NO165682B - POLYMERS OR OLIGOMER CYCLOPENTADIA DERIVATIVES AND THE PREPARATION AND APPLICATION OF THESE. - Google Patents

POLYMERS OR OLIGOMER CYCLOPENTADIA DERIVATIVES AND THE PREPARATION AND APPLICATION OF THESE. Download PDF

Info

Publication number
NO165682B
NO165682B NO864945A NO864945A NO165682B NO 165682 B NO165682 B NO 165682B NO 864945 A NO864945 A NO 864945A NO 864945 A NO864945 A NO 864945A NO 165682 B NO165682 B NO 165682B
Authority
NO
Norway
Prior art keywords
approx
weight
cyclopentadiene
sand
mixture
Prior art date
Application number
NO864945A
Other languages
Norwegian (no)
Other versions
NO864945L (en
NO165682C (en
Inventor
Bruce Alan Gruber
Heimo Josef Langer
William Rexford Dunnavant
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/722,498 external-priority patent/US4636537A/en
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Publication of NO864945L publication Critical patent/NO864945L/en
Publication of NO165682B publication Critical patent/NO165682B/en
Publication of NO165682C publication Critical patent/NO165682C/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Teknisk område Technical area

Den foreliggende oppfinnelse angår nye polymere cyclopentadienderivater som er spesielt anvendbare i bindemidler. Slike midler er herdbåre til en herdnet tilstand ved normale værelsetemperaturer og ved forhøyede temperaturer. Midlene er istand til å herdes ved normale værelsetemperaturer ved hjelp av et gassformig-- herdemiddel eller en sur katalysator innarbeidet i bindemidlet. Derivater ifølge den foreliggende oppfinnelse er også istand til å bli tverrbundet med polyisocyanater. Materialene ifølge den foreliggende oppfinnelse er spesielt anvendbare som bindemidler for støperier. Den foreliggende oppfinnelse angår også en fremgangsmåte for fremstilling av de polymere derivater av cyclopentadien. The present invention relates to new polymeric cyclopentadiene derivatives which are particularly useful in binders. Such agents are curable to a hardened state at normal room temperatures and at elevated temperatures. The agents are able to be cured at normal room temperatures using a gaseous curing agent or an acidic catalyst incorporated into the binder. Derivatives according to the present invention are also capable of being cross-linked with polyisocyanates. The materials according to the present invention are particularly useful as binders for foundries. The present invention also relates to a method for producing the polymeric derivatives of cyclopentadiene.

Teknikkens stand State of the art

Innen støpeteknikken blir kjerner og former fremstilt for å lage metallstøpegods i alminnelighet fremstilt fra formede, herdede blandinger av aggregatmateriale (f.eks. Within the casting technique, cores and molds are produced to make metal castings generally produced from shaped, hardened mixtures of aggregate material (e.g.

sand) og et bindemiddel. Én av de foretrukne métoder for fremstilling av disse sandkjerner innbefatter de grunnleggende trinn at sanden blandes med et harpiksbindemiddel og en herdekatalysator, blandingen formes til den ønskede form og får herde og størkne ved værelsetemperatur uten varmetil-førsel. Harpikser som er anvendbare for denne metode innbefatter furfurylalkohol-formaldehydpolymerer, furfurylalkohol-urea-formaldehydpolymerer, alkylisocyanatharpikser og natrium-silikatbindemidler. En slik metode blir vanligvis betegnet som en "ikke-brennings"-prosess. sand) and a binder. One of the preferred methods for producing these sand cores includes the basic steps of mixing the sand with a resin binder and a curing catalyst, forming the mixture into the desired shape and allowing it to harden and solidify at room temperature without the addition of heat. Resins useful for this method include furfuryl alcohol-formaldehyde polymers, furfuryl alcohol-urea-formaldehyde polymers, alkyl isocyanate resins, and sodium silicate binders. Such a method is usually referred to as a "non-burning" process.

En annen anvendt foretrukken metode innbefatter de grunnleggende trinn at aggregatet blandes med et harpiksbindemiddel, blandingen formes til den ønskede form, og den formede blanding herdes ved å lede en gassformig katalysator gjennom denne. Denne metode er ofte betegnet som "kald-kasse"-metoden. Another preferred method used includes the basic steps of mixing the aggregate with a resin binder, forming the mixture into the desired shape, and curing the formed mixture by passing a gaseous catalyst through it. This method is often referred to as the "cold case" method.

En annen anvendt metode er betegnet som "varmkasse"-metoden som innbefatter anvendelse av forhøyede temperaturer, som fra 107°C til 260°C for å bevirke herding av bindemidlet. Another method used is termed the "hot box" method which involves the use of elevated temperatures, such as from 107°C to 260°C to effect curing of the binder.

Bindemidler som er egnede for anvendelse i slike prosesser må oppvise en rekke viktige karakteristika. For eksempel må bindemidlene være istand til å bibringe den formede gjenstand forholdsvis høye styrkeegenskaper og de må være istand ti 1 å herde i betraktelig grad ved normale værelsetemperaturer for å være egnede for "ikke-brennings"-og "kaldkasse"-metodene. Binders that are suitable for use in such processes must exhibit a number of important characteristics. For example, the binders must be able to impart relatively high strength properties to the shaped article and they must be able to harden to an appreciable extent at normal room temperatures to be suitable for the "non-firing" and "cold box" methods.

Da dessuten herding av bindemidlene finner sted mens de foreligger i form av et tynt lag av film på aggregatet og aggregatet også kan virke som en varmebrønn, forløper herdingen ikke nødvendigvis på samme måte som når bindemidlet herdes i bulk. Dessuten må støpekjerner og -former bibe-holde styrkeegenskapene inntil metallet størkner i formen, men de må tape slike egenskaper på grunn av at de er utsatt for høyere temperaturer, slik at efter størkning av metallet kan kjernene eller formene lett brytes ned for tømming eller fjernelse fra støpestykket. Tilveiebringelse av nye bindemidler for støpeanvendelser og som inneholder de nødvendige egenskaper, er derfor ganske vanskelig. Dette problem blir mer akutt når formålet er et forholdsvis rimelig bindemiddel. Since, moreover, curing of the binders takes place while they are present in the form of a thin layer of film on the aggregate and the aggregate can also act as a heat well, the curing does not necessarily proceed in the same way as when the binder is cured in bulk. In addition, casting cores and molds must retain their strength properties until the metal solidifies in the mold, but they must lose such properties due to being exposed to higher temperatures, so that after solidification of the metal, the cores or molds can be easily broken down for emptying or removal from the casting. The provision of new binders for casting applications that contain the necessary properties is therefore quite difficult. This problem becomes more acute when the purpose is a relatively inexpensive binder.

Det har også vist seg at fulvener og/eller fulven-forpolymerer kan anvendes som bindemidler for støpeformål, som beskrevet i US patent 4246167. Anvendelsen av slike fulvener har imidlertid ikke vært fullstendig tilfreds-stillende da disse er noe utsatt for nedbrytning av atmosfærisk oxygen og har en utiltalende lukt. It has also been shown that fulvenes and/or fulvene prepolymers can be used as binders for casting purposes, as described in US patent 4246167. However, the use of such fulvenes has not been completely satisfactory as these are somewhat susceptible to degradation by atmospheric oxygen and has an unpleasant smell.

Dessuten er i US patent 4246167 visse derivater av cyclopentadien og/eller av methylcyclopentadien beskrevet som har forbedret motstand mot atmosfærisk oxygen og redusert lukt sammenlignet med de ovenfor omtalte fulvener. Moreover, in US patent 4246167 certain derivatives of cyclopentadiene and/or of methylcyclopentadiene are described which have improved resistance to atmospheric oxygen and reduced odor compared to the above mentioned fulvenes.

I US patent 4483961 er polymere cyclopentadienderivater beskrevet som har større erosjonsmotstand sammenlignet med anvendelsen av fulvenene og cyclopentadienderivatene som er nevnt ovenfor. In US patent 4483961 polymeric cyclopentadiene derivatives are described which have greater erosion resistance compared to the use of the fulvens and cyclopentadiene derivatives mentioned above.

Oppsummering av oppfinnelsen Summary of the invention

Den foreliggende oppfinnelse angår nye polymere The present invention relates to new polymers

derivater av cyclopentadien og/eller av methylsubstituert cyclopentadien. derivatives of cyclopentadiene and/or of methyl-substituted cyclopentadiene.

I henhold til oppfinnelsen tilveiebringes også en fremgangsmåte for fremstilling av visse polymere derivater av cyclopentadien og/eller av methylsubstituert cyclopentadien. According to the invention, a method for the production of certain polymeric derivatives of cyclopentadiene and/or of methyl-substituted cyclopentadiene is also provided.

Den foreliggende oppfinnelse angår også anvendelse av The present invention also relates to the use of

visse polymere derivater av cyclopentadien og/eller av methylsubstituert cyclopentadien i bindemiddelblandinqer og spesielt i bindemiddelblandinger for støperier. certain polymeric derivatives of cyclopentadiene and/or of methyl substituted cyclopentadiene in binder mixtures and especially in binder mixtures for foundries.

Polymerene ifølge den foreliggende oppfinnelse har The polymers according to the present invention have

i fravær av katalysator øket bestandighet mot for tidlig polymerisasjon på grunn av oxygen, som atmosfærisk oxygen. in the absence of catalyst increased resistance to premature polymerization due to oxygen, such as atmospheric oxygen.

Den foreliggende oppfinnelse gjør det dessuten mulig The present invention also makes it possible

å tilveiebringe polymerer som kan herdes ved hjelp av en rekke metoder. to provide polymers which can be cured by a variety of methods.

Polymerene ifølge den foreliggende oppfinnelse har The polymers according to the present invention have

dessuten redusert lukt sammenlignet med fulvenene og cyclopentadienderivatene som er omtalt ovenfor, og innbefattende slike som er beskrevet i den samtidig verserende US søknad moreover, reduced odor compared to the fulvenes and cyclopentadiene derivatives discussed above, and including those described in the co-pending US application

nr. 575204. Når dessuten polymerene ifølge den foreliggende oppfinnelse anvendes i en bindemiddelblanding for formede gjenstander, oppviser disse i det vesentlige ingen erosjons- No. 575204. Furthermore, when the polymers according to the present invention are used in a binder mixture for shaped objects, these exhibit essentially no erosion

tilbøyelighet. bent.

Polymerene ifølge den foreliggende oppfinnelse gir dessuten når de anvendes i en bindemiddelblanding for støpeformer, god overflatefinish for metalloverflaten i støpeformen. Dessuten er redusert røk blitt iakttatt i jernstøpegods når støpeformen med polymerene ifølge den foreliggende oppfinnlse anvendes. The polymers according to the present invention also provide, when used in a binder mixture for moulds, a good surface finish for the metal surface in the mould. Furthermore, reduced smoke has been observed in iron castings when the mold with the polymers according to the present invention is used.

