur 2 The switching of the series operation connection according to figure 3, respectively from the parallel operation connection according to figure 2

til den normale kaskadekobling (S2 og S2<1>på figur 1 to the normal cascade connection (S2 and S2<1> in figure 1

åpen, Sl lukket) finner sted etter oppnådd synkronisering. Rotoren i asynkronmaskinen 3 blir i den forbindelse fremdeles matet fra omformeren 4, og ved akselerasjon av asynkronmaskinen 3, dessuten også stator. Dreieretningen for stator- og rotorfelt er valgt motsatt. open, Sl closed) takes place after synchronization is achieved. In this connection, the rotor in the asynchronous machine 3 is still fed from the converter 4, and upon acceleration of the asynchronous machine 3, also the stator. The direction of rotation for the stator and rotor fields is chosen opposite.

Dersom man til stator i en vekselstrømsmotor tilfører If one adds to the stator in an alternating current motor

en strøm med frekvens fa, og til rotorenen strøm med frekvens f]-,, så får rotoren et omdreiningstall a current with frequency fa, and to the rotor current with frequency f]-,, then the rotor gets a number of revolutions

n = (fa<±><f>b)/P n = (fa<±><f>b)/P

hvor p = polpartall. Når rotordreiefeltet oppviser sam- where p = pole number. When the rotor rotating field exhibits con-

me dreieretning som statorfeltet, gjelder minustegnet, mens ved motsatte dreieretninger av de to dreiefelter gjelder plusstegnet. I den forbindelse kan man ved dobbelt matning av motoren fra det samme nett innstille det dob-belte synkrone omdreiningstall, se T. Bodefeld og H. Sequenz, Elektrische Maschinen, 8. opplag, Springer-Verlag Wien, New York (1971), s. 276 og 277. with the same direction of rotation as the stator field, the minus sign applies, while for opposite directions of rotation of the two rotating fields, the plus sign applies. In this connection, by double feeding the motor from the same network, the double synchronous speed can be set, see T. Bodefeld and H. Sequenz, Elektrische Maschinen, 8th edition, Springer-Verlag Wien, New York (1971), p .276 and 277.

Under akselerasjonen av asynkronmaskinen 3 er bryterne Sl og S3 åpne, mens bryteren S2 og eventuelt S2<1>, er lukket. Den innstillbare frekvens fxved utgangen A og eventuelt A' fra omformeren 4 og eventuelt 4', blir nå kon-tinuerlig øket fra 0 Hz til en maksimal frekvens på f.eks. During the acceleration of the asynchronous machine 3, the switches S1 and S3 are open, while the switch S2 and possibly S2<1> are closed. The adjustable frequency fx at the output A and possibly A' from the converter 4 and possibly 4' is now continuously increased from 0 Hz to a maximum frequency of e.g.

<f>max<=><1>,<04>x fl/<2><=><f>Rmax<=><f>Smax svarende til (2) <f>max<=><1>,<04>x fl/<2><=><f>Rmax<=><f>Smax corresponding to (2)

n = 1,04 x 2 x fsmax x 60/P = i'04 x ^ x 60/p n = 1.04 x 2 x fsmax x 60/P = i'04 x ^ x 60/p

= 1.04 x ns = 520 U/min (3) = 1.04 x ns = 520 U/min (3)

hvor Ftj, = maksimal rotorf rekvens, fQm, = maksimal where Ftj, = maximum rotor frequency, fQm, = maximum

Rmax amax<sta>torfrekv<ens>,ng = synkront omdreiningstall for asynkronmaskinen 3, p = 6. Rmax amax<sta>torfrekv<ens>,ng = synchronous speed of the asynchronous machine 3, p = 6.

Etter akselerasjon blir i rekkefølge After acceleration becomes in order

strømmen fra omformeren 4 og eventuelt omformeren 4' the current from the converter 4 and possibly the converter 4'

redusert til 0. reduced to 0.

startbryteren S2 og eventuelt S2' blir åpnet respektive S4 og S5 omkoblet, start switch S2 and possibly S2' are opened and respectively S4 and S5 are switched,

- asynkronmaskinen 3 energisert via rotoren til kob-lingen for den over-/undersynkrone kaskade, inntil spenningen Ug over stator for asynkronmaskinen 3 er - the asynchronous machine 3 energized via the rotor of the coupling for the over/undersynchronous cascade, until the voltage Ug across the stator of the asynchronous machine 3 is

lik veksedspenningen på vekselstrømsnettet 1, og nettbryteren Sl blir lukket. equal to the alternating voltage on the alternating current network 1, and the network switch Sl is closed.