Den foreliggende oppfinnelse angår polymert eller oligo-mert cyclopentadienderivat som er særpreget ved at det har til-bakevendende enheter med formelen I, eller blandinger derav: The present invention relates to polymeric or oligomeric cyclopentadiene derivative which is characterized in that it has repeating units of the formula I, or mixtures thereof:

hvori hver R er en monofunksjonell substituent valgt fra hydrogen, methyl, HCi=R2/ eller eller en difunksjonell sammenbindende enhet hver er individuelt hydrogen eller en alkylgruppe med 1-4 carbonatomer, R2 er methylen eller ethyliden, R^ er hydrogen eller methyl eller ethyl, forutsatt at minst én av R-gruppene er når n er 2 og at minst to av R-gruppene på forskjellige carbonatomer er wherein each R is a monofunctional substituent selected from hydrogen, methyl, HCi=R2/ or or a difunctional linking unit each is individually hydrogen or an alkyl group of 1-4 carbon atoms, R2 is methylene or ethylidene, R^ is hydrogen or methyl or ethyl , provided that at least one of the R groups is when n is 2 and that at least two of the R groups on different carbon atoms are

når n er større enn 2 og at minst tre av de nevnte R-grupper er hydrogen og hvori n er fra 2 til 20. when n is greater than 2 and that at least three of the aforementioned R groups are hydrogen and in which n is from 2 to 20.

Den foreliggende oppfinnelse angår også anvendelse av et polymert cyclopentadienderivat ifølge oppfinnelsen i herdbare blandinger som inneholder en katalytisk mengde av en sur katalysator med en pKa av ca. 4 eller derunder eller et organisk polyisocyanat i en for herding tilstrekkelig mengde, fortrinnsvis et aromatisk polyisocyanat. Den sure katalysator betraktes som en protondonator og blir innarbeidet i blandingen før formningen eller den tilveiebringes ved å lede en gass gjennom den formede, blanding. The present invention also relates to the use of a polymeric cyclopentadiene derivative according to the invention in curable mixtures containing a catalytic amount of an acidic catalyst with a pKa of approx. 4 or less or an organic polyisocyanate in an amount sufficient for curing, preferably an aromatic polyisocyanate. The acid catalyst is considered a proton donor and is incorporated into the mixture prior to forming or is provided by passing a gas through the formed mixture.

Anvendelsen ifølge oppfinnelsen er fortrinnsvis i formblandinger som innbefatter en hovedmengde av' aggregat og en effektiv bindende mengde av opp til 40 vekt%: av aggregatet av et derivat ifølge oppfinnelsen og et herde.^ middel. The application according to the invention is preferably in molding mixtures which include a main amount of aggregate and an effective binding amount of up to 40% by weight of the aggregate of a derivative according to the invention and a hardening agent.

Den foreliggende oppfinnelse angår også en fremgangsmåte for fremstilling av et polymert cyclopentadienderivat ifølge oppfinnelsen, og fremgangsmåten er særpreget ved at , den omfatter omsetning av cyclopentadien eller methylcyclopentadien,. eller begge, med et aldehyd med 1-5 carbonatomer i nærvær av fra 0,004 til 0,007 mol av en basisk katalysator med en pKb av 7-11, fortrinnsvis KOH, pr. mol av det nevnte cyclopentadien, methylcyclopentadien eller begge ved en temperatur av fra 20°C til 40°C. The present invention also relates to a method for the production of a polymeric cyclopentadiene derivative according to the invention, and the method is characterized by the fact that it comprises reaction of cyclopentadiene or methylcyclopentadiene. or both, with an aldehyde of 1-5 carbon atoms in the presence of from 0.004 to 0.007 mol of a basic catalyst with a pKb of 7-11, preferably KOH, per moles of said cyclopentadiene, methylcyclopentadiene or both at a temperature of from 20°C to 40°C.

Reaksjonen blir vanligvis avsluttet i løpet av fra The reaction is usually completed within from

4 timer til 2 4 timer, f.eks. fra 4 timer til 12 timer. 4 hours to 2 4 hours, e.g. from 4 hours to 12 hours.

Beste og forskjellige måter fbr^ utførelse av oppfinnelsen Best and Different Modes fbr^ Carrying Out the Invention

De polymere eller oligomere cyclopentadienderivater ifølge den foreliggende oppfinnelse er representert ved de tilbake-vendende enheter med formelen I nedenfor,eller blandinger derav*. The polymeric or oligomeric cyclopentadiene derivatives according to the present invention are represented by the recurring units of formula I below, or mixtures thereof*.

I den ovenstående formel I er n fra 2 til 20, fortrinnsvis 2 til 10, og mest foretrukket fra 3 til 6. In the above formula I, n is from 2 to 20, preferably from 2 to 10, and most preferably from 3 to 6.

Den foreliggende fremgangsmåte utføres i nærvær av fra 0,004 til 0,007 mol av en basisk katalysator pr. mol cyclopentadien eller methylcyclopentadien, eller begge. Dersom de anvendte katalysatormenger er betydelig større enn dem som er omtalt ovenfor, vil det oppnådde produkt ikke inneholde den type av etherbindinger som er en betingelse The present process is carried out in the presence of from 0.004 to 0.007 mol of a basic catalyst per moles of cyclopentadiene or methylcyclopentadiene, or both. If the amounts of catalyst used are significantly greater than those mentioned above, the product obtained will not contain the type of ether bonds which is a condition

ifølge den foreliggende oppfinnelse (f.eks, according to the present invention (eg,

Eksempler på endel basiske katalysatorer innbefatter: sterke baser (f.eks. KOH), aminer og basiske ionebyttehar-pikser. Denne reaksjon blir utført ved temperaturer av fra 20°C til 40°C. I alminnelighet blir fra 0,1 til 2,5 mol aldehyd, og fortrinnsvis fra 0,5 til 2 mol Examples of single basic catalysts include: strong bases (eg, KOH), amines, and basic ion exchange resins. This reaction is carried out at temperatures of from 20°C to 40°C. In general, from 0.1 to 2.5 mol of aldehyde, and preferably from 0.5 to 2 mol

aldehyd, anvendt for hvert mol cyclopentadien og/eller methylcyclopentadien. Denne reaksjon blir fortrinnsvis ut-ført i en alkoholisk oppløsning. Eksempler på alkoholer er methylalkohol, ethylalkohol, isopropylalkohol og furfurylalkohol. Reaksjonen tar som regel fra 4 til 24 timer. Reaksjonen blir vanligvis utført under atmosfærisk trykk. Imidlertid kan høyere eller lavere trykk om ønsket anvendes. aldehyde, used for each mole of cyclopentadiene and/or methylcyclopentadiene. This reaction is preferably carried out in an alcoholic solution. Examples of alcohols are methyl alcohol, ethyl alcohol, isopropyl alcohol and furfuryl alcohol. The reaction usually takes from 4 to 24 hours. The reaction is usually carried out under atmospheric pressure. However, higher or lower pressures can be used if desired.

Når det anvendte aldehyd er formaldehyd, blir dette fortrinnsvis anvendt som paraformaldehyd. Paraformaldehyd er en i det vesentlige vannfri kilde for formaldehyd og er en blanding av polyoxymethylenglycol som vanligvis inneholder fra 90 vekt% til 99 vekt% formaldehyd idet resten hovedsakelig består av fritt og kombinert vann så lenge blandingen fremdeles er et fast materiale. Som regel inneholder kom-mersielle kvaliteter av paraformaldehyd fra 91% til 98% formaldehyd. Paraformaldehyds kjemiske sammensetning kan uttrykkes ved den følgende formel: When the aldehyde used is formaldehyde, this is preferably used as paraformaldehyde. Paraformaldehyde is an essentially anhydrous source of formaldehyde and is a mixture of polyoxymethylene glycol that usually contains from 90% by weight to 99% by weight of formaldehyde, with the remainder mainly consisting of free and combined water as long as the mixture is still a solid material. As a rule, commercial grades of paraformaldehyde contain from 91% to 98% formaldehyde. Paraformaldehyde's chemical composition can be expressed by the following formula:

hvori n er lik fra 8 til 100. Normalt inneholder hoved-parten av polyoxymethylenglycolene i paraformaldehyd over 12 formaldehydenheter pr. molekyl. Paraformaldehyd har et smeltepunkt av fra 120°C til 170°C. in which n is equal to from 8 to 100. Normally, the majority of the polyoxymethylene glycols in paraformaldehyde contain more than 12 formaldehyde units per molecule. Paraformaldehyde has a melting point of from 120°C to 170°C.

Selvfølgelig kan andre former som er istand til å tilføre formaldehyd til reaksjonsmassen, som formaldehyd som sådant, formaldehyd i form av en alkoholisk oppløsning, som en methanoloppløsning, og trioxan, anvendes. Of course, other forms capable of adding formaldehyde to the reaction mass, such as formaldehyde as such, formaldehyde in the form of an alcoholic solution, such as a methanol solution, and trioxane can be used.

Forekomsten av The occurrence of

i polymeren er avhengig av in the polymer is dependent on

reaksjonsbetingelser og spesielt av den dehydratiserings-grad av produktet som forekommer. reaction conditions and especially of the degree of dehydration of the product that occurs.

Ved å følge de ovenstående metoder blir polymere derivater ifølge den foreliggende oppfinnelse, som er herdnende, oppnådd. De polymere derivater har molekylvekter opp til 2000, og n i strukturen I er et heltall fra 2 til 20. De polymere derivater har fortrinnsvis gjennomsnittlige molekylvekter av fra 20 til 1000. By following the above methods, polymer derivatives according to the present invention, which are curable, are obtained. The polymeric derivatives have molecular weights of up to 2000, and n in the structure I is an integer from 2 to 20. The polymeric derivatives preferably have average molecular weights of from 20 to 1000.

Polymerene er fortrinnsvis tilstrekkelig flytende slik at når de anvendes som sådanne eller i blanding med fortynningsmidlene, vil de flyte slik at de belegger det anvendte aggregat. The polymers are preferably sufficiently liquid so that when they are used as such or in admixture with the diluents, they will flow so that they coat the aggregate used.

De polymere derivater oppnådd i henhold til den foreliggende oppfinnelse har en lysere farve enn de polymere derivater fremstilt i henhold til de ovenfor omtalte tid-ligere patentsøknader og patenter. The polymeric derivatives obtained according to the present invention have a lighter color than the polymeric derivatives produced according to the earlier patent applications and patents mentioned above.

Det bør ytterligere bemerkes at ved identifisering av det polymere derivat i henhold til formel I er det ikke ment å angi at materialer med andre strukturer er fullstendig fraværende fra blandingen. It should further be noted that in identifying the polymeric derivative according to formula I, it is not intended to indicate that materials with other structures are completely absent from the mixture.

De polymere cyclopentadienderivater ifølge den foreliggende oppfinnelse er spesielt anvendbare i bindemiddelblandinger og spesielt i støpebindemiddelblandinger. Blandinger av de polymere cyclopentadienderivater kan anvendes. The polymeric cyclopentadiene derivatives according to the present invention are particularly useful in binder mixtures and especially in casting binder mixtures. Mixtures of the polymeric cyclopentadiene derivatives can be used.

Polymerene ifølge den foreliggende oppfinnelse oppviser betydelig motstand mot forhøyede temperaturer og mot erosjon under støping når de anvendes i en støpeform. The polymers according to the present invention exhibit considerable resistance to elevated temperatures and to erosion during molding when used in a mold.

Dessuten er redusert røkdannelse i jernstøpegods blitt iakttatt under støpingen av jern. Polymerene ifølge den foreliggende oppfinnelse har også redusert lukt. In addition, reduced smoke formation in iron castings has been observed during the casting of iron. The polymers according to the present invention also have reduced odour.

Dessuten inneholder bindemiddelblandingen ifølge den In addition, the binder mixture contains according to it

foreliggende oppfinnelse en katalysator eller herdemiddel. present invention a catalyst or curing agent.

En spesiell katalysatortype er .en sur katalysator. A special type of catalyst is an acid catalyst.

De anvendte sure katalysatorer har en pKa-verdi av 4 eller derunder og er protondonatorer og innbefatter organiske syrer, som maursyre, oxalsyre og de organisk substituerte sulfonsyrer, som benzensulfonsyre og toluensulfonsyre, og Lewis-syrer, som BF^. De foretrukne sure katalysatorer er de organisk substituerte sulfonsyrer. Den sure katalysator kan tilveiebringes i støpeblandingen før formning (f.eks. "ikke-brennings"- og "varmkasse"-prosesser) og/eller ved å lede en gass gjennom den formede blanding, som en syre som sådan eller en gass, som SC^, som sammen med en komponent i den formede blanding (f.eks. et peroxyd) danner en syre på stedet. The acid catalysts used have a pKa value of 4 or less and are proton donors and include organic acids, such as formic acid, oxalic acid and the organically substituted sulfonic acids, such as benzenesulfonic acid and toluenesulfonic acid, and Lewis acids, such as BF 2 . The preferred acid catalysts are the organically substituted sulfonic acids. The acidic catalyst may be provided in the molding mixture prior to molding (eg, "non-burning" and "hot box" processes) and/or by passing a gas through the molded mixture, such as an acid per se or a gas, which SC^, which together with a component of the formed mixture (e.g. a peroxide) forms an acid in situ.

Den sure katalysator er dersom den allerede foreligger i blandingen, før formning, i alminnelighet tilstede i mengder opp til høyst 25 vekt% basert på den anvendte mengde bindemiddel. Minstemengden av sur katalysator er som regel 4% basert på den anvendte bindemiddelmengde. Når en "kald-kasse"-prosess anvendes, er som regel opp til 5 sekunders gassingstid tilstrekkelig. The acidic catalyst is, if it is already present in the mixture, before shaping, generally present in amounts up to a maximum of 25% by weight based on the amount of binder used. The minimum amount of acid catalyst is usually 4% based on the amount of binder used. When a "cold case" process is used, a gassing time of up to 5 seconds is usually sufficient.

Dessuten kan bindemiddelblandingen ifølge den foreliggende oppfinnelse anvendes i en "varmkasse"-prosess ved temperaturer av fra 148°C til 204°C. Moreover, the binder mixture according to the present invention can be used in a "hot box" process at temperatures of from 148°C to 204°C.

Polymere cyclopentadienderivater ifølge den foreliggende oppfinnelse og spesielt slike med HCOH-grupper kan også Polymeric cyclopentadiene derivatives according to the present invention and especially those with HCOH groups can also

herdes til herdnende materialer ved reaksjon med organiske polyisocyanater. is hardened to hardenable materials by reaction with organic polyisocyanates.

De anvendbare isocyanater omfatter alifatiske, cyclo-alifatiske eller aromatiske polyisocyanater med fortrinnsvis fra 2 til 5 isocyanatgrupper. Om ønsket kan blandinger av polyisocyanater anvendes. Mindre foretrukket kan iso-cyanatforpolymerer dannet ved å reagere et overskudd av polyisocyanat med en flerverdig alkohol (f.eks. en forpoly-mer av toluendiisocyanat og ethylenglycol) anvendes. Egnede polyisocyanater innbefatter de alifatiske polyisocyanater som hexamethylendiisocyanat, alicycliske polyisocyanater som 4,4'-dicyclohexylmethandiisocyanat og aromatiske polyisocyanater som 2,4- og 2,6-toluendiisocyanat, difenylmethyl-diisocyanat og dimethylderivatene derav. Ytterligere eksempler på egnede polyisocyanater er 1,5-nafthalendiiso-cyanat, trifenylmethantriisocyanat, xylylendiisocyanat og methylderivatene derav, polymethylenpolyfenolisocyanater, The isocyanates that can be used include aliphatic, cycloaliphatic or aromatic polyisocyanates with preferably from 2 to 5 isocyanate groups. If desired, mixtures of polyisocyanates can be used. Less preferably, isocyanate prepolymers formed by reacting an excess of polyisocyanate with a polyhydric alcohol (eg a prepolymer of toluene diisocyanate and ethylene glycol) can be used. Suitable polyisocyanates include the aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and aromatic polyisocyanates such as 2,4- and 2,6-toluene diisocyanate, diphenylmethyl diisocyanate and the dimethyl derivatives thereof. Further examples of suitable polyisocyanates are 1,5-naphthalene diisocyanate, triphenylmethane diisocyanate, xylylene diisocyanate and their methyl derivatives, polymethylene polyphenol isocyanates,

klorfeny,len-2 , 4-diisocyanat, og lignende. chlorophenylene-2,4-diisocyanate, and the like.

De foretrukne polyisocyanater er aromatiske polyisocyanater og spesielt difenylmethandiisocyanat, trifenylmethantriisocyanat, komplekse handelstilgjengelige preparater som inneholder polymere isocyanater og selges under slike varemerker som "PAPI", "Mondur MR" og "NCO-120", og blandinger derav. The preferred polyisocyanates are aromatic polyisocyanates and especially diphenylmethane diisocyanate, triphenylmethane triisocyanate, complex commercially available preparations containing polymeric isocyanates and sold under such trademarks as "PAPI", "Mondur MR" and "NCO-120", and mixtures thereof.

I alminnelighet vil polyisocyanatet bli anvendt innen et område av fra 10-500 vekt% polyisocyanat basert på In general, the polyisocyanate will be used within a range of from 10-500% by weight polyisocyanate based on

vekten av det polymere cyclopentadienderivat. Fortrinnsvis anvendes fra 20 til 300 vekt% polyisocyanat på den samme basis. Polyisocyanatet anvendes i flytende form. Flytende polyisocyanater kan anvendes i ufortynnet form. Faste eller viskøse polyisocyanater blir mest bekvemt anvendt i form av oppløsninger i organisk oppløsningsmiddel, idet oppløsnings-midlet er tilstede innen et område av opp til 80 vekt% av oppløsningen. weight of the polymeric cyclopentadiene derivative. Preferably, from 20 to 300% by weight of polyisocyanate is used on the same basis. The polyisocyanate is used in liquid form. Liquid polyisocyanates can be used in undiluted form. Solid or viscous polyisocyanates are most conveniently used in the form of solutions in organic solvent, the solvent being present within a range of up to 80% by weight of the solution.

Herdingen kan understøttes ved foruten polyisocyanatet å anvende et tertiært amin og/eller.en base med en pKb-verdi av fra 4 til 11. Det tertiære amin er fortrinnsvis en væske, som triethylamin. The curing can be supported by using, in addition to the polyisocyanate, a tertiary amine and/or a base with a pKb value of from 4 to 11. The tertiary amine is preferably a liquid, such as triethylamine.

Selv om ammoniakk, primære aminer og sekundære aminer oppviser en viss aktivitet ved at de forårsaker en reaksjon ved værelsetemperatur, er de betraktelig dårligere enn de tertiære aminer. Funksjonsmessig er substituerte aminer, som dimethylethanolaminer, innbefattet innen omfanget av tertiære aminer og kan anvendes som herdemidler. Funksjonel-le grupper som ikke innvirker på virkningen av det tertiære amin, er hydroxylgrupper, alkoxygrupper, amino- og alkyl-aminogrupper, ketoxygrupper, thiogrupper og lignende. Although ammonia, primary amines and secondary amines show some activity in that they cause a reaction at room temperature, they are considerably inferior to the tertiary amines. Functionally, substituted amines, such as dimethylethanolamines, are included within the scope of tertiary amines and can be used as curing agents. Functional groups that do not influence the action of the tertiary amine are hydroxyl groups, alkoxy groups, amino and alkyl-amino groups, ketoxy groups, thio groups and the like.

Basekatalysatorene med en pKb-verdi av fra 7 til 11 The base catalysts with a pKb value of from 7 to 11

er i alminnelighet organiske forbindelser som inneholder ett eller flere nitrogenatomer. Foretrukne materialer er heterocycliske forbindelser som inneholder minst ett nitrogenatom i ringstrukturen. Spesifikke eksempler på baser som har pKb-verdier innen det nødvendige område innbefatter 4-alkylpyridiner hvori alkylgruppen har fra 1 til 4 carbonatomer, isckinolin, arylpyridiner som fenylpyridin, pyridin, are generally organic compounds containing one or more nitrogen atoms. Preferred materials are heterocyclic compounds containing at least one nitrogen atom in the ring structure. Specific examples of bases having pKb values within the required range include 4-alkylpyridines in which the alkyl group has from 1 to 4 carbon atoms, isquinoline, arylpyridines such as phenylpyridine, pyridine,

acridin, 2-methoxypyridin, pyridazin, 3-klorpyridin, kinolin, N-methylimidazol, 4,4-dipyridin, fenylpropylpyridin, 1-methyl-benzimidazol og 1,4-thiazin. acridine, 2-methoxypyridine, pyridazine, 3-chloropyridine, quinoline, N-methylimidazole, 4,4-dipyridine, phenylpropylpyridine, 1-methyl-benzimidazole and 1,4-thiazine.