Derved blir asynkronmaskinen 3 i fortsettelsen synkroni-sert støtfritt med landnettet 1 og overført til den under-/oversynkrone drift. Tilkoblingen av statorviklingene i asynkronmaskinen 3 til landnettet 1 ved hjelp av nett-kobleren Sl kan således for eksempel finne sted ved n = 520 O/m... 480 O/m, svarende til 104 %...96 % av synkrondreietallet ns for fasesynkronisme. Thereby, the asynchronous machine 3 is in the continuation synchronized smoothly with the land network 1 and transferred to the under/oversynchronous operation. The connection of the stator windings in the asynchronous machine 3 to the land grid 1 by means of the grid coupler Sl can thus, for example, take place at n = 520 O/m... 480 O/m, corresponding to 104%...96% of the synchronous speed ns for phase synchronism.

Deretter følger synkroniseringen av enfase-synkronmaskinen 5 med bane- eller vekselstrømsnettet 2 på kjent måte. Ved hjelp av omformeren 4 blir rotorviklingene i asynkronmaskinen 3 påført en slippfrekvensstrøm i området fra ca. -2,5 Hz til +2,5 Hz, og derved omdreiningstallet variert inntil man har oppnådd synkronisering av den tilsvarende energiserte synkronmaskin 5. Deretter blir nettbryteren S3 lukket. Omformergruppen er nå klar for lastoverfør-ing mellom 50 Hz-nettet og 16 2/3 Hz-nettet. The synchronization of the single-phase synchronous machine 5 with the track or alternating current network 2 then follows in a known manner. By means of the converter 4, the rotor windings in the asynchronous machine 3 are applied with a slip frequency current in the range from approx. -2.5 Hz to +2.5 Hz, thereby varying the number of revolutions until synchronization of the correspondingly energized synchronous machine 5 has been achieved. The mains switch S3 is then closed. The converter group is now ready for load transfer between the 50 Hz grid and the 16 2/3 Hz grid.

Roterende frekvensomformergrupper blir hovedsakelig an-vendt for overføring av elektrisk energi i området inntil ca. 90 MW fra et landnett med en frekvens på 50 Hz eller 60 Hz til et banenett med en annen frekvens som vanligvis er 16 2/3 Hz. Der kan også overføres energi Rotating frequency converter groups are mainly used for the transmission of electrical energy in the area up to approx. 90 MW from a land network with a frequency of 50 Hz or 60 Hz to a track network with a different frequency which is usually 16 2/3 Hz. Energy can also be transferred there

fra banenettet til landnettet. from the railway network to the terrestrial network.

Bryterne S2, S4 og S5 kan være konstruert for forholds-vis små koblingsstrømmer, da de blir koblet så å si be-lastnings f ritt . The switches S2, S4 and S5 can be designed for relatively small switching currents, as they are switched so to speak without load.

Istedenfor enfase-synkronmaskin 5 kan der selvsagt anord-nes en flerfase-synkronmaskin, når vekselstrømsnettet 2 er flerfaset. Bryterne S4 og S5 kan også være slått sam-men til en bryter. Instead of a single-phase synchronous machine 5, a multi-phase synchronous machine can of course be arranged there, when the alternating current network 2 is multi-phase. The switches S4 and S5 can also be combined into one switch.

Claims (6)