Tatt i betraktning den varierende katalytiske aktivitet og den varierende katalytiske virkning som er ønsket, vil katalysatorkonsentrasjonene variere sterkt. I alminnelighet vil jo lavere pKb-verdien er, desto kortere det lave reak-tivitetsintervall for blandingen og desto hurtigere og mer fullstendig herdingen være. Oppløsningsmidler og enhver surhet som er tilstede i tilsatte bestanddeler, som sand, Considering the varying catalytic activity and the varying catalytic performance desired, the catalyst concentrations will vary greatly. In general, the lower the pKb value, the shorter the low reactivity interval for the mixture and the faster and more complete the curing will be. Solvents and any acidity present in added ingredients, such as sand,

kan påvirke den katalytiske aktivitet. I alminnelighet vil imidlertid katalysatorkonsentrasjoner variere fra 0,01 vekt% til 10 vekt% av det polymere cyclopentadien. can affect the catalytic activity. Generally, however, catalyst concentrations will vary from 0.01% to 10% by weight of the polymeric cyclopentadiene.

De polymere cyclopentadienderivater kan anvendes i kombinasjon med fulvener av den ovenfor omtalte type og/eller med disubstituerte cyclopentadienderivater og/eller for-polymerer derav, som omtalt i US patent 4412088, og/eller med andre polymere cyclopentadienderivater, som de som er beskrevet i US patent nr. 4529771 og US patent 4483961, og/eller med furfurylalkohol og/eller furanforpolymerstøpe-bindemiddelsystemer og/eller fenoliske materialer som fenol, substituerte fenoler eller fenolformaldehydkondensater. The polymeric cyclopentadiene derivatives can be used in combination with fulvens of the type mentioned above and/or with disubstituted cyclopentadiene derivatives and/or pre-polymers thereof, as described in US patent 4412088, and/or with other polymeric cyclopentadiene derivatives, such as those described in US patent no. 4529771 and US patent 4483961, and/or with furfuryl alcohol and/or furan prepolymer casting binder systems and/or phenolic materials such as phenol, substituted phenols or phenol formaldehyde condensates.

Furanforpolymerene innbefatter reaksjonsprodukter av furfurylalkohol og av aldehyder, som formaldehyd. Dessuten kan aldehyd-furfurylalkoholreaksjonsproduktet modifiseres med varierende mengder av reaktanter, som urea. Molforholdene mellom formaldehyd og furfurylalkohol som kan anvendes, kan variere sterkt. For eksempel kan furanpolymeren fremstilles fra 0,4 til 4 mol furfurylalkohol pr. mol formaldehyd, og fortrinnsvis fra 0,5 til 2 mol furfurylalkohol pr. mol formaldehyd. The furan prepolymers include reaction products of furfuryl alcohol and of aldehydes, such as formaldehyde. Also, the aldehyde-furfuryl alcohol reaction product can be modified with varying amounts of reactants, such as urea. The molar ratios between formaldehyde and furfuryl alcohol that can be used can vary greatly. For example, the furan polymer can be prepared from 0.4 to 4 moles of furfuryl alcohol per moles of formaldehyde, and preferably from 0.5 to 2 moles of furfuryl alcohol per moles of formaldehyde.

Furanpolymeren som kan anvendes ifølge den foreliggende oppfinnelse, kan være en hvilken som helst av de forskjellige furanpolymerer som vites å være egnede for formning og spesielt for støpeformål. Eksempler på slike furanpolymerer innbefatter dem som fås fra ca. 1 mol urea, fra 0,2 til 2 mol.furfurylalkohol og fra 1 til 3 mol formaldehyd, som beskrevet i US patenter 3222315 og 3247556. Andre egnede furanpolymerer er beskrevet i US patent 3346534. Furanpoly-merene blir vanligvis fremstilt ved polymerisasjon i nærvær av en sur katalysator. Når en furanpolymer anvendes, blir den vanligvis tilsatt sammen med furfurylalkohol. The furan polymer which can be used according to the present invention can be any of the various furan polymers known to be suitable for molding and especially for casting purposes. Examples of such furan polymers include those obtained from ca. 1 mole of urea, from 0.2 to 2 moles of furfuryl alcohol and from 1 to 3 moles of formaldehyde, as described in US patents 3222315 and 3247556. Other suitable furan polymers are described in US patent 3346534. The furan polymers are usually prepared by polymerization in the presence of an acidic catalyst. When a furan polymer is used, it is usually added together with furfuryl alcohol.

Når de polymere cyclopentadienderivater ifølge den foreliggende oppfinnelse anvendes i blanding med andre materialer av den ovenfor omtalte type, som hjelpebindemidler, slike som furfurylalkohol og/eller andre polymere cyclopentadienderivater og/eller disubstituerte cyclopentadienderivater og/eller fulvener og/eller furanpolymerer og/eller fenoliske forbindelser, blir slike polymere cyclopentadienderivater i alminnelighet anvendt i mengder fra 90 vekt% til 10 vekt%, basert på den samlede mengde av polymert cyclopentadienderivat ifølge den foreliggende oppfinneIse~ oy andre materialer som er definert ovenfor. When the polymeric cyclopentadiene derivatives according to the present invention are used in admixture with other materials of the type mentioned above, as auxiliary binders, such as furfuryl alcohol and/or other polymeric cyclopentadiene derivatives and/or disubstituted cyclopentadiene derivatives and/or fulvens and/or furan polymers and/or phenolic compounds , such polymeric cyclopentadiene derivatives are generally used in amounts from 90% by weight to 10% by weight, based on the total amount of polymeric cyclopentadiene derivative according to the present invention and other materials defined above.

Dessuten kan blandingene inneholde en dialkylester med formelen In addition, the mixtures may contain a dialkyl ester of the formula

hvori hver R 3 og R^ individuelt er en alkyl med 1 til 20 carbonatomer og n er et helt tall fra 0 til 4. Esteren kan blandes med bindemidlet og/eller sand og/eller i forbindelse med katalysatoren. Egnede estere innbefatter dimethyl-oxalat, diethyloxalat, dimethylsuccinat, methylethylsuccinat, methyl-n-propylsuccinat, methylisopropylsuccinat, methyl-n-butylsuccinat, diethylsuccinat, ethyl-n-propylsuccinat, diisopropylsuccinat, dibutylsuccinat, dimethylglutarat, methylethylglutarat, methyl-n-butylglutarat, methylisobutyl-glutarat, diethylglutarat, ethyl-n-propylglutarat, diiso-propylglutarat, dibutylglutarat, dimethyladipat, methylethyl-adipat, methy1-n-propyladipat, methylisopropyladipat, di-ethyladipat, dipropyladipat, dibutyladipat, dioctylsuccinat, dioctyladipat, dicapryladipat, dicaprylsuccinat, dicapryl-glutarat, dilauryladipat, dilaurylsuccinat, dilaurylglutarat og malonsyreestere. wherein each R 3 and R 3 is individually an alkyl of 1 to 20 carbon atoms and n is an integer from 0 to 4. The ester may be mixed with the binder and/or sand and/or in conjunction with the catalyst. Suitable esters include dimethyl oxalate, diethyl oxalate, dimethylsuccinate, methylethylsuccinate, methyl-n-propylsuccinate, methylisopropylsuccinate, methyl-n-butylsuccinate, diethylsuccinate, ethyl-n-propylsuccinate, diisopropylsuccinate, dibutylsuccinate, dimethylglutarate, methylethylglutarate, methyl-n-butylglutarate, methylisobutyl -glutarate, diethylglutarate, ethyl-n-propylglutarate, diiso-propylglutarate, dibutylglutarate, dimethyladipate, methylethyladipate, methy1-n-propyladipate, methylisopropyladipate, diethyladipate, dipropyladipate, dibutyladipate, dioctylsuccinate, dioctyladipate, dicapryladipate, dicaprylsuccinate, dicaprylglutarate , dilauryl adipate, dilauryl succinate, dilauryl glutarate and malonic acid esters.

Foretrukne estere er oxalatene, dimethylglutarat som tilgjengelig fra du Pont under handelsbetegnelsen DBE-5, dimethyladipat tilgjengelig fra du Pont under handelsbetegnelsen DBE-6, og blandinger av slike estere som de som er tilgjengelige fra du Pont under handelsbetegnelsen DBE. Preferred esters are the oxalates, dimethyl glutarate as available from du Pont under the trade designation DBE-5, dimethyl adipate available from du Pont under the trade designation DBE-6, and mixtures of such esters such as those available from du Pont under the trade designation DBE.

Andre fortynningsmidler kan om ønsket anvendes og innbefatter Other diluents can be used if desired and include

slike grupper av forbindelser som ketoner, som aceton, methyl-ethylketon og diisoamylketon, ketosyrestere, som ethylaceto- . such groups of compounds as ketones, such as acetone, methyl ethyl ketone and diisoamyl ketone, keto acid esters, such as ethylaceto- .

acetat og methylacetoacetat, og andre estere, som cellosolve-esterne. acetate and methylacetoacetate, and other esters, such as the cellosolve esters.

Fortynningsmidlet kan i alminnelighet anvendes i en The diluent can generally be used in a

mengde av fra 0,5 vekt% til 55 vekt%, og fortrinnsvis fra 10 vekt% til 40 vekt%, av bindemidlet. amount of from 0.5% by weight to 55% by weight, and preferably from 10% by weight to 40% by weight, of the binder.

Når en vanlig støpeform av sandtypen fremstilles, har When a normal sand-type mold is produced, the

det anvendte aggregat en partikkelstørrelse som er til- the aggregate used has a particle size that is

strekkelig storttil å gi en tilstrekkelig porøsitet i støpe- large enough to provide sufficient porosity in the casting

formen til at flyktige materialer vil kunne unnslippe fra formen under støpeoperasjonen. Betegnelsen "støpeformer av vanlig sandtype" som her anvendt skal angi støpeformer som har tilstrekkelig porøsitet til å muliggjøre at flyktige materialer vil unnslippe fra denne under støpeoperasjonen. the mold so that volatile materials will be able to escape from the mold during the casting operation. The term "moulds of ordinary sand type" as used here shall denote molds which have sufficient porosity to enable volatile materials to escape from this during the casting operation.

I alminnelighet vil minst 80 vekt% og fortrinnsvis ca. 90 In general, at least 80% by weight and preferably approx. 90

vekt% av aggregat anvendt for støpeformer ha en gjennom- % by weight of aggregate used for molds have a through-

snittlig partikkelstørrelse ikke under 0,104 mm. average particle size not below 0.104 mm.

Aggregatet for støpeformer har fortrinnsvis en The unit for molds preferably has a

gjennomsnittlig partikkelstørrelse mellom 0,295 og average particle size between 0.295 and

0,104 mm. Det foretrukne aggregat som anvendes for 0.104 mm. The preferred aggregate used for

vanlige støpeformer er siliciumdioxydsand hvori minst 70 common casting forms are silicon dioxide sand in which at least 70

vekt% og fortrinnsvis minst 85 vekt% av sanden er silicium- % by weight and preferably at least 85% by weight of the sand is siliceous

dioxyd. Andre egnede aggregatmaterialer innbefatter zirkon, dioxide. Other suitable aggregate materials include zircon,

olivin, aluminiumsilikatsand, kromittsand og lignende. olivine, aluminum silicate sand, chromite sand and the like.

Når en form lages for presisjonsstøping, har den When a mold is made for precision casting, it has

dominerende del og i alminnelighet minst 80% av aggregatet en gjennomsnittlig partikkelstørrelse ikke over 0,104 mm. Fortrinnsvis har minst 90 vekt% av aggregatet dominant part and generally at least 80% of the aggregate an average particle size not exceeding 0.104 mm. Preferably has at least 90% by weight of the aggregate

for presisjonsstøpeanvendelser en partikkelstørrelse som ikke er større enn 0,104 mm og fortrinnsvis er mellom 0,044 mm og 0,074 mm. foretrukne aggregater som anvendes for presisjonsstøpeformål er smeltet kvarts, zirkonsandkvaliteter, magnesiumsilikatsandkvaliteter, som olivin, og aluminium-silikatsandkvaliteter. for precision casting applications a particle size not greater than 0.104 mm and preferably between 0.044 mm and 0.074 mm. preferred aggregates used for precision casting purposes are fused quartz, zircon sand grades, magnesium silicate sand grades, such as olivine, and aluminum silicate sand grades.

Former for presisjonsstøping er forskjellige fra vanlige støpeformer av sandtypen ved at aggregatet i formene for presisjonsstøping kan være tettere pakket enn aggregatet i former for vanlige støpeformer av sandtypen. Former for presisjonsstøping må derfor oppvarmes før de anvendes for å avdrive flyktig materiale som er tilstede i formnings-blandingen. Dersom de flyktige materialer ikke fjernes fra en presisjonsstøpeform før anvendelse, vil damp som dannes under støpingen diffundere inn i den smeltede smelte fordi formen har en forholdsvis lav porøsitet. Dampdiffusjonen vil nedsette glattheten for presisjonsstøpegjenstandens over-flate . Molds for precision casting differ from ordinary sand-type molds in that the aggregate in the molds for precision casting can be more densely packed than the aggregate in molds for ordinary sand-type moulds. Molds for precision casting must therefore be heated before they are used to drive off volatile material present in the molding mixture. If the volatile materials are not removed from a precision casting mold before use, vapors formed during casting will diffuse into the molten melt because the mold has a relatively low porosity. The vapor diffusion will reduce the smoothness of the precision cast object's surface.

Når et ildfast materiale, som keramikk, fremstilles, har den dominerende andel og minst 8 0 vekt% av det anvend+-e aggregat en gjennomsnittlig partikkelstørrelse under 0, 074 mm og fortrinnsvis ikke større enn 0,044 mm. Fortrinnsvis har minst 90 vekt% av aggregatet for et ildfast materiale en gjennomsnittlig partikkelstørrelse under 0,074 mm og fortrinnsvis ingen som er større enn 0,044 mm. Aggregatet anvendt ved fremstillingen av ildfaste materialer må være istand til å motstå de herdetemperaturer, som slike over 815°C, som er nødvendige for å bevirke sintring for anvendelse . When a refractory material, such as ceramics, is produced, the dominant proportion and at least 80% by weight of the aggregate used has an average particle size below 0.074 mm and preferably no larger than 0.044 mm. Preferably, at least 90% by weight of the aggregate for a refractory material has an average particle size below 0.074 mm and preferably none greater than 0.044 mm. The aggregate used in the production of refractory materials must be able to withstand the curing temperatures, such as those above 815°C, which are necessary to effect sintering for use.

Eksempler på endel egnede aggregater anvendt for fremstilling av ildfaste materialer innbefatter de keramiske materialer, som ildfaste oxyder, carbider, nitrider, og silicider, som aluminiumoxyd, blyoxyd, kromoxyd, zirkonium-oxyd, siliciumdioxyd, siliciumcarbid, titannitrid, bornitrid, molybdendisilicid, og carbonholdige materialer, som grafitt. Blandinger av aggregatene kan også om ønsket anvendes, innbefattende blandinger av metaller og de keramiske materialer. Examples of particularly suitable aggregates used for the production of refractory materials include ceramic materials, such as refractory oxides, carbides, nitrides, and silicides, such as aluminum oxide, lead oxide, chromium oxide, zirconium oxide, silicon dioxide, silicon carbide, titanium nitride, boron nitride, molybdenum disilicide, and carbon-containing materials, such as graphite. Mixtures of the aggregates can also be used if desired, including mixtures of metals and the ceramic materials.

Eksempler på enkelte slipekorn for fremstilling av slipegjenstander innbefatter aluminiumoxyd, siliciumcarbid, borcarbid, corund, granat, smergel og blandinger derav. Kornstørrelsen er av de vanlige kvaliteter slik disse er inndelt av United States Bureau of Standards. Disse slipematerialer og anvendelsen av disse for spesielle arbeidsoppgaver er forstått av fagfolk og er ikke forandret i de slipegjenstander som det tas sikte på ved den foreliggende oppfinnelse. Dessuten kan uorganisk fyllstoff anvendes sammen med slipekornet ved fremstilling av slipegjenstander. Det foretrekkes at minst 85% av de uorganiske fyllstoffer har en gjennomsnittlig partikkelstørrelse ikke over 0,074 mm. Det er mest foretrukket at minst 95% av det uorganiske fyllstoff har en gjennomsnittlig partikkelstør-relse ikke over 0,074 mm. Enkelte uorganiske fyllstoffer innbefatter cryolitt, flusspat, siliciumdioxyd og lignende. Når et organisk fyllstoff anvendes sammen med slipekornet, er det i alminnelighet tilstede i mengder fra 1 til 30 vekt% basert på den samlede vekt av slipekornet og uorganisk fyllstoff. Examples of individual abrasive grains for the production of abrasive articles include aluminum oxide, silicon carbide, boron carbide, corundum, garnet, emery and mixtures thereof. The grain size is of the usual qualities as classified by the United States Bureau of Standards. These abrasive materials and their use for special work tasks are understood by those skilled in the art and have not changed in the abrasive objects which are aimed at by the present invention. In addition, inorganic filler can be used together with the abrasive grain when producing abrasive objects. It is preferred that at least 85% of the inorganic fillers have an average particle size not exceeding 0.074 mm. It is most preferred that at least 95% of the inorganic filler has an average particle size not exceeding 0.074 mm. Certain inorganic fillers include cryolite, fluorspar, silicon dioxide and the like. When an organic filler is used with the abrasive grain, it is generally present in amounts from 1 to 30% by weight based on the combined weight of the abrasive grain and inorganic filler.

I formningsblandinger utgjør aggregatet den hoved-sakelige bestanddel, og bindemidlet utgjør en forholdsvis mindre mengde. For vanlige støpeanvendelser med sandtypen er mengden av bindemiddel i alminnelighet ikke over 10 vekt% og ofte innen området fra 0,5 til 7 vekt%, basert på vekten av aggregatet. Som oftest varierer bindemiddelinnholdet fra 0,6 til 5 vekt%, basert på vekten av aggregatet, i vanlige støpeformer av sandtypen. In molding mixtures, the aggregate is the main component, and the binder is a relatively smaller amount. For common casting applications with the sand type, the amount of binder is generally not more than 10% by weight and often within the range of 0.5 to 7% by weight, based on the weight of the aggregate. Most often, the binder content varies from 0.6 to 5% by weight, based on the weight of the aggregate, in common sand-type moulds.

I former og kjerner for presisjonsstøpeanvendelser er mengden av bindemiddel i alminnelighet ikke over 4 0 vekt% og ofte innen området fra 5 til 20 vekt%, basert på vekten av aggregatet. In molds and cores for precision casting applications, the amount of binder is generally no more than 40% by weight and often in the range of 5 to 20% by weight, based on the weight of the aggregate.

I ildfaste materialer er mengden av bindemiddel i alminnelighet ikke større enn 4 0 vekt% og ofte innen området fra 5 til 20 vekt%, basert på vekten av aggregatet. In refractory materials, the amount of binder is generally not greater than 40% by weight and often within the range from 5 to 20% by weight, based on the weight of the aggregate.

I slipegjenstander er mengden av bindemiddel i alminnelighet ikke større enn 25 vekt% og ofte innen området fra 5 til 15 vekt%, basert på vekten av slipematerialet eller In abrasive articles, the amount of binder is generally not greater than 25% by weight and often in the range from 5 to 15% by weight, based on the weight of the abrasive material or

-kornet. - the grain.

Et nvttig tilsetninasmiddel til bindemiddelblandinqene i visse typer av sand er et silan med den generelle formel: A useful additive to the binder mixtures in certain types of sand is a silane with the general formula:

hvori R' er et hydrocarbonradikal og fortrinnsvis et alkylradikal med fra 1 til 6 carbonatomer og R er en hydrocarbon-gruppe, som en vinylgruppe eller et alkylradikal, et alkoxy-substituert alkylradikal eller et alkylaminsubstituert alkylradikal hvori alkylgruppen har 1-6 carbonatomer. Det ovennevnte silan forbedre r# når det anvendes i konsentrasjoner av fra 0,05 til 2%, basert på blandingens bindemiddelkom-ponent, systemets motstandsdyktighet overfor fuktighet. in which R' is a hydrocarbon radical and preferably an alkyl radical with from 1 to 6 carbon atoms and R is a hydrocarbon group, such as a vinyl group or an alkyl radical, an alkoxy-substituted alkyl radical or an alkylamine-substituted alkyl radical in which the alkyl group has 1-6 carbon atoms. The above silane improves r# when used in concentrations of from 0.05 to 2%, based on the binder component of the mixture, the system's resistance to moisture.

Eksempler på enkelte handelstilgjengelige silaner er Dow Corning Z67040; Union Carbide A187 (gamma-glycidoxy-propyltrimethoxysilan); Union Carbide A1100 (gamma-amino-propyltriethoxysilan); Union Carbide A1120 [N-beta-(amino-ethyl)-gamma-aminopropyltrimethoxysilan] og vinyltriethoxy-silan. Examples of some commercially available silanes are Dow Corning Z67040; Union Carbide A187 (gamma-glycidoxy-propyltrimethoxysilane); Union Carbide A1100 (gamma-amino-propyltriethoxysilane); Union Carbide A1120 [N-beta-(amino-ethyl)-gamma-aminopropyltrimethoxysilane] and vinyltriethoxysilane.