1. Fremgangsmåte for akselerasjon av en sleperingsrotor-asynkronmaskin (3), spesielt en roterende nettkoblingsom-former med en statisk under-/oversynkron. strømretterkas-kade, a) idet asynkronmaskinen (i3) i det minste ved starten av akselerasjonen er tilsluttet en omformer (4) og b) ved oppnåelse- av e.t omkoblingsomdreiningstall svar ende til nettfrekvensen (f^) blir stator omkoblet til vekselstrømsnettet (1; R, S, T),karakterisert vedc) at under akselerasjonsforløpet blir såvel stator-som rotorviklingene i asynkronmaskinen (3) matet med tiltagende frekvens fra minst en omformer (4, 4') d) idet matingen av asynkronmaskinen (3) under akselerasjonen finner sted slik at statordreiefeltet roterer motsatt rotordreiefeltet.1. Method for acceleration of a slip-rotor asynchronous machine (3), in particular a rotating grid-connected converter with a static under/over synchronous. rectifier cascade, a) as the asynchronous machine (i3) is connected to a converter (4) at least at the start of the acceleration and b) when achieving a switching speed answer end until the mains frequency (f^) the stator is switched to the alternating current network (1; R, S, T), characterized by c) that during the acceleration process both the stator and rotor windings in the asynchronous machine (3) are fed with increasing frequency from at least one converter (4, 4') d) as the feeding of the asynchronous machine ( 3) during the acceleration takes place so that the stator torque field rotates opposite to the rotor torque field. 2. Fremgangsmåte som angitt i krav 1,karakterisert veda) at akselerasjonen først forløper til omkoblingsomdreiningstall i parallell- eller seriedriftskobling, b) at strømmen i omformeren (4) deretter reduseres, til 0, c) hvoretter statorviklingene i asynkronmaskinen (3) skil-les fra"omformeren og d) asynkronmaskinen i fortsettelsen synkroniseres med vekselstrømsnettet (1) via rotorinnmatningen med den under- og oversynkrone strømretterkaskade.2. Procedure as stated in claim 1, characterized by) that the acceleration first proceeds to the switchover speed in parallel or series operation coupling, b) that the current in the converter (4) is then reduced to 0, c) after which the stator windings in the asynchronous machine (3) separate read from the "converter" and d) the asynchronous machine in the continuation is synchronized with the alternating current network (1) via the rotor input with the under- and oversynchronous rectifier cascade. 3. Akselerasjonsanordning for akselerasjon av en.sleperingsrotor- asynkronmaskin (3), spesielt en roterende nett-koblingsomformer med en statisk under-/oversynkron strøm-retterkaskade, til en nettfrekvens (f-^) for et vekselstrøms- nett (1; R, S. T) a) med en omformer (4) som på utgangssiden kan tilsluttes rotorviklingene i asynkronmaskinen (3), og b) med en nettbryter (Sl) som statorviklingene i asynkron maskinen (3) kan tilkobles vekselstrømsnettet (1; R, S,T),karakterisert vedc) at statorviklingene i asynkronmaskinen (3) kan tilsluttes omformeren (4, 4') via i det minste en bryter (S2; S4, S5).3. Acceleration device for acceleration of a slip-rotor asynchronous machine (3), in particular a rotary grid-connected converter with a static under/oversynchronous current rectifier cascade, to a grid frequency (f-^) for an alternating current grid (1; R, S. T) a) with a converter (4) which on the output side can be connected to the rotor windings in the asynchronous machine (3), and b) with a mains switch (Sl) which the stator windings in asynchronous the machine (3) can be connected to the AC mains (1; R, S,T), characterized by c) that the stator windings in the asynchronous machine (3) can be connected to the converter (4, 4') via at least one switch (S2; S4, S5). 4.Anordning som angitt i krav 3,karakterisert veda) at asynkronmaskinen (3) er en sleperingsrotormaskin, og b) at stator- og rotorviklingene er koblet i parallell-ener seriedriftskobling, idet stator- og rotorfeltet under drift roterer motsatt.4. Device as specified in claim 3, characterized by a) that the asynchronous machine (3) is a drag rotor machine, and b) that the stator and rotor windings are connected in a parallel series operation connection, the stator and rotor field rotating oppositely during operation. 5. Anordning som angitt i krav 4,karakterisert veda) at omformeren (4) er en 12-pulsig omformer som kan om-kobles til to-sekspulsige omformere, og b) at en av disse 6-pulsige omformere (4) kan tilsluttes rotorviklingene og den annen av de 6-pulsige omformere (4') kan tilsluttes statorviklingene i asynkronmaskinen.5. Device as specified in claim 4, characterized by a) that the converter (4) is a 12-pulse converter that can be switched to two-six-pulse converters, and b) that one of these 6-pulse converters (4) can be connected the rotor windings and the other of the 6-pulse converters (4') can be connected to the stator windings in the asynchronous machine. 6. Anordning som angitt i et av kravene 3-5,karakterisert vedat omformeren (4, 4') er en di-rektomformer eller en tvangskommutert omformer.6. Device as stated in one of the claims 3-5, characterized in that the converter (4, 4') is a direct converter or a forcibly commutated converter.
NO861910A 1985-05-29 1986-05-13 PROCEDURE AND ACCELERATING DEVICE FOR ACCELERATION OF AN ASYNCHRONIC MACHINE WITH A ROLLING ROTOR. NO166610C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853519138 DE3519138A1 (en) 1985-05-29 1985-05-29 METHOD AND ROTATING DEVICE FOR STARTING UP A SLIP RING ASYNCHRONOUS MACHINE

Publications (3)

Publication Number Publication Date
NO861910L NO861910L (en) 1986-12-01
NO166610B true NO166610B (en) 1991-05-06
NO166610C NO166610C (en) 1991-08-14

Family

ID=6271843

Family Applications (1)

Application Number Title Priority Date Filing Date
NO861910A NO166610C (en) 1985-05-29 1986-05-13 PROCEDURE AND ACCELERATING DEVICE FOR ACCELERATION OF AN ASYNCHRONIC MACHINE WITH A ROLLING ROTOR.