Når blandingene ifølge den foreliggende oppfinnelse anvendes for å fremstille vanlig støpeformer av sandtypen, anvendes de følgende trinn: 1. Dannelse av en støpeblanding som inneholder et aggregat (f.eks. sand) og bindemidlet. 2. Innføring av støpeblandingen i en form eller modell for derved å få den ønskede formede gjenstand. 3. Den formede gjenstand får oppnå en minimumsstyrke i formen, og 4. den formede gjenstand fjernes derefter fra formen eller modellen slik at den får herde ytterligere, hvorved oppnås en hård, fast, herdet formet gjenstand for støping. When the mixtures according to the present invention are used to produce ordinary molds of the sand type, the following steps are used: 1. Formation of a molding mixture containing an aggregate (e.g. sand) and the binder. 2. Introduction of the casting mixture into a mold or model in order to thereby obtain the desired shaped object. 3. The formed object is allowed to attain a minimum strength in the mold, and 4. the formed object is then removed from the mold or model to further cure, thereby obtaining a hard, solid, hardened shaped object for casting.

Støpeblandingen kan eventuelt inneholde andre bestanddeler, som jernoxyd, malte linfibre, trekornsorter, bek, ildfaste mel og lignende. The casting mixture may optionally contain other ingredients, such as iron oxide, ground flax fibres, wood grains, pitch, refractory flour and the like.

Systemene kan ifølge oppfinnelsen an- According to the invention, the systems can

vendes for støping av jerntypemetallene med forholdsvis høyt smeltepunkt, som jern og stål, som støpes ved ca. 1371°C, såvel som for støping av metaller av ikke-jerntypen med forholdsvis lavt smeltepunkt, som aluminium, kobber og kobberlegeringer innbefattende messing. turned for casting the iron-type metals with a relatively high melting point, such as iron and steel, which are cast at approx. 1371°C, as well as for casting non-ferrous metals with a relatively low melting point, such as aluminium, copper and copper alloys including brass.

For ytterligere å forstå den foreliggende oppfinnelse fremsettes de følgende ikke-begrensende eksempler som angår støping. Alle deler er basert vekt dersom det motsatte ikke er angitt. Støpeprøvene herdes ved hjelp av den såkalte "ikke-brennings-prosess" dersom det motsatte ikke er angitt". To further understand the present invention, the following non-limiting examples relating to casting are presented. All parts are based on weight unless otherwise stated. The casting samples are hardened using the so-called "non-firing process" if the opposite is not stated".

Eksemplene 1-5 representerer fremstillinger av Examples 1-5 represent representations of

herdbare polymere cyclopentanderivater ifølge den foreligg- curable polymeric cyclopentane derivatives according to the present

ende oppfinnelse. end invention.

Eksempel 1 Example 1

Ca. 200 ml methanol tilsettes til en 1 liters 3-halset About. 200 ml of methanol is added to a 1 liter 3-neck

kolbe forsynt med en omrører, kondensator og termometer, flask fitted with a stirrer, condenser and thermometer,

efterfulgt med god omrøring av ca. 300 g cyclopentadien _og ca. 263 g paraformaldehyd. Dette svarer til et molforhold mellom cyclopentadien og formaldehyd av 1 til 1. followed by good stirring of approx. 300 g cyclopentadiene _and approx. 263 g of paraformaldehyde. This corresponds to a molar ratio between cyclopentadiene and formaldehyde of 1 to 1.

Derefter tilsettes ca. 6 g 33% KOH-oppløsning i Then add approx. 6 g of 33% KOH solution i

methanol. Reaksjonsoppløsningen omrøres i 4 timer idet temperaturen holdes ved 15-20°C ved avkjøling med vann efter behov. Efter 4 timer tilsettes ytterligere 3,4 g av den ovennevnte KOH-oppløsning. Efter en ytterligere time ut- methanol. The reaction solution is stirred for 4 hours while the temperature is kept at 15-20°C by cooling with water as needed. After 4 hours, a further 3.4 g of the above-mentioned KOH solution is added. After a further hour out-

gjør fritt formaldehyd 0,4%. Blandingen nøytraliseres med 3,3 g eddiksyre. makes free formaldehyde 0.4%. The mixture is neutralized with 3.3 g of acetic acid.

Ureagert cyclopentadien avdrives ved ca. 45°C (det Unreacted cyclopentadiene is driven off at approx. 45°C (it

samlede destillat utgjør ca. 100 g). Vakuum blir derefter påført, og det gjenværende cyclopentadien, methanol og endel vann avdrives. Polymeren veier ca. 336 g og er varmherdbar og har et hydroxyltall av ca. 315. Polymeren inneholder dimethylenethergruppebindinger og hydroxymethylendegrupper som fastslått ved hjelp av en kombinasjon av proton- og C^2~m^gnetisk resonansspektroskopi. total distillate amounts to approx. 100g). Vacuum is then applied, and the remaining cyclopentadiene, methanol and some water are driven off. The polymer weighs approx. 336 g and is heat-curable and has a hydroxyl number of approx. 315. The polymer contains dimethyl ether group linkages and hydroxymethylene end groups as determined by a combination of proton and C^2~m^gnetic resonance spectroscopy.

Eksempel 2 Example 2

Eksempel 1 gjentas, bortsett fra at molforholdet Example 1 is repeated, except that the mole ratio

mellom cyclopentadien og formaldehyd er 1 til 2 og at meng- between cyclopentadiene and formaldehyde is 1 to 2 and that the

den av katalyatoroppløsning er 35% av mengden anvendt i eksempel 1, basert på antall mol cyclopentadien. Den opp- that of the catalyst solution is 35% of the amount used in Example 1, based on the number of moles of cyclopentadiene. The up-

nådde polymer har et hydroxyltall av 399. reached polymer has a hydroxyl number of 399.

Eksempel 3 Example 3

Ca. 453,6 g furfurylalkohol tilsettes til en 1 liters 3-halset kolbe forsynt med en omrører, kondensator og termometer, efterfulgt med god omrøring av ca. 4,25 g av en katalysatoroppløsning av 33% KOH i methanol, ca. 165 g cyclopentadien og ca. 81,5 g paraformaldehyd. Dette svarer til et molforhold mellom cyclopentadien og formaldehyd av 1:1. About. 453.6 g of furfuryl alcohol is added to a 1 liter 3-necked flask fitted with a stirrer, condenser and thermometer, followed by good stirring of approx. 4.25 g of a catalyst solution of 33% KOH in methanol, approx. 165 g cyclopentadiene and approx. 81.5 g of paraformaldehyde. This corresponds to a molar ratio between cyclopentadiene and formaldehyde of 1:1.

Mens temperaturen opprettholdes ved 20°C, fremstilles en identisk charge av katalysator, cyclopentadien og paraformaldehyd 1, 2 og 3 timer efter den opprinnelige charge. Efter den fjerde tilsetning får temperaturen stige til 30°C og opprettholdes inntil innholdet av fritt formaldehyd er under 1%. Reaksjonen blir nøytralisert med 8,3 g eddiksyre og avdrevet under vakuum ved 40°C, 10-15 mm Hg, i 40 minutter. Viskositeten er 510 eps, og prosenten av ikke-flyktige materialer (% N.V.) er 73,9%. While the temperature is maintained at 20°C, an identical charge of catalyst, cyclopentadiene and paraformaldehyde is prepared 1, 2 and 3 hours after the original charge. After the fourth addition, the temperature is allowed to rise to 30°C and maintained until the content of free formaldehyde is below 1%. The reaction is neutralized with 8.3 g of acetic acid and driven under vacuum at 40°C, 10-15 mm Hg, for 40 minutes. The viscosity is 510 eps, and the percentage of non-volatile materials (% N.V.) is 73.9%.

Eksempel 4 Example 4

Eksempel 1 gjentas, bortsett fra at molforholdet mellom cyclopentadien og formaldehyd er 1 til 2,5 og at mengden av katalysatoroppløsning er 71% av mengden anvendt i eksempel 1, basert på antall mol cyclopentadien. Example 1 is repeated, except that the molar ratio between cyclopentadiene and formaldehyde is 1 to 2.5 and that the amount of catalyst solution is 71% of the amount used in Example 1, based on the number of moles of cyclopentadiene.

Eksempel 5 Example 5

Eksempel 2 gjentas, bortsett fra at reaksjonen avslut-tes ved en formaldehydkonsentrasjon av ca. 4,5%. Hydroxyl-verdien er ca. 454. Example 2 is repeated, except that the reaction is terminated at a formaldehyde concentration of approx. 4.5%. The hydroxyl value is approx. 454.

Eksempel 6 Example 6

En støpesandblanding fremstilles ved å danne en blanding av ca. 6 0 vekt% av polymeren fremstilt i eksempel 1, A foundry sand mixture is produced by forming a mixture of approx. 60% by weight of the polymer prepared in example 1,

ca. 15 vekt% DBE og ca. 25 vekt% TXIB (Kodak). Til denne blanding tilsettes ca. 4 vekt%, basert på polymeren, av fenylpropylpyridin. about. 15% by weight DBE and approx. 25% by weight TXIB (Kodak). To this mixture is added approx. 4% by weight, based on the polymer, of phenylpropylpyridine.

Den erholdte blanding blandes på Wedron 510 sand i en mengde av ca. 0,7 5 vekt% av sanden i ca. 2 minutter. Derefter blir ca. 0,75 vekt% av sanden av en blanding inneholdende ca. 75 vekt% Mondur MR og ca. 25 vekt% HiSol-10 blandet på sanden i ca. 2 minutter. Den erholdte støpesand-blanding blir derefter formet til standard AFS-strekkprøv-ningsstykker under anvendelse av standardmetodene. De herdede prøvestykker undersøkes for å fastslå strekkfastheten. The resulting mixture is mixed on Wedron 510 sand in a quantity of approx. 0.75% by weight of the sand in approx. 2 minutes. After that, approx. 0.75% by weight of the sand of a mixture containing approx. 75% by weight Mondur MR and approx. 25% by weight HiSol-10 mixed on the sand for approx. 2 minutes. The resulting foundry sand mixture is then formed into standard AFS tensile test pieces using the standard methods. The hardened test pieces are examined to determine the tensile strength.

De følgende resultater fås: The following results are obtained:

Arbeidstid (WT) (Formhardhet 4,2 kg/cm 2) = 8 minutter Strippingtid (ST) (Formhardhet 6,3 kg/cm o) = 12 minutter Working time (WT) (Form hardness 4.2 kg/cm 2) = 8 minutes Stripping time (ST) (Form hardness 6.3 kg/cm o) = 12 minutes

Eksempel 7 Example 7

En støpesandblanding fremstilles ved å danne en tilblanding av ca. 37 vekt% toluensulfonsyre, ca. 7,2 vekt% toverdig kobberoxyd, ca. 13,4 vekt% vann og ca. 42,4 vekt% methanol. Den erholdte tilblanding blir i en mengde av ca. 0,45 vekt% av sanden blandet på Wedron 510 sand i ca. 2 minutter. Derefter blir ca. 1,5 vekt% av sanden av en blanding inneholdende ca. 65,6 vekt% av polymeren fremstilt i eksempel 2, Ca. 15,6 vekt% av HiSol-10, ca. 15,6 vekt% A foundry sand mixture is produced by forming an admixture of approx. 37% by weight toluenesulfonic acid, approx. 7.2% by weight divalent copper oxide, approx. 13.4% by weight water and approx. 42.4 wt% methanol. The resulting mixture is in an amount of approx. 0.45% by weight of the sand mixed on Wedron 510 sand for approx. 2 minutes. After that, approx. 1.5% by weight of the sand of a mixture containing approx. 65.6% by weight of the polymer prepared in example 2, approx. 15.6% by weight of HiSol-10, approx. 15.6% by weight

DBE, ca. 3,2 vekt% isopropylalkohol og ca. 0,25 vekt% Aminosilane 1506 blandet på sanden i ca. 2 minutter. DBE, approx. 3.2 wt% isopropyl alcohol and approx. 0.25% by weight Aminosilane 1506 mixed on the sand for approx. 2 minutes.

Den erholdte støpesandblanding blir derefter omformet til standard AFS-strekkprøvningsprøvestykker under anvendelse av standardmetodene. Prøvene blir herdet under anvendelse av en "varmkasse"-metode ved ca. 177°C ved en oppholdstid av ca. 50 sekunder. De herdede prøvestykker undersøkes for å fastslå strekkfastheten. De følgende resultater fås: Strekkfasthet (kg/cm 2) straks 1,3, efter 45 minutter ved væreIsetemperatur 12,2 kg/cm 2 og efter 3 timer 1 0 kg/cm 2. The resulting foundry sand mixture is then molded into standard AFS tensile test specimens using standard methods. The samples are cured using a "hot box" method at approx. 177°C with a residence time of approx. 50 seconds. The hardened test pieces are examined to determine the tensile strength. The following results are obtained: Tensile strength (kg/cm 2 ) immediately 1.3, after 45 minutes at room temperature 12.2 kg/cm 2 and after 3 hours 1 0 kg/cm 2 .

Eksempel 8 Example 8

En støpesandblanding fremstilles ved å danne en tilblanding av ca. 37 vekt% toluensulfonsyre, ca. 7,2 vekt% toverdig kobberoxyd, ca. 13,4 vekt% vann og ca. 42,4 vekt% methanol. Den erholdte tilblanding blir i en mengde av ca. 0,45 vekt% av sanden blandet på Wedron 510 sand i ca. 2 minutter. Derefter blir ca. 1,5 vekt% av sanden av en blanding inneholdende ca. 42,7 vekt% av polymeren fremstilt i eksempel 3, ca. 35 vekt% furfurylalkohol,. ca. 19,4 vekt% HiSol-10, ca. 2,9 vekt% isopropylalkohol og ca. 0,25 vekt% Aminosilane 1506 blandet på sanden i ca. 2 minutter. A foundry sand mixture is produced by forming an admixture of approx. 37% by weight toluenesulfonic acid, approx. 7.2% by weight divalent copper oxide, approx. 13.4% by weight water and approx. 42.4 wt% methanol. The resulting mixture is in an amount of approx. 0.45% by weight of the sand mixed on Wedron 510 sand for approx. 2 minutes. After that, approx. 1.5% by weight of the sand of a mixture containing approx. 42.7% by weight of the polymer prepared in example 3, approx. 35% by weight furfuryl alcohol,. about. 19.4% by weight HiSol-10, approx. 2.9% by weight isopropyl alcohol and approx. 0.25% by weight Aminosilane 1506 mixed on the sand for approx. 2 minutes.

Den erholdte støpesandblanding ble derefter omformet til standard AFS strekkprøvningsprøvestykker under anvendelse av standardmetodene. Prøvestykkene herdes ved hjelp av en "varmkasse"-metode ved anvendelse av en kassetemperatur av ca. 177°C og en oppholdstid av 50 sekunder. De oppnådde resultater er en umiddelbar strekkfasthet av 3,0 kg/cm<2>, en strekkfasthet efter 45 minutter ved værelsetemperatur av ca. 13,6 kg/cm 2 og en strekkfasthet efter 3 timer av ca. 12,9 kg/cm<2>. The resulting foundry sand mixture was then molded into standard AFS tensile test specimens using the standard methods. The test pieces are hardened using a "hot box" method using a box temperature of approx. 177°C and a residence time of 50 seconds. The results obtained are an immediate tensile strength of 3.0 kg/cm<2>, a tensile strength after 45 minutes at room temperature of approx. 13.6 kg/cm 2 and a tensile strength after 3 hours of approx. 12.9 kg/cm<2>.

Eksempel 9 Example 9

En støpesandblanding fremstilles ved å danne en tilblanding av ca. 75 vekt% benzensulfonsyre og ca. 25 vekt% vann. Den erholdte blanding i en mengde av ca. 0,37 5 vekt% av sanden blir blandet på Wedron 510 sand i ca. 2 minutter. Derefter blir ca. 1,5 vekt% av sanden av en blanding inneholdende ca. 41,1 vekt% av polymeren fremstilt ifølge eksempel 3, ca. 33,5 vekt% furfurylalkohol, ca. 19,1 vekt% HiSol-10, ca. 2,9 vekt% isopropylalkohol, ca. 0,25 vekt% Aminosilane 1506 og ca. 1,4 vekt% resorcinol. A foundry sand mixture is produced by forming an admixture of approx. 75% by weight benzenesulfonic acid and approx. 25% water by weight. The mixture obtained in an amount of approx. 0.37 5% by weight of the sand is mixed on Wedron 510 sand for approx. 2 minutes. After that, approx. 1.5% by weight of the sand of a mixture containing approx. 41.1% by weight of the polymer produced according to example 3, approx. 33.5% by weight furfuryl alcohol, approx. 19.1% by weight HiSol-10, approx. 2.9% by weight isopropyl alcohol, approx. 0.25% by weight Aminosilane 1506 and approx. 1.4 wt% resorcinol.

Den erholdte støpesandblanding ble derefter formet til standard AFS strekkprøvningsprøvestykker under anvendelse av standardmetodene. De herdede prøvestykker blir undersøkt for strekkfasthet. Arbeidstiden (formhardhet ca. 2,8 kg/cm 2) er ca. 4 minutter, og avdrivningstiden (formhardhet ca. 6,3 kg/cm 2) er ca. 10 minutter. Strekkfastheten efter 1 time er ca. 10,8 kg/cm 2, efter 3 timer The resulting foundry sand mixture was then formed into standard AFS tensile test specimens using the standard methods. The hardened test pieces are examined for tensile strength. The working time (form hardness approx. 2.8 kg/cm 2 ) is approx. 4 minutes, and the stripping time (form hardness approx. 6.3 kg/cm 2 ) is approx. 10 minutes. The tensile strength after 1 hour is approx. 10.8 kg/cm 2, after 3 hours

2 2 2 2

ca. 19,9 kg/cm og efter 24 timer ca. 28,1 kg/cm . about. 19.9 kg/cm and after 24 hours approx. 28.1 kg/cm .

Eksempel 10 Example 10

En støpesandblanding fremstilles ved at det dannes A foundry sand mixture is produced by forming

en tilblanding av ca. 62 vekt% paratoluensulfonsyre og ca. 38 vekt% vann. Den erholdte tilblanding blir blandet på Wedron 510 sand i en mengde av ca. 0,45 vekt% av sanden i ca. 2 minutter. Derefter blir ca. 1,5 vekt% av sanden av en blanding inneholdende ca. 64,7 vekt% av polymeren fremstilt ifølge eksempel 4, ca. 15,4 vekt% HiSol-10, a mixture of approx. 62% by weight of paratoluenesulfonic acid and approx. 38% water by weight. The resulting mixture is mixed on Wedron 510 sand in a quantity of approx. 0.45% by weight of the sand in approx. 2 minutes. After that, approx. 1.5% by weight of the sand of a mixture containing approx. 64.7% by weight of the polymer produced according to example 4, approx. 15.4% by weight HiSol-10,

ca. 15,4 vekt% DBE, ca. 3,2 vekt% isopropylalkohol, ca. about. 15.4 wt% DBE, approx. 3.2 wt% isopropyl alcohol, approx.

0,25 vekt% Aminosilane 1506 og ca. 1,4% resorcinol blandet på sanden i ca. 2 minutter. Den erholdte støpesandblanding blir derefter formet til standard AFS-strekkfasthetsprøvnings-prøvestykker under anvendelse av standardmetodene. De herdede prøvestykker blir derefter prøvet for strekkfasthet. Arbeidstiden (formhardhet ca. 2,8 kg/cm 2) er ca. 8 minutter, og avdrivningstiden (formhardhet ca. 6,3 kg/cm 2) er ca. 29 minutter. Strekkfastheten efter ca. 1 time efter fjernelse fra formen er ca. 2,7 kg/cm 2, efter 3 timer ca. 2 2 0.25% by weight Aminosilane 1506 and approx. 1.4% resorcinol mixed on the sand for approx. 2 minutes. The resulting foundry sand mixture is then formed into standard AFS tensile test specimens using the standard methods. The hardened specimens are then tested for tensile strength. The working time (form hardness approx. 2.8 kg/cm 2 ) is approx. 8 minutes, and the stripping time (form hardness approx. 6.3 kg/cm 2 ) is approx. 29 minutes. The tensile strength after approx. 1 hour after removal from the mold is approx. 2.7 kg/cm 2, after 3 hours approx. 2 2

7,4 kg/cm og efter 24 timer ca. 14,6 kg/cm . 7.4 kg/cm and after 24 hours approx. 14.6 kg/cm .

Eksempel 11 Example 11

En støpesandblanding fremstilles ved at det dannes A foundry sand mixture is produced by forming

én tilblanding av ca. 60 vekt% av polymeren fremstilt ifølge eksempel 5, ca. 20 vekt% diacetonalkohol, ca. 19 vekt% HiSol-10 og ca. 1 vekt% dimethyldiethoxysilan. one addition of approx. 60% by weight of the polymer prepared according to example 5, approx. 20% diacetone alcohol by weight, approx. 19% by weight HiSol-10 and approx. 1% by weight dimethyldiethoxysilane.

Den erholdte blanding blir blandet på Wedron 510 sand The resulting mixture is mixed on Wedron 510 sand

i en mengde av ca. 0,75 vekt% av sanden i ca. 2 minutter. Derefter blir en blanding inneholdende ca. 73 vekt% Mondur in an amount of approx. 0.75% by weight of the sand in approx. 2 minutes. Then a mixture containing approx. 73% by weight Mondur

MR og ca. 27 vekt% HiSol-10 blandet på sanden i en mengde MRI and approx. 27% by weight HiSol-10 mixed on the sand in one quantity

av ca. 0,75 vekt% av sanden i ca. 2 minutter. of approx. 0.75% by weight of the sand in approx. 2 minutes.