Country Status (4)

Country Link
EP (1) EP0203436B1 (en)
AT (1) ATE48350T1 (en)
DE (2) DE3519138A1 (en)
NO (1) NO166610C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4207327A1 (en) * 1992-03-07 1993-09-09 Asea Brown Boveri METHOD AND ROTATING DEVICE FOR STARTING UP AN ASYNCHRONOUS MACHINE
US5942875A (en) * 1995-08-11 1999-08-24 Siemens Aktiengesellschaft Method and device for operating an asynchronous machine
WO1997007589A1 (en) * 1995-08-11 1997-02-27 Siemens Aktiengesellschaft Process and device for operating an asynchronous motor
CN102570934B (en) * 2011-01-01 2015-04-08 国网电力科学研究院 Start control method for working condition excitation system of static frequency converter of pumped-storage aggregate set
CN109995035B (en) * 2019-03-05 2023-04-28 上海电力学院 Rotary frequency doubling transformer and starting control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH632109A5 (en) * 1978-03-07 1982-09-15 Jury Petrovich Kuznetsov Method for controlling an asynchronous slipring-rotor motor, and a device for carrying out the method
US4481455A (en) * 1983-09-29 1984-11-06 Osamu Sugimoto Method of starting variable-speed induction motor
DE3410878A1 (en) * 1984-03-22 1985-10-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for starting and shutting down a railway converter, using the direct converter which is required for slip supply
DE3410877A1 (en) * 1984-03-22 1985-10-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Device for supplying a three-phase insular network from a single-phase railway network via a railway converter

Also Published As

Publication number Publication date
DE3667229D1 (en) 1990-01-04
DE3519138A1 (en) 1986-12-04
EP0203436A1 (en) 1986-12-03
EP0203436B1 (en) 1989-11-29
ATE48350T1 (en) 1989-12-15
NO166610C (en) 1991-08-14
NO861910L (en) 1986-12-01

Similar Documents

Publication Publication Date Title
US6504261B2 (en) Synchronous generator having auxiliary power windings and variable frequency power source and method for use
US5559421A (en) Apparatus for removing harmonic components of an electric power frequency generated in electric power generation equipment
KR940002926B1 (en) Starter generator system
US5013929A (en) Power conversion system having prime mover start capability
JP2000233798A (en) Integrated high frequency power distributor used inboard which has transformer-free high voltage variable speed driving device
EP0377328B1 (en) Vscf starter/generator systems
US5608615A (en) Asynchronous intergrid transfer apparatus
EP2321888A1 (en) Multiple voltage generator and voltage regulation methodology for power dense integrated power systems
US3555396A (en) Self-starting power converter
US4760321A (en) AC motor drive apparatus
NO166610B (en) PROCEDURE AND ACCELERATING DEVICE FOR ACCELERATION OF AN ASYNCHRONIC MACHINE WITH A ROLLING ROTOR.
US11201558B2 (en) Operating circuit for coupling a synchronous machine with a voltage network and method for operating it
JPH10313596A (en) Pumped-storage power generation facility
US2015745A (en) Electrical system
US4267498A (en) Drive equipment with two-phase synchronous motor
SU752607A1 (en) Method of starting direct-current electric drive
SU684673A2 (en) Device for trouble-free electric power supply
US11929639B2 (en) Device for uninterruptible supply of power, comprising an energy storage means and a rotating electric machine
JP2895059B2 (en) Sub-synchronous and super-synchronous cascaded static converter and method of operation
US1927406A (en) High-voltage direct-current con
SU855879A1 (en) Self-sustained power-diode generator
SU1522370A1 (en) Ac power system
SU1163455A1 (en) A.c.drive
US2620461A (en) Starting arrangement for dynamoelectric machines
SU954265A1 (en) Locomotive auxiliary asyncronous machine drive

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN NOVEMBER 2000