Den erholdte støpesandblanding blir derefter formet The resulting foundry sand mixture is then shaped

til standard AFS strekkprøvningsprøvestykker under anvendelse av standardmetodene. Det herdede prøvestykke blir prøvet for strekkfasthet. to standard AFS tensile test specimens using the standard methods. The hardened specimen is tested for tensile strength.

Arbeidstiden (formhardhet ca. 4,6 kg/cm 2) er ca. The working time (form hardness approx. 4.6 kg/cm 2 ) is approx.

8 minutter, og strippingtiden (formhardhet ca. 6,3 kg/cm 2) er ca. 10 minutter. Strekkfastheten efter 1 time efter fjernelse fra formen er ca. 14,9 kg/cm 2, efter 3 timer 8 minutes, and the stripping time (form hardness approx. 6.3 kg/cm 2 ) is approx. 10 minutes. The tensile strength after 1 hour after removal from the mold is approx. 14.9 kg/cm 2, after 3 hours

ca. 21,8 kg/cm 2 og efter 24 timer ca. 25,9 kg/cm 2. about. 21.8 kg/cm 2 and after 24 hours approx. 25.9 kg/cm2.

Eksempel 12 Example 12

Erosjonskilekjerner fremstilles ved anvendelse av Erosion wedge cores are produced using

blandingene og herdemetodene ifølge de ovenstående eksempler 9 og 10. Kjernene anvendes for istøping i disse av grått jern ved 1482°C og en innløpshøyde av 40,6 cm. De oppnådde støpestykker oppviste utmerket overflatefinish, utmerket erosjonsbestandighet og fravær av nettverk av subkorngrenser sammenlignbart med et null-vann, null-nitrogen furanbinde- the mixtures and the hardening methods according to the above examples 9 and 10. The cores are used for casting in these of gray iron at 1482°C and an inlet height of 40.6 cm. The resulting castings exhibited excellent surface finish, excellent erosion resistance, and the absence of subgrain boundary networks comparable to a zero-water, zero-nitrogen furan bond-

middel av høy kvalitet. high quality agent.

Claims (14)

1. Polymert eller oligomert cyclopentadienderivat, karakterisert ved at det har tilbake-vendende enheter med formelen I, eller blandinger derav:1. Polymeric or oligomeric cyclopentadiene derivative, characterized in that it has recurring units of the formula I, or mixtures thereof: hvori hver R er en monofunksjonell substituent valgt fra hydrogen, methyl, eller en difunksjonell sammenbindende enhet hver K± er individuelt hydrogen eller en alkylgruppe med 1-4 carbonatomer, R2 er methylen eller ethyliden, R3 er hydrogen eller methyl eller ethyl, forutsatt at minst én av R-gruppene er når n er 2 og at minst to av R-gruppene på forskjellige carbonatomer er når n er større enn 2 og at minst tre av de nevnte R-grupper er hydrogen og hvori n er fra 2 til 20. wherein each R is a monofunctional substituent selected from hydrogen, methyl, or a difunctional linking unit each K± is individually hydrogen or an alkyl group of 1-4 carbon atoms, R2 is methylene or ethylidene, R3 is hydrogen or methyl or ethyl, provided that at least one of the R groups is when n is 2 and that at least two of the R groups are on different carbon atoms when n is greater than 2 and that at least three of the aforementioned R groups are hydrogen and in which n is from 2 to 20. 2. Cyclopenta dienderivat ifølge krav 1, karakterisert ved at det innbefatter endegrupper . 2. Cyclopenta diene derivative according to claim 1, characterized in that it includes end groups. 3. Cyclopentadienderivat ifølge krav 1 eller 2, karakterisert ved at ^ er hydrogen. 3. Cyclopentadiene derivative according to claim 1 or 2, characterized in that ^ is hydrogen. 4. Cyclopentadienderivat ifølge krav 3, karakterisert ved at R3 er hydrogen. 4. Cyclopentadiene derivative according to claim 3, characterized in that R3 is hydrogen. 5. Cyclopentadienderivat ifølge krav 1-4, karakterisert ved at gjennomsnittet av n er et heltall fra 2 til 10, fortrinnsvis fra 3 til 6. 5. Cyclopentadiene derivative according to claims 1-4, characterized in that the average of n is an integer from 2 to 10, preferably from 3 to 6. 6. Fremgangsmåte for fremstilling av et polymert cyclopentadienderivat ifølge krav 1-5, karakterisert ved at den omfatter reaksjon av cyclopentadien eller methylcyclopentadien eller blandinger derav med et aldehyd med 1-5 carbonatomer i nærvær av fra 0,004 til 0,007 mol av en basisk katalysator med en pKb av 7-11, fortrinnsvis KOH, pr. mol av det nevnte cyclopentadien, methylcyclopentadien eller begge ved en temperatur av fra 20°C til 40°C. 6. Method for producing a polymeric cyclopentadiene derivative according to claims 1-5, characterized in that it comprises reaction of cyclopentadiene or methylcyclopentadiene or mixtures thereof with an aldehyde with 1-5 carbon atoms in the presence of from 0.004 to 0.007 mol of a basic catalyst with a pKb of 7-11, preferably KOH, per moles of said cyclopentadiene, methylcyclopentadiene or both at a temperature of from 20°C to 40°C. 7. Fremgangsmåte ifølge krav 6, karakterisert ved at reaksjonen utføres i fra 4 til 24 timer. 7. Method according to claim 6, characterized in that the reaction is carried out for from 4 to 24 hours. 8. Fremgangsmåte ifølge krav 6 eller 7, karakterisert ved at fra 0,1 til 2 mol aldehyd pr. mol av det nevnte cyclopentadien anvendes. 8. Method according to claim 6 or 7, characterized in that from 0.1 to 2 mol of aldehyde per moles of the aforementioned cyclopentadiene are used. 9. Fremgangsmåte ifølge krav 6-8, karakterisert ved at det som aldehydet anvendes formaldehyd eller acetaldehyd, fortrinnsvis formaldehyd. 9. Method according to claims 6-8, characterized in that formaldehyde or acetaldehyde is used as the aldehyde, preferably formaldehyde. 10. Anvendelse av et polymert cyclopentadienderivat ifølge krav 1-5 i herdbare blandinger som inneholder en katalytisk mengde av en sur katalysator med en pKa av ca. 4 eller derunder eller et organisk polyisocyanat i en for herding tilstrekkelig mengde, fortrinnsvis et aromatisk polyisocyanat. 10. Use of a polymeric cyclopentadiene derivative according to claims 1-5 in curable mixtures containing a catalytic amount of an acidic catalyst with a pKa of approx. 4 or less or an organic polyisocyanate in an amount sufficient for curing, preferably an aromatic polyisocyanate. 11. Anvendelse ifølge krav 10, hvor mengden av den nevnte sure katalysator er minst 4 vekt%. 11. Use according to claim 10, where the amount of said acidic catalyst is at least 4% by weight. 12. Anvendelse ifølge krav 10 eller 11, hvor den nevnte sure katalysator er en organisk sulfonsyre. 12. Use according to claim 10 or 11, wherein said acidic catalyst is an organic sulphonic acid. 13. Anvendelse ifølge krav 10-12 i en formblanding som omfatter en hovedsakelig mengde av aggregat og en effektiv bindende mengde opp til 40 vekt% av aggregatet av et derivat ifølge krav 1 og et herdemiddel. 13. Use according to claims 10-12 in a mold mixture comprising a mainly amount of aggregate and an effective binding amount of up to 40% by weight of the aggregate of a derivative according to claim 1 and a curing agent. 14. Anvendelse ifølge krav 13 i en støperiblanding som inneholder minst 80 vekt%, fortrinnsvis ca. 90 vekt%, aggregat med en gjennomsnittlig partikkelstørrelse ikke mindre enn 0,104 mm.14. Use according to claim 13 in a foundry mixture containing at least 80% by weight, preferably approx. 90% by weight, aggregate with an average particle size not less than 0.104 mm.
NO864945A 1985-04-12 1986-12-09 POLYMERS OR OLIGOMER CYCLOPENTADIA DERIVATIVES AND THE PREPARATION AND APPLICATION OF THESE. NO165682C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/722,498 US4636537A (en) 1984-01-30 1985-04-12 Composition, method for preparing and use thereof
PCT/US1986/000761 WO1986006083A1 (en) 1985-04-12 1986-04-11 Cyclopentadiene derivatives, method of preparation and method of use

Publications (3)

Publication Number Publication Date
NO864945L NO864945L (en) 1986-12-09
NO165682B true NO165682B (en) 1990-12-10
NO165682C NO165682C (en) 1991-03-20

Family

ID=26773574

Family Applications (1)

Application Number Title Priority Date Filing Date
NO864945A NO165682C (en) 1985-04-12 1986-12-09 POLYMERS OR OLIGOMER CYCLOPENTADIA DERIVATIVES AND THE PREPARATION AND APPLICATION OF THESE.

Country Status (2)

Country Link
DK (1) DK593586D0 (en)
NO (1) NO165682C (en)

Also Published As

Publication number Publication date
NO864945L (en) 1986-12-09
DK593586A (en) 1986-12-10
DK593586D0 (en) 1986-12-10
NO165682C (en) 1991-03-20

Similar Documents

Publication Publication Date Title
KR830002434B1 (en) Method for curing binder compositions
US4540724A (en) Phenolic resin-polyisocyanate binder systems containing a phosphorus halide and use thereof
US4590229A (en) Phenolic resin-polyisocyanate binder systems
US4602069A (en) Phenolic resin-polyisocyanate binder systems containing a phosphorus based acid
CN100473476C (en) Furan resin composition for casting mold manufacturing, bond for casting mold manufacturing, and manufacturing method for the casting
US4683252A (en) Phenolic resin-polyisocyanate binder systems containing an organohalophosphate and use thereof
US5101001A (en) Polyurethane-forming foundry binders and their use
US4852629A (en) Cold-box process for forming foundry shapes which utilizes certain carboxylic acids as bench life extenders
US4246167A (en) Foundry binder composition
US3806491A (en) Foundry binder composition comprising a ketone-aldehyde product
US20050009950A1 (en) Process for preparing foundry shapes
NO165682B (en) POLYMERS OR OLIGOMER CYCLOPENTADIA DERIVATIVES AND THE PREPARATION AND APPLICATION OF THESE.
US4636537A (en) Composition, method for preparing and use thereof
US4847308A (en) Composition, method for preparing and use thereof
US4529771A (en) Composition, method for preparing and use thereof
US4780526A (en) Composition, method for preparing and use thereof
WO1988007567A1 (en) Foundry binding compositions containing resorcinol and uses thereof
NO801741L (en) MIXING FOR CASTING FORM.